Exemplo n.º 1
0
bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool Signed) {
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
  APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
    APInt::getMaxValue(BitWidth);
  auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
                                     SE.getConstant(Max));
}
Exemplo n.º 2
0
/// Insert code in the prolog code when unrolling a loop with a
/// run-time trip-count.
///
/// This method assumes that the loop unroll factor is total number
/// of loop bodes in the loop after unrolling. (Some folks refer
/// to the unroll factor as the number of *extra* copies added).
/// We assume also that the loop unroll factor is a power-of-two. So, after
/// unrolling the loop, the number of loop bodies executed is 2,
/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
/// the switch instruction is generated.
///
///    extraiters = tripcount % loopfactor
///    if (extraiters == 0) jump Loop:
///    if (extraiters == loopfactor) jump L1
///    if (extraiters == loopfactor-1) jump L2
///    ...
///    L1:  LoopBody;
///    L2:  LoopBody;
///    ...
///    if tripcount < loopfactor jump End
///    Loop:
///    ...
///    End:
///
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
                                   LPPassManager *LPM) {
  // for now, only unroll loops that contain a single exit
  if (!L->getExitingBlock())
    return false;

  // Make sure the loop is in canonical form, and there is a single
  // exit block only.
  if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
    return false;

  // Use Scalar Evolution to compute the trip count.  This allows more
  // loops to be unrolled than relying on induction var simplification
  if (!LPM)
    return false;
  ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
  if (!SE)
    return false;

  // Only unroll loops with a computable trip count and the trip count needs
  // to be an int value (allowing a pointer type is a TODO item)
  const SCEV *BECount = SE->getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
    return false;

  // Add 1 since the backedge count doesn't include the first loop iteration
  const SCEV *TripCountSC =
    SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
  if (isa<SCEVCouldNotCompute>(TripCountSC))
    return false;

  // We only handle cases when the unroll factor is a power of 2.
  // Count is the loop unroll factor, the number of extra copies added + 1.
  if ((Count & (Count-1)) != 0)
    return false;

  // If this loop is nested, then the loop unroller changes the code in
  // parent loop, so the Scalar Evolution pass needs to be run again
  if (Loop *ParentLoop = L->getParentLoop())
    SE->forgetLoop(ParentLoop);

  BasicBlock *PH = L->getLoopPreheader();
  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = L->getLoopLatch();
  // It helps to splits the original preheader twice, one for the end of the
  // prolog code and one for a new loop preheader
  BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
  BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
  BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());

  // Compute the number of extra iterations required, which is:
  //  extra iterations = run-time trip count % (loop unroll factor + 1)
  SCEVExpander Expander(*SE, "loop-unroll");
  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
                                            PreHeaderBR);
  Type *CountTy = TripCount->getType();
  BinaryOperator *ModVal =
    BinaryOperator::CreateURem(TripCount,
                               ConstantInt::get(CountTy, Count),
                               "xtraiter");
  ModVal->insertBefore(PreHeaderBR);

  // Check if for no extra iterations, then jump to unrolled loop
  Value *BranchVal = new ICmpInst(PreHeaderBR,
                                  ICmpInst::ICMP_NE, ModVal,
                                  ConstantInt::get(CountTy, 0), "lcmp");
  // Branch to either the extra iterations or the unrolled loop
  // We will fix up the true branch label when adding loop body copies
  BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
  assert(PreHeaderBR->isUnconditional() &&
         PreHeaderBR->getSuccessor(0) == PEnd &&
         "CFG edges in Preheader are not correct");
  PreHeaderBR->eraseFromParent();

  ValueToValueMapTy LVMap;
  Function *F = Header->getParent();
  // These variables are used to update the CFG links in each iteration
  BasicBlock *CompareBB = nullptr;
  BasicBlock *LastLoopBB = PH;
  // Get an ordered list of blocks in the loop to help with the ordering of the
  // cloned blocks in the prolog code
  LoopBlocksDFS LoopBlocks(L);
  LoopBlocks.perform(LI);

  //
  // For each extra loop iteration, create a copy of the loop's basic blocks
  // and generate a condition that branches to the copy depending on the
  // number of 'left over' iterations.
  //
  for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
    std::vector<BasicBlock*> NewBlocks;
    ValueToValueMapTy VMap;

    // Clone all the basic blocks in the loop, but we don't clone the loop
    // This function adds the appropriate CFG connections.
    CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
                    LoopBlocks, VMap, LVMap, LI);
    LastLoopBB = cast<BasicBlock>(VMap[Latch]);

    // Insert the cloned blocks into function just before the original loop
    F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
                                  NewBlocks[0], F->end());

    // Generate the code for the comparison which determines if the loop
    // prolog code needs to be executed.
    if (leftOverIters == Count-1) {
      // There is no compare block for the fall-thru case when for the last
      // left over iteration
      CompareBB = NewBlocks[0];
    } else {
      // Create a new block for the comparison
      BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
                                             F, CompareBB);
      if (Loop *ParentLoop = L->getParentLoop()) {
        // Add the new block to the parent loop, if needed
        ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
      }

      // The comparison w/ the extra iteration value and branch
      Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
                                      ConstantInt::get(CountTy, leftOverIters),
                                      "un.tmp");
      // Branch to either the extra iterations or the unrolled loop
      BranchInst::Create(NewBlocks[0], CompareBB,
                         BranchVal, NewBB);
      CompareBB = NewBB;
      PH->getTerminator()->setSuccessor(0, NewBB);
      VMap[NewPH] = CompareBB;
    }

    // Rewrite the cloned instruction operands to use the values
    // created when the clone is created.
    for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
             E = NewBlocks[i]->end(); I != E; ++I) {
        RemapInstruction(I, VMap,
                         RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
      }
    }
  }

  // Connect the prolog code to the original loop and update the
  // PHI functions.
  ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
                LPM->getAsPass());
  NumRuntimeUnrolled++;
  return true;
}
Exemplo n.º 3
0
// Return the number of iterations to peel off that make conditions in the
// body true/false. For example, if we peel 2 iterations off the loop below,
// the condition i < 2 can be evaluated at compile time.
//  for (i = 0; i < n; i++)
//    if (i < 2)
//      ..
//    else
//      ..
//   }
static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
                                         ScalarEvolution &SE) {
  assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
  unsigned DesiredPeelCount = 0;

  for (auto *BB : L.blocks()) {
    auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BI || BI->isUnconditional())
      continue;

    // Ignore loop exit condition.
    if (L.getLoopLatch() == BB)
      continue;

    Value *Condition = BI->getCondition();
    Value *LeftVal, *RightVal;
    CmpInst::Predicate Pred;
    if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
      continue;

    const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
    const SCEV *RightSCEV = SE.getSCEV(RightVal);

    // Do not consider predicates that are known to be true or false
    // independently of the loop iteration.
    if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
        SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
                            RightSCEV))
      continue;

    // Check if we have a condition with one AddRec and one non AddRec
    // expression. Normalize LeftSCEV to be the AddRec.
    if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
      if (isa<SCEVAddRecExpr>(RightSCEV)) {
        std::swap(LeftSCEV, RightSCEV);
        Pred = ICmpInst::getSwappedPredicate(Pred);
      } else
        continue;
    }

    const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);

    // Avoid huge SCEV computations in the loop below, make sure we only
    // consider AddRecs of the loop we are trying to peel and avoid
    // non-monotonic predicates, as we will not be able to simplify the loop
    // body.
    // FIXME: For the non-monotonic predicates ICMP_EQ and ICMP_NE we can
    //        simplify the loop, if we peel 1 additional iteration, if there
    //        is no wrapping.
    bool Increasing;
    if (!LeftAR->isAffine() || LeftAR->getLoop() != &L ||
        !SE.isMonotonicPredicate(LeftAR, Pred, Increasing))
      continue;
    (void)Increasing;

    // Check if extending the current DesiredPeelCount lets us evaluate Pred
    // or !Pred in the loop body statically.
    unsigned NewPeelCount = DesiredPeelCount;

    const SCEV *IterVal = LeftAR->evaluateAtIteration(
        SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);

    // If the original condition is not known, get the negated predicate
    // (which holds on the else branch) and check if it is known. This allows
    // us to peel of iterations that make the original condition false.
    if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
      Pred = ICmpInst::getInversePredicate(Pred);

    const SCEV *Step = LeftAR->getStepRecurrence(SE);
    while (NewPeelCount < MaxPeelCount &&
           SE.isKnownPredicate(Pred, IterVal, RightSCEV)) {
      IterVal = SE.getAddExpr(IterVal, Step);
      NewPeelCount++;
    }

    // Only peel the loop if the monotonic predicate !Pred becomes known in the
    // first iteration of the loop body after peeling.
    if (NewPeelCount > DesiredPeelCount &&
        SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
                            RightSCEV))
      DesiredPeelCount = NewPeelCount;
  }

  return DesiredPeelCount;
}
Exemplo n.º 4
0
/// Insert code in the prolog code when unrolling a loop with a
/// run-time trip-count.
///
/// This method assumes that the loop unroll factor is total number
/// of loop bodes in the loop after unrolling. (Some folks refer
/// to the unroll factor as the number of *extra* copies added).
/// We assume also that the loop unroll factor is a power-of-two. So, after
/// unrolling the loop, the number of loop bodies executed is 2,
/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
/// the switch instruction is generated.
///
///        extraiters = tripcount % loopfactor
///        if (extraiters == 0) jump Loop:
///        else jump Prol
/// Prol:  LoopBody;
///        extraiters -= 1                 // Omitted if unroll factor is 2.
///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
///        if (tripcount < loopfactor) jump End
/// Loop:
/// ...
/// End:
///
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
                                   bool AllowExpensiveTripCount, LoopInfo *LI,
                                   LPPassManager *LPM) {
    // for now, only unroll loops that contain a single exit
    if (!L->getExitingBlock())
        return false;

    // Make sure the loop is in canonical form, and there is a single
    // exit block only.
    if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
        return false;

    // Use Scalar Evolution to compute the trip count.  This allows more
    // loops to be unrolled than relying on induction var simplification
    if (!LPM)
        return false;
    ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
    if (!SE)
        return false;

    // Only unroll loops with a computable trip count and the trip count needs
    // to be an int value (allowing a pointer type is a TODO item)
    const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
    if (isa<SCEVCouldNotCompute>(BECountSC) ||
            !BECountSC->getType()->isIntegerTy())
        return false;

    unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();

    // Add 1 since the backedge count doesn't include the first loop iteration
    const SCEV *TripCountSC =
        SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
    if (isa<SCEVCouldNotCompute>(TripCountSC))
        return false;

    BasicBlock *Header = L->getHeader();
    const DataLayout &DL = Header->getModule()->getDataLayout();
    SCEVExpander Expander(*SE, DL, "loop-unroll");
    if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
        return false;

    // We only handle cases when the unroll factor is a power of 2.
    // Count is the loop unroll factor, the number of extra copies added + 1.
    if (!isPowerOf2_32(Count))
        return false;

    // This constraint lets us deal with an overflowing trip count easily; see the
    // comment on ModVal below.
    if (Log2_32(Count) > BEWidth)
        return false;

    // If this loop is nested, then the loop unroller changes the code in
    // parent loop, so the Scalar Evolution pass needs to be run again
    if (Loop *ParentLoop = L->getParentLoop())
        SE->forgetLoop(ParentLoop);

    // Grab analyses that we preserve.
    auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;

    BasicBlock *PH = L->getLoopPreheader();
    BasicBlock *Latch = L->getLoopLatch();
    // It helps to splits the original preheader twice, one for the end of the
    // prolog code and one for a new loop preheader
    BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
    BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
    BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());

    // Compute the number of extra iterations required, which is:
    //  extra iterations = run-time trip count % (loop unroll factor + 1)
    Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
                       PreHeaderBR);
    Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
                                            PreHeaderBR);

    IRBuilder<> B(PreHeaderBR);
    Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");

    // If ModVal is zero, we know that either
    //  1. there are no iteration to be run in the prologue loop
    // OR
    //  2. the addition computing TripCount overflowed
    //
    // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
    // number of iterations that remain to be run in the original loop is a
    // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
    // explicitly check this above).

    Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");

    // Branch to either the extra iterations or the cloned/unrolled loop
    // We will fix up the true branch label when adding loop body copies
    B.CreateCondBr(BranchVal, PEnd, PEnd);
    assert(PreHeaderBR->isUnconditional() &&
           PreHeaderBR->getSuccessor(0) == PEnd &&
           "CFG edges in Preheader are not correct");
    PreHeaderBR->eraseFromParent();
    Function *F = Header->getParent();
    // Get an ordered list of blocks in the loop to help with the ordering of the
    // cloned blocks in the prolog code
    LoopBlocksDFS LoopBlocks(L);
    LoopBlocks.perform(LI);

    //
    // For each extra loop iteration, create a copy of the loop's basic blocks
    // and generate a condition that branches to the copy depending on the
    // number of 'left over' iterations.
    //
    std::vector<BasicBlock *> NewBlocks;
    ValueToValueMapTy VMap;

    bool UnrollPrologue = Count == 2;

    // Clone all the basic blocks in the loop. If Count is 2, we don't clone
    // the loop, otherwise we create a cloned loop to execute the extra
    // iterations. This function adds the appropriate CFG connections.
    CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
                    VMap, LI);

    // Insert the cloned blocks into function just before the original loop
    F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0],
                                  F->end());

    // Rewrite the cloned instruction operands to use the values
    // created when the clone is created.
    for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
        for (BasicBlock::iterator I = NewBlocks[i]->begin(),
                E = NewBlocks[i]->end();
                I != E; ++I) {
            RemapInstruction(I, VMap,
                             RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
        }
    }

    // Connect the prolog code to the original loop and update the
    // PHI functions.
    BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
    ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
                  /*AliasAnalysis*/ nullptr, DT, LI, LPM->getAsPass());
    NumRuntimeUnrolled++;
    return true;
}