Exemplo n.º 1
0
static TOperator getMatrixConstructOp(const TIntermTyped& intermediate)
{
    switch (intermediate.getColsCount())
    {
    case 2:
        switch (intermediate.getRowsCount())
        {
        case 2: return EOpConstructMat2x2;
        case 3: return EOpConstructMat2x3;
        case 4: return EOpConstructMat2x4;
        } break;
    case 3:
        switch (intermediate.getRowsCount())
        {
        case 2: return EOpConstructMat3x2;
        case 3: return EOpConstructMat3x3;
        case 4: return EOpConstructMat3x4;
        } break;
    case 4:
        switch (intermediate.getRowsCount())
        {
        case 2: return EOpConstructMat4x2;
        case 3: return EOpConstructMat4x3;
        case 4: return EOpConstructMat4x4;
        } break;
    }
    assert(false);
    return EOpNull;
}
Exemplo n.º 2
0
TIntermTyped *TIntermediate::addComma(TIntermTyped *left,
                                      TIntermTyped *right,
                                      const TSourceLoc &line,
                                      int shaderVersion)
{
    TQualifier resultQualifier = EvqConst;
    // ESSL3.00 section 12.43: The result of a sequence operator is not a constant-expression.
    if (shaderVersion >= 300 || left->getQualifier() != EvqConst ||
        right->getQualifier() != EvqConst)
    {
        resultQualifier = EvqTemporary;
    }

    TIntermTyped *commaNode = nullptr;
    if (!left->hasSideEffects())
    {
        commaNode = right;
    }
    else
    {
        commaNode = growAggregate(left, right, line);
        commaNode->getAsAggregate()->setOp(EOpComma);
        commaNode->setType(right->getType());
    }
    commaNode->getTypePointer()->setQualifier(resultQualifier);
    return commaNode;
}
Exemplo n.º 3
0
void TIntermAggregate::setBuiltInFunctionPrecision()
{
    // All built-ins returning bool should be handled as ops, not functions.
    ASSERT(getBasicType() != EbtBool);

    TPrecision precision = EbpUndefined;
    TIntermSequence::iterator childIter = mSequence.begin();
    while (childIter != mSequence.end())
    {
        TIntermTyped *typed = (*childIter)->getAsTyped();
        // ESSL spec section 8: texture functions get their precision from the sampler.
        if (typed && IsSampler(typed->getBasicType()))
        {
            precision = typed->getPrecision();
            break;
        }
        ++childIter;
    }
    // ESSL 3.0 spec section 8: textureSize always gets highp precision.
    // All other functions that take a sampler are assumed to be texture functions.
    if (mName.find("textureSize") == 0)
        mType.setPrecision(EbpHigh);
    else
        mType.setPrecision(precision);
}
Exemplo n.º 4
0
TIntermTyped* ir_add_vector_swizzle(TVectorFields& fields, TIntermTyped* arg, TSourceLoc lineDot, TSourceLoc lineIndex)
{	
	// swizzle on a constant -> fold it
	if (arg->getType().getQualifier() == EvqConst)
	{
		TIntermTyped* res = ir_add_const_vector_swizzle(fields, arg, lineIndex);
		if (res)
			return res;
	}
		
	TIntermTyped* res = NULL;
	if (fields.num == 1)
	{
		TIntermConstant* index = ir_add_constant(TType(EbtInt, EbpUndefined, EvqConst), lineIndex);
		index->setValue(fields.offsets[0]);
		res = ir_add_index(EOpIndexDirect, arg, index, lineDot);
		res->setType(TType(arg->getBasicType(), arg->getPrecision()));
	}
	else
	{
		TIntermTyped* index = ir_add_swizzle(fields, lineIndex);
		res = ir_add_index(EOpVectorSwizzle, arg, index, lineDot);
		res->setType(TType(arg->getBasicType(), arg->getPrecision(), EvqTemporary, 1, fields.num));
	}
	return res;
}
Exemplo n.º 5
0
bool TVersionGLSL::visitAggregate(Visit, TIntermAggregate* node)
{
    bool visitChildren = true;

    switch (node->getOp()) {
      case EOpSequence:
        // We need to visit sequence children to get to global or inner scope.
        visitChildren = true;
        break;
      case EOpDeclaration: {
        const TIntermSequence& sequence = node->getSequence();
        TQualifier qualifier = sequence.front()->getAsTyped()->getQualifier();
        if ((qualifier == EvqInvariantVaryingIn) ||
            (qualifier == EvqInvariantVaryingOut)) {
            updateVersion(GLSL_VERSION_120);
        }
        break;
      }
      case EOpParameters: {
        const TIntermSequence& params = node->getSequence();
        for (TIntermSequence::const_iterator iter = params.begin();
             iter != params.end(); ++iter)
        {
            const TIntermTyped* param = (*iter)->getAsTyped();
            if (param->isArray())
            {
                TQualifier qualifier = param->getQualifier();
                if ((qualifier == EvqOut) || (qualifier ==  EvqInOut))
                {
                    updateVersion(GLSL_VERSION_120);
                    break;
                }
            }
        }
        // Fully processed. No need to visit children.
        visitChildren = false;
        break;
      }
      case EOpConstructMat2:
      case EOpConstructMat3:
      case EOpConstructMat4: {
        const TIntermSequence& sequence = node->getSequence();
        if (sequence.size() == 1) {
          TIntermTyped* typed = sequence.front()->getAsTyped();
          if (typed && typed->isMatrix()) {
            updateVersion(GLSL_VERSION_120);
          }
        }
        break;
      }

      default: break;
    }

    return visitChildren;
}
Exemplo n.º 6
0
// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
// for the parameter to the constructor (passed to this function). Essentially, it converts
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a 
// float, then float is converted to int.
//
// Returns 0 for an error or the constructed node.
//
TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset)
{
    TIntermTyped* newNode;
    TOperator basicOp;

    //
    // First, convert types as needed.
    //
    switch (op) {
    case EOpConstructVec2:
    case EOpConstructVec3:
    case EOpConstructVec4:
    case EOpConstructMat2:
    case EOpConstructMat3:
    case EOpConstructMat4:
    case EOpConstructFloat:
        basicOp = EOpConstructFloat;
        break;

    case EOpConstructIVec2:
    case EOpConstructIVec3:
    case EOpConstructIVec4:
    case EOpConstructInt:
        basicOp = EOpConstructInt;
        break;

    case EOpConstructBVec2:
    case EOpConstructBVec3:
    case EOpConstructBVec4:
    case EOpConstructBool:
        basicOp = EOpConstructBool;
        break;

    default:
        error(line, "unsupported construction", "", "");
        recover();

        return 0;
    }
    newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable);
    if (newNode == 0) {
        error(line, "can't convert", "constructor", "");
        return 0;
    }

    //
    // Now, if there still isn't an operation to do the construction, and we need one, add one.
    //
    
    // Otherwise, skip out early.
    if (subset || (newNode != node && newNode->getType() == *type))
        return newNode;

    // setAggregateOperator will insert a new node for the constructor, as needed.
    return intermediate.setAggregateOperator(newNode, op, line);
}
Exemplo n.º 7
0
TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
{
    if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst) {
        return right;
    } else {
        TIntermTyped *commaAggregate = growAggregate(left, right, line);
        commaAggregate->getAsAggregate()->setOp(EOpComma);
        commaAggregate->setType(right->getType());
        commaAggregate->getTypePointer()->setQualifier(EvqTemporary);
        return commaAggregate;
    }
}
bool ValidateLimitations::validateIndexing(TIntermBinary* node)
{
    ASSERT((node->getOp() == EOpIndexDirect) ||
           (node->getOp() == EOpIndexIndirect));

    bool valid = true;
    TIntermTyped* index = node->getRight();
    // The index expression must have integral type.
    if (!index->isScalar() || (index->getBasicType() != EbtInt)) {
        error(index->getLine(),
              "Index expression must have integral type",
              index->getCompleteString().c_str());
        valid = false;
    }
    // The index expession must be a constant-index-expression unless
    // the operand is a uniform in a vertex shader.
    TIntermTyped* operand = node->getLeft();
    bool skip = (mShaderType == SH_VERTEX_SHADER) &&
                (operand->getQualifier() == EvqUniform);
    if (!skip && !isConstIndexExpr(index)) {
        error(index->getLine(), "Index expression must be constant", "[]");
        valid = false;
    }
    return valid;
}
Exemplo n.º 9
0
TIntermTyped* ir_add_comma(TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
{
	if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst)
	{
		return right;
	}
	else
	{
		TIntermTyped *commaAggregate = ir_grow_aggregate(left, right, line);
		commaAggregate->getAsAggregate()->setOperator(EOpComma);    
		commaAggregate->setType(right->getType());
		commaAggregate->getTypePointer()->changeQualifier(EvqTemporary);
		return commaAggregate;
	}
}
Exemplo n.º 10
0
bool TVersionGLSL::visitAggregate(Visit, TIntermAggregate *node)
{
    if (node->getOp() == EOpConstruct && node->getType().isMatrix())
    {
        const TIntermSequence &sequence = *(node->getSequence());
        if (sequence.size() == 1)
        {
            TIntermTyped *typed = sequence.front()->getAsTyped();
            if (typed && typed->isMatrix())
            {
                ensureVersionIsAtLeast(GLSL_VERSION_120);
            }
        }
    }
    return true;
}
Exemplo n.º 11
0
//
// Make a constant vector node or constant scalar node, representing a given 
// constant vector and constant swizzle into it.
//
TIntermTyped* TIntermediate::foldSwizzle(TIntermTyped* node, TVectorFields& fields, const TSourceLoc& loc)
{
    const TConstUnionArray& unionArray = node->getAsConstantUnion()->getConstArray();
    TConstUnionArray constArray(fields.num);

    for (int i = 0; i < fields.num; i++)
        constArray[i] = unionArray[fields.offsets[i]];

    TIntermTyped* result = addConstantUnion(constArray, node->getType(), loc);

    if (result == 0)
        result = node;
    else
        result->setType(TType(node->getBasicType(), EvqConst, fields.num));

    return result;
}
Exemplo n.º 12
0
TIntermDeclaration* ir_grow_declaration(TIntermDeclaration* declaration, TIntermSymbol *symbol, TIntermTyped *initializer, TInfoSink& infoSink)
{
	TIntermTyped* added_decl = symbol;
	if (initializer)
		added_decl = ir_add_assign(EOpAssign, symbol, initializer, symbol->getLine(), infoSink);
	
	if (declaration->isSingleDeclaration()) {
		TIntermTyped* current = declaration->getDeclaration();
		TIntermAggregate* aggregate = ir_make_aggregate(current, current->getLine());
		aggregate->setOperator(EOpComma);
		declaration->getDeclaration() = aggregate;
	}
		
	TIntermAggregate* aggregate = ir_grow_aggregate(declaration->getDeclaration(), added_decl, added_decl->getLine());
	aggregate->setOperator(EOpComma);
	declaration->getDeclaration() = aggregate;
	
	return declaration;
}
Exemplo n.º 13
0
void TIntermAggregate::setPrecisionFromChildren()
{
    if (getBasicType() == EbtBool)
    {
        mType.setPrecision(EbpUndefined);
        return;
    }

    TPrecision precision = EbpUndefined;
    TIntermSequence::iterator childIter = mSequence.begin();
    while (childIter != mSequence.end())
    {
        TIntermTyped *typed = (*childIter)->getAsTyped();
        if (typed)
            precision = GetHigherPrecision(typed->getPrecision(), precision);
        ++childIter;
    }
    mType.setPrecision(precision);
}
Exemplo n.º 14
0
void TDependencyGraphBuilder::visitAssignment(TIntermBinary* intermAssignment)
{
    TIntermTyped* intermLeft = intermAssignment->getLeft();
    if (!intermLeft)
        return;

    TGraphSymbol* leftmostSymbol = NULL;

    {
        TNodeSetMaintainer nodeSetMaintainer(this);

        {
            TLeftmostSymbolMaintainer leftmostSymbolMaintainer(this, mLeftSubtree);
            intermLeft->traverse(this);
            leftmostSymbol = mLeftmostSymbols.top();

            // After traversing the left subtree of this assignment, we should have found a real
            // leftmost symbol, and the leftmost symbol should not be a placeholder.
            ASSERT(leftmostSymbol != &mLeftSubtree);
            ASSERT(leftmostSymbol != &mRightSubtree);
        }

        if (TIntermTyped* intermRight = intermAssignment->getRight()) {
            TLeftmostSymbolMaintainer leftmostSymbolMaintainer(this, mRightSubtree);
            intermRight->traverse(this);
        }

        if (TParentNodeSet* assignmentNodes = mNodeSets.getTopSet())
            connectMultipleNodesToSingleNode(assignmentNodes, leftmostSymbol);
    }

    // Push the leftmost symbol of this assignment into the current set of dependent symbols to
    // represent the result of this assignment.
    // An expression like "a = (b = c)" will yield a dependency graph like "c -> b -> a".
    // This line essentially passes the leftmost symbol of the nested assignment ("b" in this
    // example) back up to the earlier visitAssignment call for the outer assignment, which will
    // create the connection "b -> a".
    mNodeSets.insertIntoTopSet(leftmostSymbol);
}
Exemplo n.º 15
0
bool TIntermSelection::promoteTernary(TInfoSink& infoSink)
{
	if (!condition->isVector())
		return true;
	
	int size = condition->getRowsCount();
	TIntermTyped* trueb = trueBlock->getAsTyped();
	TIntermTyped* falseb = falseBlock->getAsTyped();
	if (!trueb || !falseb)
		return false;
	
	if (trueb->getRowsCount() == size && falseb->getRowsCount() == size)
		return true;
	
	// Base assumption: just make the type a float vector
	TPrecision higherPrecision = GetHigherPrecision(trueb->getPrecision(), falseb->getPrecision());
	setType(TType(EbtFloat, higherPrecision, EvqTemporary, 1, size, condition->isMatrix()));
	
	TOperator convert = EOpNull;	
	{
		convert = TOperator( EOpConstructVec2 + size - 2);
		TIntermAggregate *node = new TIntermAggregate(convert);
		node->setLine(trueb->getLine());
		node->setType(TType(condition->getBasicType(), higherPrecision, trueb->getQualifier() == EvqConst ? EvqConst : EvqTemporary, 1, size, condition->isMatrix()));
		node->getNodes().push_back(trueb);
		trueBlock = node;
	}
	{
		convert = TOperator( EOpConstructVec2 + size - 2);
		TIntermAggregate *node = new TIntermAggregate(convert);
		node->setLine(falseb->getLine());
		node->setType(TType(condition->getBasicType(), higherPrecision, falseb->getQualifier() == EvqConst ? EvqConst : EvqTemporary, 1, size, condition->isMatrix()));
		node->getNodes().push_back(falseb);
		falseBlock = node;
	}
	
	return true;
}
Exemplo n.º 16
0
//
// Constant folding of a bracket (array-style) dereference or struct-like dot
// dereference.  Can handle any thing except a multi-character swizzle, though
// all swizzles may go to foldSwizzle().
//
TIntermTyped* TIntermediate::foldDereference(TIntermTyped* node, int index, const TSourceLoc& loc)
{
    TType dereferencedType(node->getType(), index);
    dereferencedType.getQualifier().storage = EvqConst;
    TIntermTyped* result = 0;
    int size = dereferencedType.computeNumComponents();
    
    int start;
    if (node->isStruct()) {
        start = 0;
        for (int i = 0; i < index; ++i)
            start += (*node->getType().getStruct())[i].type->computeNumComponents();
    } else
        start = size * index;

    result = addConstantUnion(TConstUnionArray(node->getAsConstantUnion()->getConstArray(), start, size), node->getType(), loc);

    if (result == 0)
        result = node;
    else
        result->setType(dereferencedType);

    return result;
}
Exemplo n.º 17
0
bool CollectVariables::visitBinary(Visit, TIntermBinary *binaryNode)
{
    if (binaryNode->getOp() == EOpIndexDirectInterfaceBlock)
    {
        // NOTE: we do not determine static use for individual blocks of an array
        TIntermTyped *blockNode = binaryNode->getLeft()->getAsTyped();
        ASSERT(blockNode);

        TIntermConstantUnion *constantUnion = binaryNode->getRight()->getAsConstantUnion();
        ASSERT(constantUnion);

        const TInterfaceBlock *interfaceBlock = blockNode->getType().getInterfaceBlock();
        InterfaceBlock *namedBlock = FindVariable(interfaceBlock->name(), mInterfaceBlocks);
        ASSERT(namedBlock);
        namedBlock->staticUse = true;

        unsigned int fieldIndex = constantUnion->getUConst(0);
        ASSERT(fieldIndex < namedBlock->fields.size());
        namedBlock->fields[fieldIndex].staticUse = true;
        return false;
    }

    return true;
}
Exemplo n.º 18
0
// constructor
//      : type argument_list
//
bool HlslGrammar::acceptConstructor(TIntermTyped*& node)
{
    // type
    TType type;
    if (acceptType(type)) {
        TFunction* constructorFunction = parseContext.handleConstructorCall(token.loc, type);
        if (constructorFunction == nullptr)
            return false;

        // arguments
        TIntermTyped* arguments = nullptr;
        if (! acceptArguments(constructorFunction, arguments)) {
            expected("constructor arguments");
            return false;
        }

        // hook it up
        node = parseContext.handleFunctionCall(arguments->getLoc(), constructorFunction, arguments);

        return true;
    }

    return false;
}
Exemplo n.º 19
0
bool TVersionGLSL::visitAggregate(Visit, TIntermAggregate* node)
{
    bool visitChildren = true;

    switch (node->getOp()) {
      case EOpSequence:
        // We need to visit sequence children to get to global or inner scope.
        visitChildren = true;
        break;
      case EOpDeclaration: {
        const TIntermSequence& sequence = node->getSequence();
        TQualifier qualifier = sequence.front()->getAsTyped()->getQualifier();
        if ((qualifier == EvqInvariantVaryingIn) ||
            (qualifier == EvqInvariantVaryingOut)) {
            updateVersion(GLSL_VERSION_120);
        }
        break;
      }
      case EOpConstructMat2:
      case EOpConstructMat3:
      case EOpConstructMat4: {
        const TIntermSequence& sequence = node->getSequence();
        if (sequence.size() == 1) {
          TIntermTyped* typed = sequence.front()->getAsTyped();
          if (typed && typed->isMatrix()) {
            updateVersion(GLSL_VERSION_120);
          }
        }
        break;
      }

      default: break;
    }

    return visitChildren;
}
Exemplo n.º 20
0
bool IntermNodePatternMatcher::match(TIntermDeclaration *node)
{
    if ((mMask & kMultiDeclaration) != 0)
    {
        if (node->getSequence()->size() > 1)
        {
            return true;
        }
    }
    if ((mMask & kArrayDeclaration) != 0)
    {
        if (node->getSequence()->front()->getAsTyped()->getType().isStructureContainingArrays())
        {
            return true;
        }
        // Need to check from all declarators whether they are arrays since that may vary between
        // declarators.
        for (TIntermNode *declarator : *node->getSequence())
        {
            if (declarator->getAsTyped()->isArray())
            {
                return true;
            }
        }
    }
    if ((mMask & kNamelessStructDeclaration) != 0)
    {
        TIntermTyped *declarator = node->getSequence()->front()->getAsTyped();
        if (declarator->getBasicType() == EbtStruct &&
            declarator->getType().getStruct()->name() == "")
        {
            return true;
        }
    }
    return false;
}
Exemplo n.º 21
0
static TOperator getMatrixConstructOp(const TIntermTyped& intermediate, TParseContext& ctx)
{
	// before GLSL 1.20, only square matrices
	if (ctx.targetVersion < ETargetGLSL_120)
	{
		const int c = intermediate.getColsCount();
		const int r = intermediate.getRowsCount();
		if (c == 2 && r == 2)
			return EOpConstructMat2x2FromMat;
		if (c == 3 && r == 3)
			return EOpConstructMat3x3FromMat;
		if (c == 4 && r == 4)
			return EOpConstructMat4x4;
		ctx.error(intermediate.getLine(), " non-square matrices not supported", "", "(%ix%i)", r, c);
		return EOpNull;
	}
	
    switch (intermediate.getColsCount())
    {
    case 2:
        switch (intermediate.getRowsCount())
        {
        case 2: return EOpConstructMat2x2;
        case 3: return EOpConstructMat2x3;
        case 4: return EOpConstructMat2x4;
        } break;
    case 3:
        switch (intermediate.getRowsCount())
        {
        case 2: return EOpConstructMat3x2;
        case 3: return EOpConstructMat3x3;
        case 4: return EOpConstructMat3x4;
        } break;
    case 4:
        switch (intermediate.getRowsCount())
        {
        case 2: return EOpConstructMat4x2;
        case 3: return EOpConstructMat4x3;
        case 4: return EOpConstructMat4x4;
        } break;
    }
    assert(false);
    return EOpNull;
}
Exemplo n.º 22
0
// Special case for matrix[idx1][idx2]: output as matrix[idx2][idx1]
static bool Check2DMatrixIndex (TGlslOutputTraverser* goit, std::stringstream& out, TIntermTyped* left, TIntermTyped* right)
{
	if (left->isVector() && !left->isArray())
	{
		TIntermBinary* leftBin = left->getAsBinaryNode();
		if (leftBin && (leftBin->getOp() == EOpIndexDirect || leftBin->getOp() == EOpIndexIndirect))
		{
			TIntermTyped* superLeft = leftBin->getLeft();
			TIntermTyped* superRight = leftBin->getRight();
			if (superLeft->isMatrix() && !superLeft->isArray())
			{
				superLeft->traverse (goit);
				out << "[";
				right->traverse(goit);
				out << "][";
				superRight->traverse(goit);
				out << "]";
				return true;
			}
		}
	}
	return false;
}
Exemplo n.º 23
0
bool TGlslOutputTraverser::traverseBinary( bool preVisit, TIntermBinary *node, TIntermTraverser *it )
{
   TString op = "??";
   TGlslOutputTraverser* goit = static_cast<TGlslOutputTraverser*>(it);
   GlslFunction *current = goit->current;
   std::stringstream& out = current->getActiveOutput();
   bool infix = true;
   bool assign = false;
   bool needsParens = true;

   switch (node->getOp())
   {
   case EOpAssign:                   op = "=";   infix = true; needsParens = false; break;
   case EOpAddAssign:                op = "+=";  infix = true; needsParens = false; break;
   case EOpSubAssign:                op = "-=";  infix = true; needsParens = false; break;
   case EOpMulAssign:                op = "*=";  infix = true; needsParens = false; break;
   case EOpVectorTimesMatrixAssign:  op = "*=";  infix = true; needsParens = false; break;
   case EOpVectorTimesScalarAssign:  op = "*=";  infix = true; needsParens = false; break;
   case EOpMatrixTimesScalarAssign:  op = "*=";  infix = true; needsParens = false; break;
   case EOpMatrixTimesMatrixAssign:  op = "*=";  infix = true; needsParens = false; break;
   case EOpDivAssign:                op = "/=";  infix = true; needsParens = false; break;
   case EOpModAssign:                op = "%=";  infix = true; needsParens = false; break;
   case EOpAndAssign:                op = "&=";  infix = true; needsParens = false; break;
   case EOpInclusiveOrAssign:        op = "|=";  infix = true; needsParens = false; break;
   case EOpExclusiveOrAssign:        op = "^=";  infix = true; needsParens = false; break;
   case EOpLeftShiftAssign:          op = "<<="; infix = true; needsParens = false; break;
   case EOpRightShiftAssign:         op = "??="; infix = true; needsParens = false; break;

   case EOpIndexDirect:
      {
         TIntermTyped *left = node->getLeft();
         TIntermTyped *right = node->getRight();
         assert( left && right);

         current->beginStatement();

		 if (Check2DMatrixIndex (goit, out, left, right))
			 return false;

		 if (left->isMatrix() && !left->isArray())
		 {
			 if (right->getAsConstant())
			 {
				 current->addLibFunction (EOpMatrixIndex);
				 out << "xll_matrixindex (";
				 left->traverse(goit);
				 out << ", ";
				 right->traverse(goit);
				 out << ")";
				 return false;
			 }
			 else
			 {
				 current->addLibFunction (EOpTranspose);
				 current->addLibFunction (EOpMatrixIndex);
				 current->addLibFunction (EOpMatrixIndexDynamic);
				 out << "xll_matrixindexdynamic (";
				 left->traverse(goit);
				 out << ", ";
				 right->traverse(goit);
				 out << ")";
				 return false;
			 }
		 }

         left->traverse(goit);

         // Special code for handling a vector component select (this improves readability)
         if (left->isVector() && !left->isArray() && right->getAsConstant())
         {
            char swiz[] = "xyzw";
            goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
            goit->generatingCode = false;
            right->traverse(goit);
            assert( goit->indexList.size() == 1);
            assert( goit->indexList[0] < 4);
            out << "." << swiz[goit->indexList[0]];
            goit->indexList.clear();
            goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
            goit->generatingCode = true;
         }
         else
         {
            out << "[";
            right->traverse(goit);
            out << "]";
         }
         return false;
      }
   case EOpIndexIndirect:
      {
      TIntermTyped *left = node->getLeft();
      TIntermTyped *right = node->getRight();
      current->beginStatement();

	  if (Check2DMatrixIndex (goit, out, left, right))
		  return false;

	  if (left && right && left->isMatrix() && !left->isArray())
	  {
		  if (right->getAsConstant())
		  {
			  current->addLibFunction (EOpMatrixIndex);
			  out << "xll_matrixindex (";
			  left->traverse(goit);
			  out << ", ";
			  right->traverse(goit);
			  out << ")";
			  return false;
		  }
		  else
		  {
			  current->addLibFunction (EOpTranspose);
			  current->addLibFunction (EOpMatrixIndex);
			  current->addLibFunction (EOpMatrixIndexDynamic);
			  out << "xll_matrixindexdynamic (";
			  left->traverse(goit);
			  out << ", ";
			  right->traverse(goit);
			  out << ")";
			  return false;
		  }
	  }

      if (left)
         left->traverse(goit);
      out << "[";
      if (right)
         right->traverse(goit);
      out << "]";
      return false;
	  }

   case EOpIndexDirectStruct:
      {
         current->beginStatement();
         GlslStruct *s = goit->createStructFromType(node->getLeft()->getTypePointer());
         if (node->getLeft())
            node->getLeft()->traverse(goit);

         // The right child is always an offset into the struct, switch to get an
         // immediate constant, and put it back afterwords
         goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
         goit->generatingCode = false;

         if (node->getRight())
         {
            node->getRight()->traverse(goit);
            assert( goit->indexList.size() == 1);
            assert( goit->indexList[0] < s->memberCount());
            out << "." << s->getMember(goit->indexList[0]).name;

         }

         goit->indexList.clear();
         goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
         goit->generatingCode = true;
      }
      return false;

   case EOpVectorSwizzle:
      current->beginStatement();
      if (node->getLeft())
         node->getLeft()->traverse(goit);
      goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
      goit->generatingCode = false;
      if (node->getRight())
      {
         node->getRight()->traverse(goit);
         assert( goit->indexList.size() <= 4);
         out << '.';
         const char fields[] = "xyzw";
         for (int ii = 0; ii < (int)goit->indexList.size(); ii++)
         {
            int val = goit->indexList[ii];
            assert( val >= 0);
            assert( val < 4);
            out << fields[val];
         }
      }
      goit->indexList.clear();
      goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
      goit->generatingCode = true;
      return false;

	case EOpMatrixSwizzle:		   
		// This presently only works for swizzles as rhs operators
		if (node->getRight())
		{
			goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
			goit->generatingCode = false;

			node->getRight()->traverse(goit);

			goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
			goit->generatingCode = true;

			std::vector<int> elements = goit->indexList;
			goit->indexList.clear();
			
			if (elements.size() > 4 || elements.size() < 1) {
				goit->infoSink.info << "Matrix swizzle operations can must contain at least 1 and at most 4 element selectors.";
				return true;
			}

			unsigned column[4] = {0}, row[4] = {0};
			for (unsigned i = 0; i != elements.size(); ++i)
			{
				unsigned val = elements[i];
				column[i] = val % 4;
				row[i] = val / 4;
			}

			bool sameColumn = true;
			for (unsigned i = 1; i != elements.size(); ++i)
				sameColumn &= column[i] == column[i-1];

			static const char* fields = "xyzw";
			
			if (sameColumn)
			{				
				//select column, then swizzle row
				if (node->getLeft())
					node->getLeft()->traverse(goit);
				out << "[" << column[0] << "].";
				
				for (unsigned i = 0; i < elements.size(); ++i)
					out << fields[row[i]];
			}
			else
			{
				// Insert constructor, and dereference individually

				// Might need to account for different types here 
				assert( elements.size() != 1); //should have hit same collumn case
				out << "vec" << elements.size() << "(";
				if (node->getLeft())
					node->getLeft()->traverse(goit);
				out << "[" << column[0] << "].";
				out << fields[row[0]];
				
				for (unsigned i = 1; i < elements.size(); ++i)
				{
					out << ", ";
					if (node->getLeft())
						node->getLeft()->traverse(goit);
					out << "[" << column[i] << "].";
					out << fields[row[i]];
				}
				out << ")";
			}
		}
		return false;

   case EOpAdd:    op = "+"; infix = true; break;
   case EOpSub:    op = "-"; infix = true; break;
   case EOpMul:    op = "*"; infix = true; break;
   case EOpDiv:    op = "/"; infix = true; break;
   case EOpMod:    op = "mod"; infix = false; break;
   case EOpRightShift:  op = "<<"; infix = true;
		   break;
   case EOpLeftShift:   op = ">>"; infix = true; break;
   case EOpAnd:         op = "&"; infix = true; break;
   case EOpInclusiveOr: op = "|"; infix = true; break;
   case EOpExclusiveOr: op = "^"; infix = true; break;
   case EOpEqual:       
      writeComparison ( "==", "equal", node, goit );
      return false;        

   case EOpNotEqual:        
      writeComparison ( "!=", "notEqual", node, goit );
      return false;               

   case EOpLessThan: 
      writeComparison ( "<", "lessThan", node, goit );
      return false;               

   case EOpGreaterThan:
      writeComparison ( ">", "greaterThan", node, goit );
      return false;               

   case EOpLessThanEqual:    
      writeComparison ( "<=", "lessThanEqual", node, goit );
      return false;               


   case EOpGreaterThanEqual: 
      writeComparison ( ">=", "greaterThanEqual", node, goit );
      return false;               


   case EOpVectorTimesScalar: op = "*"; infix = true; break;
   case EOpVectorTimesMatrix: op = "*"; infix = true; break;
   case EOpMatrixTimesVector: op = "*"; infix = true; break;
   case EOpMatrixTimesScalar: op = "*"; infix = true; break;
   case EOpMatrixTimesMatrix: op = "*"; infix = true; break;

   case EOpLogicalOr:  op = "||"; infix = true; break;
   case EOpLogicalXor: op = "^^"; infix = true; break;
   case EOpLogicalAnd: op = "&&"; infix = true; break;
   default: assert(0);
   }

   current->beginStatement();

   if (infix)
   {
	   // special case for swizzled matrix assignment
	   if (node->getOp() == EOpAssign && node->getLeft() && node->getRight()) {
		   TIntermBinary* lval = node->getLeft()->getAsBinaryNode();
		   
		   if (lval && lval->getOp() == EOpMatrixSwizzle) {
			   static const char* vec_swizzles = "xyzw";
			   TIntermTyped* rval = node->getRight();
			   TIntermTyped* lexp = lval->getLeft();
			   
			   goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
			   goit->generatingCode = false;
			   
			   lval->getRight()->traverse(goit);
			   
			   goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
			   goit->generatingCode = true;
			   
			   std::vector<int> swizzles = goit->indexList;
			   goit->indexList.clear();
			   
			   char temp_rval[128];
			   unsigned n_swizzles = swizzles.size();
			   
			   if (n_swizzles > 1) {
				   snprintf(temp_rval, 128, "xlat_swiztemp%d", goit->swizzleAssignTempCounter++);
				   
				   current->beginStatement();
				   out << "vec" << n_swizzles << " " << temp_rval << " = ";
				   rval->traverse(goit);			   
				   current->endStatement();
			   }
			   
			   for (unsigned i = 0; i != n_swizzles; ++i) {
				   unsigned col = swizzles[i] / 4;
				   unsigned row = swizzles[i] % 4;
				   
				   current->beginStatement();
				   lexp->traverse(goit);
				   out << "[" << row << "][" << col << "] = ";
				   if (n_swizzles > 1)
					   out << temp_rval << "." << vec_swizzles[i];
				   else
					   rval->traverse(goit);
				   
				   current->endStatement();
			   }

			   return false;
		   }
	   }

      if (needsParens)
         out << '(';

      if (node->getLeft())
         node->getLeft()->traverse(goit);
      out << ' ' << op << ' ';
      if (node->getRight())
         node->getRight()->traverse(goit);

      if (needsParens)
         out << ')';
   }
   else
   {
      if (assign)
      {		  
         // Need to traverse the left child twice to allow for the assign and the op
         // This is OK, because we know it is an lvalue
         if (node->getLeft())
            node->getLeft()->traverse(goit);

         out << " = " << op << '(';

         if (node->getLeft())
            node->getLeft()->traverse(goit);
         out << ", ";
         if (node->getRight())
            node->getRight()->traverse(goit);

         out << ')';
      }
      else
      {
         out << op << '(';

         if (node->getLeft())
            node->getLeft()->traverse(goit);
         out << ", ";
         if (node->getRight())
            node->getRight()->traverse(goit);

         out << ')';
      }
   }

   return false;
}
void ScalarizeVecAndMatConstructorArgs::scalarizeArgs(
    TIntermAggregate *aggregate, bool scalarizeVector, bool scalarizeMatrix)
{
    ASSERT(aggregate);
    int size = 0;
    switch (aggregate->getOp())
    {
      case EOpConstructVec2:
      case EOpConstructBVec2:
      case EOpConstructIVec2:
        size = 2;
        break;
      case EOpConstructVec3:
      case EOpConstructBVec3:
      case EOpConstructIVec3:
        size = 3;
        break;
      case EOpConstructVec4:
      case EOpConstructBVec4:
      case EOpConstructIVec4:
      case EOpConstructMat2:
        size = 4;
        break;
      case EOpConstructMat2x3:
      case EOpConstructMat3x2:
        size = 6;
        break;
      case EOpConstructMat2x4:
      case EOpConstructMat4x2:
        size = 8;
        break;
      case EOpConstructMat3:
        size = 9;
        break;
      case EOpConstructMat3x4:
      case EOpConstructMat4x3:
        size = 12;
        break;
      case EOpConstructMat4:
        size = 16;
        break;
      default:
        break;
    }
    TIntermSequence *sequence = aggregate->getSequence();
    TIntermSequence original(*sequence);
    sequence->clear();
    for (size_t ii = 0; ii < original.size(); ++ii)
    {
        ASSERT(size > 0);
        TIntermTyped *node = original[ii]->getAsTyped();
        ASSERT(node);
        TString varName = createTempVariable(node);
        if (node->isScalar())
        {
            TIntermSymbol *symbolNode =
                new TIntermSymbol(-1, varName, node->getType());
            sequence->push_back(symbolNode);
            size--;
        }
        else if (node->isVector())
        {
            if (scalarizeVector)
            {
                int repeat = std::min(size, node->getNominalSize());
                size -= repeat;
                for (int index = 0; index < repeat; ++index)
                {
                    TIntermSymbol *symbolNode =
                        new TIntermSymbol(-1, varName, node->getType());
                    TIntermBinary *newNode = ConstructVectorIndexBinaryNode(
                        symbolNode, index);
                    sequence->push_back(newNode);
                }
            }
            else
            {
                TIntermSymbol *symbolNode =
                    new TIntermSymbol(-1, varName, node->getType());
                sequence->push_back(symbolNode);
                size -= node->getNominalSize();
            }
        }
        else
        {
            ASSERT(node->isMatrix());
            if (scalarizeMatrix)
            {
                int colIndex = 0, rowIndex = 0;
                int repeat = std::min(size, node->getCols() * node->getRows());
                size -= repeat;
                while (repeat > 0)
                {
                    TIntermSymbol *symbolNode =
                        new TIntermSymbol(-1, varName, node->getType());
                    TIntermBinary *newNode = ConstructMatrixIndexBinaryNode(
                        symbolNode, colIndex, rowIndex);
                    sequence->push_back(newNode);
                    rowIndex++;
                    if (rowIndex >= node->getRows())
                    {
                        rowIndex = 0;
                        colIndex++;
                    }
                    repeat--;
                }
            }
            else
            {
                TIntermSymbol *symbolNode =
                    new TIntermSymbol(-1, varName, node->getType());
                sequence->push_back(symbolNode);
                size -= node->getCols() * node->getRows();
            }
        }
    }
}
Exemplo n.º 25
0
//
// Add one node as the parent of another that it operates on.
//
// Returns the added node.
//
TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, TSourceLoc line, TSymbolTable& symbolTable)
{
    TIntermUnary* node;
    TIntermTyped* child = childNode->getAsTyped();

    if (child == 0) {
        infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
        return 0;
    }

    switch (op) {
        case EOpLogicalNot:
            if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
                return 0;
            }
            break;

        case EOpPostIncrement:
        case EOpPreIncrement:
        case EOpPostDecrement:
        case EOpPreDecrement:
        case EOpNegative:
            if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
                return 0;
        default: break;
    }

    //
    // Do we need to promote the operand?
    //
    // Note: Implicit promotions were removed from the language.
    //
    TBasicType newType = EbtVoid;
    switch (op) {
        case EOpConstructInt:   newType = EbtInt;   break;
        case EOpConstructBool:  newType = EbtBool;  break;
        case EOpConstructFloat: newType = EbtFloat; break;
        default: break;
    }

    if (newType != EbtVoid) {
        child = addConversion(op, TType(newType, child->getPrecision(), EvqTemporary,
            child->getNominalSize(),
            child->isMatrix(),
            child->isArray()),
            child);
        if (child == 0)
            return 0;
    }

    //
    // For constructors, we are now done, it's all in the conversion.
    //
    switch (op) {
        case EOpConstructInt:
        case EOpConstructBool:
        case EOpConstructFloat:
            return child;
        default: break;
    }

    TIntermConstantUnion *childTempConstant = 0;
    if (child->getAsConstantUnion())
        childTempConstant = child->getAsConstantUnion();

    //
    // Make a new node for the operator.
    //
    node = new TIntermUnary(op);
    if (line == 0)
        line = child->getLine();
    node->setLine(line);
    node->setOperand(child);

    if (! node->promote(infoSink))
        return 0;

    if (childTempConstant)  {
        TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);

        if (newChild)
            return newChild;
    }

    return node;
}
Exemplo n.º 26
0
// Add one node as the parent of another that it operates on.
TIntermTyped* ir_add_unary_math(TOperator op, TIntermNode* childNode, TSourceLoc line, TParseContext& ctx)
{
   TIntermUnary* node;
   TIntermTyped* child = childNode->getAsTyped();

   if (child == 0)
   {
      ctx.infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
      return 0;
   }

   switch (op)
   {
   case EOpLogicalNot:
      if (!child->isScalar())
         return 0;
      break;

   case EOpPostIncrement:
   case EOpPreIncrement:
   case EOpPostDecrement:
   case EOpPreDecrement:
   case EOpNegative:
      if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
         return 0;
   default: break;
   }

   //
   // Do we need to promote the operand?
   //
   // Note: Implicit promotions were removed from the language.
   //
   TBasicType newType = EbtVoid;
   switch (op)
   {
   case EOpConstructInt:   newType = EbtInt;   break;
   case EOpConstructBool:  newType = EbtBool;  break;
   case EOpConstructFloat: newType = EbtFloat; break;
   case EOpLogicalNot:     newType = EbtBool; break;
   default: break;
   }

   if (newType != EbtVoid)
   {
      child = ir_add_conversion(op, TType(newType, child->getPrecision(), EvqTemporary, child->getColsCount(), child->getRowsCount(), 
                                      child->isMatrix(), 
                                      child->isArray()),
                            child, ctx.infoSink);
      if (child == 0)
         return 0;
   }

   //
   // For constructors, we are now done, it's all in the conversion.
   //
   switch (op)
   {
   case EOpConstructInt:
   case EOpConstructBool:
   case EOpConstructFloat:
      return child;
   default: break;
   }

   TIntermConstant* childConst = child->getAsConstant();

   //
   // Make a new node for the operator.
   //
   node = new TIntermUnary(op);
   if (line.line == 0)
      line = child->getLine();
   node->setLine(line);
   node->setOperand(child);

   if (! node->promote(ctx))
      return 0;
	
	
	//
	// See if we can fold constants
	
	if (childConst)
	{
		TIntermConstant* FoldUnaryConstantExpression(TOperator op, TIntermConstant* node);
		TIntermConstant* res = FoldUnaryConstantExpression(node->getOp(), childConst);
		if (res)
		{
			delete node;
			return res;
		}
	}
	

	return node;
}
Exemplo n.º 27
0
//
// Add one node as the parent of another that it operates on.
//
// Returns the added node.
//
TIntermTyped *TIntermediate::addUnaryMath(
    TOperator op, TIntermNode *childNode, const TSourceLoc &line)
{
    TIntermUnary *node;
    TIntermTyped *child = childNode->getAsTyped();

    if (child == NULL)
    {
        mInfoSink.info.message(EPrefixInternalError, line,
                               "Bad type in AddUnaryMath");
        return NULL;
    }

    switch (op)
    {
      case EOpLogicalNot:
        if (child->getType().getBasicType() != EbtBool ||
            child->getType().isMatrix() ||
            child->getType().isArray() ||
            child->getType().isVector())
        {
            return NULL;
        }
        break;

      case EOpPostIncrement:
      case EOpPreIncrement:
      case EOpPostDecrement:
      case EOpPreDecrement:
      case EOpNegative:
      case EOpPositive:
        if (child->getType().getBasicType() == EbtStruct ||
            child->getType().isArray())
        {
            return NULL;
        }
      default:
        break;
    }

    TIntermConstantUnion *childTempConstant = 0;
    if (child->getAsConstantUnion())
        childTempConstant = child->getAsConstantUnion();

    //
    // Make a new node for the operator.
    //
    node = new TIntermUnary(op);
    node->setLine(line);
    node->setOperand(child);

    if (!node->promote(mInfoSink))
        return 0;

    if (childTempConstant)
    {
        TIntermTyped *newChild = childTempConstant->fold(op, 0, mInfoSink);

        if (newChild)
            return newChild;
    }

    return node;
}
Exemplo n.º 28
0
//
// Make sure there is enough data provided to the constructor to build
// something of the type of the constructor.  Also returns the type of
// the constructor.
//
// Returns true if there was an error in construction.
//
bool TParseContext::constructorErrorCheck(int line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
{
    *type = function.getReturnType();

    bool constructingMatrix = false;
    switch(op) {
    case EOpConstructMat2:
    case EOpConstructMat3:
    case EOpConstructMat4:
        constructingMatrix = true;
        break;
    default: 
        break;
    }

    //
    // Note: It's okay to have too many components available, but not okay to have unused
    // arguments.  'full' will go to true when enough args have been seen.  If we loop
    // again, there is an extra argument, so 'overfull' will become true.
    //

    int size = 0;
    bool constType = true;
    bool full = false;
    bool overFull = false;
    bool matrixInMatrix = false;
    bool arrayArg = false;
    for (int i = 0; i < function.getParamCount(); ++i) {
        const TParameter& param = function.getParam(i);
        size += param.type->getObjectSize();
        
        if (constructingMatrix && param.type->isMatrix())
            matrixInMatrix = true;
        if (full)
            overFull = true;
        if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
            full = true;
        if (param.type->getQualifier() != EvqConst)
            constType = false;
        if (param.type->isArray())
            arrayArg = true;
    }
    
    if (constType)
        type->setQualifier(EvqConst);

    if (type->isArray() && type->getArraySize() != function.getParamCount()) {
        error(line, "array constructor needs one argument per array element", "constructor", "");
        return true;
    }

    if (arrayArg && op != EOpConstructStruct) {
        error(line, "constructing from a non-dereferenced array", "constructor", "");
        return true;
    }

    if (matrixInMatrix && !type->isArray()) {
        if (function.getParamCount() != 1) {
          error(line, "constructing matrix from matrix can only take one argument", "constructor", "");
          return true;
        }
    }

    if (overFull) {
        error(line, "too many arguments", "constructor", "");
        return true;
    }
    
    if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->size()) != function.getParamCount()) {
        error(line, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
        return true;
    }

    if (!type->isMatrix() || !matrixInMatrix) {
        if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
            (op == EOpConstructStruct && size < type->getObjectSize())) {
            error(line, "not enough data provided for construction", "constructor", "");
            return true;
        }
    }

    TIntermTyped *typed = node ? node->getAsTyped() : 0;
    if (typed == 0) {
        error(line, "constructor argument does not have a type", "constructor", "");
        return true;
    }
    if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
        error(line, "cannot convert a sampler", "constructor", "");
        return true;
    }
    if (typed->getBasicType() == EbtVoid) {
        error(line, "cannot convert a void", "constructor", "");
        return true;
    }

    return false;
}
Exemplo n.º 29
0
bool TVersionGLSL::visitAggregate(Visit, TIntermAggregate *node)
{
    bool visitChildren = true;

    switch (node->getOp())
    {
      case EOpDeclaration:
        {
            const TIntermSequence &sequence = *(node->getSequence());
            if (sequence.front()->getAsTyped()->getType().isInvariant())
            {
                ensureVersionIsAtLeast(GLSL_VERSION_120);
            }
            break;
        }
      case EOpInvariantDeclaration:
        ensureVersionIsAtLeast(GLSL_VERSION_120);
        break;
      case EOpParameters:
        {
            const TIntermSequence &params = *(node->getSequence());
            for (TIntermSequence::const_iterator iter = params.begin();
                 iter != params.end(); ++iter)
            {
                const TIntermTyped *param = (*iter)->getAsTyped();
                if (param->isArray())
                {
                    TQualifier qualifier = param->getQualifier();
                    if ((qualifier == EvqOut) || (qualifier ==  EvqInOut))
                    {
                        ensureVersionIsAtLeast(GLSL_VERSION_120);
                        break;
                    }
                }
            }
            // Fully processed. No need to visit children.
            visitChildren = false;
            break;
        }
      case EOpConstructMat2:
      case EOpConstructMat2x3:
      case EOpConstructMat2x4:
      case EOpConstructMat3x2:
      case EOpConstructMat3:
      case EOpConstructMat3x4:
      case EOpConstructMat4x2:
      case EOpConstructMat4x3:
      case EOpConstructMat4:
        {
            const TIntermSequence &sequence = *(node->getSequence());
            if (sequence.size() == 1)
            {
                TIntermTyped *typed = sequence.front()->getAsTyped();
                if (typed && typed->isMatrix())
                {
                    ensureVersionIsAtLeast(GLSL_VERSION_120);
                }
            }
            break;
        }
      default:
        break;
    }

    return visitChildren;
}
Exemplo n.º 30
0
bool TOutputGLSLBase::visitBinary(Visit visit, TIntermBinary* node)
{
    bool visitChildren = true;
    TInfoSinkBase& out = objSink();
    switch (node->getOp())
    {
        case EOpInitialize:
            if (visit == InVisit)
            {
                out << " = ";
                // RHS of initialize is not being declared.
                mDeclaringVariables = false;
            }
            break;
        case EOpAssign: writeTriplet(visit, "(", " = ", ")"); break;
        case EOpAddAssign: writeTriplet(visit, "(", " += ", ")"); break;
        case EOpSubAssign: writeTriplet(visit, "(", " -= ", ")"); break;
        case EOpDivAssign: writeTriplet(visit, "(", " /= ", ")"); break;
        // Notice the fall-through.
        case EOpMulAssign: 
        case EOpVectorTimesMatrixAssign:
        case EOpVectorTimesScalarAssign:
        case EOpMatrixTimesScalarAssign:
        case EOpMatrixTimesMatrixAssign:
            writeTriplet(visit, "(", " *= ", ")");
            break;

        case EOpIndexDirect:
            writeTriplet(visit, NULL, "[", "]");
            break;
        case EOpIndexIndirect:
            if (node->getAddIndexClamp())
            {
                if (visit == InVisit)
                {
                    if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) {
                        out << "[int(clamp(float(";
                    } else {
                        out << "[webgl_int_clamp(";
                    }
                }
                else if (visit == PostVisit)
                {
                    int maxSize;
                    TIntermTyped *left = node->getLeft();
                    TType leftType = left->getType();

                    if (left->isArray())
                    {
                        // The shader will fail validation if the array length is not > 0.
                        maxSize = leftType.getArraySize() - 1;
                    }
                    else
                    {
                        maxSize = leftType.getNominalSize() - 1;
                    }

                    if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) {
                        out << "), 0.0, float(" << maxSize << ")))]";
                    } else {
                        out << ", 0, " << maxSize << ")]";
                    }
                }
            }
            else
            {
                writeTriplet(visit, NULL, "[", "]");
            }
            break;
        case EOpIndexDirectStruct:
            if (visit == InVisit)
            {
                out << ".";
                // TODO(alokp): ASSERT
                TString fieldName = node->getType().getFieldName();

                const TType& structType = node->getLeft()->getType();
                if (!mSymbolTable.findBuiltIn(structType.getTypeName()))
                    fieldName = hashName(fieldName);

                out << fieldName;
                visitChildren = false;
            }
            break;
        case EOpVectorSwizzle:
            if (visit == InVisit)
            {
                out << ".";
                TIntermAggregate* rightChild = node->getRight()->getAsAggregate();
                TIntermSequence& sequence = rightChild->getSequence();
                for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); ++sit)
                {
                    TIntermConstantUnion* element = (*sit)->getAsConstantUnion();
                    ASSERT(element->getBasicType() == EbtInt);
                    ASSERT(element->getNominalSize() == 1);
                    const ConstantUnion& data = element->getUnionArrayPointer()[0];
                    ASSERT(data.getType() == EbtInt);
                    switch (data.getIConst())
                    {
                        case 0: out << "x"; break;
                        case 1: out << "y"; break;
                        case 2: out << "z"; break;
                        case 3: out << "w"; break;
                        default: UNREACHABLE(); break;
                    }
                }
                visitChildren = false;
            }
            break;

        case EOpAdd: writeTriplet(visit, "(", " + ", ")"); break;
        case EOpSub: writeTriplet(visit, "(", " - ", ")"); break;
        case EOpMul: writeTriplet(visit, "(", " * ", ")"); break;
        case EOpDiv: writeTriplet(visit, "(", " / ", ")"); break;
        case EOpMod: UNIMPLEMENTED(); break;
        case EOpEqual: writeTriplet(visit, "(", " == ", ")"); break;
        case EOpNotEqual: writeTriplet(visit, "(", " != ", ")"); break;
        case EOpLessThan: writeTriplet(visit, "(", " < ", ")"); break;
        case EOpGreaterThan: writeTriplet(visit, "(", " > ", ")"); break;
        case EOpLessThanEqual: writeTriplet(visit, "(", " <= ", ")"); break;
        case EOpGreaterThanEqual: writeTriplet(visit, "(", " >= ", ")"); break;

        // Notice the fall-through.
        case EOpVectorTimesScalar:
        case EOpVectorTimesMatrix:
        case EOpMatrixTimesVector:
        case EOpMatrixTimesScalar:
        case EOpMatrixTimesMatrix:
            writeTriplet(visit, "(", " * ", ")");
            break;

        case EOpLogicalOr: writeTriplet(visit, "(", " || ", ")"); break;
        case EOpLogicalXor: writeTriplet(visit, "(", " ^^ ", ")"); break;
        case EOpLogicalAnd: writeTriplet(visit, "(", " && ", ")"); break;
        default: UNREACHABLE(); break;
    }

    return visitChildren;
}