Exemplo n.º 1
0
bool TGlslOutputTraverser::traverseBinary( bool preVisit, TIntermBinary *node, TIntermTraverser *it )
{
   TString op = "??";
   TGlslOutputTraverser* goit = static_cast<TGlslOutputTraverser*>(it);
   GlslFunction *current = goit->current;
   std::stringstream& out = current->getActiveOutput();
   bool infix = true;
   bool assign = false;
   bool needsParens = true;

   switch (node->getOp())
   {
   case EOpAssign:                   op = "=";   infix = true; needsParens = false; break;
   case EOpAddAssign:                op = "+=";  infix = true; needsParens = false; break;
   case EOpSubAssign:                op = "-=";  infix = true; needsParens = false; break;
   case EOpMulAssign:                op = "*=";  infix = true; needsParens = false; break;
   case EOpVectorTimesMatrixAssign:  op = "*=";  infix = true; needsParens = false; break;
   case EOpVectorTimesScalarAssign:  op = "*=";  infix = true; needsParens = false; break;
   case EOpMatrixTimesScalarAssign:  op = "*=";  infix = true; needsParens = false; break;
   case EOpMatrixTimesMatrixAssign:  op = "*=";  infix = true; needsParens = false; break;
   case EOpDivAssign:                op = "/=";  infix = true; needsParens = false; break;
   case EOpModAssign:                op = "%=";  infix = true; needsParens = false; break;
   case EOpAndAssign:                op = "&=";  infix = true; needsParens = false; break;
   case EOpInclusiveOrAssign:        op = "|=";  infix = true; needsParens = false; break;
   case EOpExclusiveOrAssign:        op = "^=";  infix = true; needsParens = false; break;
   case EOpLeftShiftAssign:          op = "<<="; infix = true; needsParens = false; break;
   case EOpRightShiftAssign:         op = "??="; infix = true; needsParens = false; break;

   case EOpIndexDirect:
      {
         TIntermTyped *left = node->getLeft();
         TIntermTyped *right = node->getRight();
         assert( left && right);

         current->beginStatement();

		 if (Check2DMatrixIndex (goit, out, left, right))
			 return false;

		 if (left->isMatrix() && !left->isArray())
		 {
			 if (right->getAsConstant())
			 {
				 current->addLibFunction (EOpMatrixIndex);
				 out << "xll_matrixindex (";
				 left->traverse(goit);
				 out << ", ";
				 right->traverse(goit);
				 out << ")";
				 return false;
			 }
			 else
			 {
				 current->addLibFunction (EOpTranspose);
				 current->addLibFunction (EOpMatrixIndex);
				 current->addLibFunction (EOpMatrixIndexDynamic);
				 out << "xll_matrixindexdynamic (";
				 left->traverse(goit);
				 out << ", ";
				 right->traverse(goit);
				 out << ")";
				 return false;
			 }
		 }

         left->traverse(goit);

         // Special code for handling a vector component select (this improves readability)
         if (left->isVector() && !left->isArray() && right->getAsConstant())
         {
            char swiz[] = "xyzw";
            goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
            goit->generatingCode = false;
            right->traverse(goit);
            assert( goit->indexList.size() == 1);
            assert( goit->indexList[0] < 4);
            out << "." << swiz[goit->indexList[0]];
            goit->indexList.clear();
            goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
            goit->generatingCode = true;
         }
         else
         {
            out << "[";
            right->traverse(goit);
            out << "]";
         }
         return false;
      }
   case EOpIndexIndirect:
      {
      TIntermTyped *left = node->getLeft();
      TIntermTyped *right = node->getRight();
      current->beginStatement();

	  if (Check2DMatrixIndex (goit, out, left, right))
		  return false;

	  if (left && right && left->isMatrix() && !left->isArray())
	  {
		  if (right->getAsConstant())
		  {
			  current->addLibFunction (EOpMatrixIndex);
			  out << "xll_matrixindex (";
			  left->traverse(goit);
			  out << ", ";
			  right->traverse(goit);
			  out << ")";
			  return false;
		  }
		  else
		  {
			  current->addLibFunction (EOpTranspose);
			  current->addLibFunction (EOpMatrixIndex);
			  current->addLibFunction (EOpMatrixIndexDynamic);
			  out << "xll_matrixindexdynamic (";
			  left->traverse(goit);
			  out << ", ";
			  right->traverse(goit);
			  out << ")";
			  return false;
		  }
	  }

      if (left)
         left->traverse(goit);
      out << "[";
      if (right)
         right->traverse(goit);
      out << "]";
      return false;
	  }

   case EOpIndexDirectStruct:
      {
         current->beginStatement();
         GlslStruct *s = goit->createStructFromType(node->getLeft()->getTypePointer());
         if (node->getLeft())
            node->getLeft()->traverse(goit);

         // The right child is always an offset into the struct, switch to get an
         // immediate constant, and put it back afterwords
         goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
         goit->generatingCode = false;

         if (node->getRight())
         {
            node->getRight()->traverse(goit);
            assert( goit->indexList.size() == 1);
            assert( goit->indexList[0] < s->memberCount());
            out << "." << s->getMember(goit->indexList[0]).name;

         }

         goit->indexList.clear();
         goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
         goit->generatingCode = true;
      }
      return false;

   case EOpVectorSwizzle:
      current->beginStatement();
      if (node->getLeft())
         node->getLeft()->traverse(goit);
      goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
      goit->generatingCode = false;
      if (node->getRight())
      {
         node->getRight()->traverse(goit);
         assert( goit->indexList.size() <= 4);
         out << '.';
         const char fields[] = "xyzw";
         for (int ii = 0; ii < (int)goit->indexList.size(); ii++)
         {
            int val = goit->indexList[ii];
            assert( val >= 0);
            assert( val < 4);
            out << fields[val];
         }
      }
      goit->indexList.clear();
      goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
      goit->generatingCode = true;
      return false;

	case EOpMatrixSwizzle:		   
		// This presently only works for swizzles as rhs operators
		if (node->getRight())
		{
			goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
			goit->generatingCode = false;

			node->getRight()->traverse(goit);

			goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
			goit->generatingCode = true;

			std::vector<int> elements = goit->indexList;
			goit->indexList.clear();
			
			if (elements.size() > 4 || elements.size() < 1) {
				goit->infoSink.info << "Matrix swizzle operations can must contain at least 1 and at most 4 element selectors.";
				return true;
			}

			unsigned column[4] = {0}, row[4] = {0};
			for (unsigned i = 0; i != elements.size(); ++i)
			{
				unsigned val = elements[i];
				column[i] = val % 4;
				row[i] = val / 4;
			}

			bool sameColumn = true;
			for (unsigned i = 1; i != elements.size(); ++i)
				sameColumn &= column[i] == column[i-1];

			static const char* fields = "xyzw";
			
			if (sameColumn)
			{				
				//select column, then swizzle row
				if (node->getLeft())
					node->getLeft()->traverse(goit);
				out << "[" << column[0] << "].";
				
				for (unsigned i = 0; i < elements.size(); ++i)
					out << fields[row[i]];
			}
			else
			{
				// Insert constructor, and dereference individually

				// Might need to account for different types here 
				assert( elements.size() != 1); //should have hit same collumn case
				out << "vec" << elements.size() << "(";
				if (node->getLeft())
					node->getLeft()->traverse(goit);
				out << "[" << column[0] << "].";
				out << fields[row[0]];
				
				for (unsigned i = 1; i < elements.size(); ++i)
				{
					out << ", ";
					if (node->getLeft())
						node->getLeft()->traverse(goit);
					out << "[" << column[i] << "].";
					out << fields[row[i]];
				}
				out << ")";
			}
		}
		return false;

   case EOpAdd:    op = "+"; infix = true; break;
   case EOpSub:    op = "-"; infix = true; break;
   case EOpMul:    op = "*"; infix = true; break;
   case EOpDiv:    op = "/"; infix = true; break;
   case EOpMod:    op = "mod"; infix = false; break;
   case EOpRightShift:  op = "<<"; infix = true;
		   break;
   case EOpLeftShift:   op = ">>"; infix = true; break;
   case EOpAnd:         op = "&"; infix = true; break;
   case EOpInclusiveOr: op = "|"; infix = true; break;
   case EOpExclusiveOr: op = "^"; infix = true; break;
   case EOpEqual:       
      writeComparison ( "==", "equal", node, goit );
      return false;        

   case EOpNotEqual:        
      writeComparison ( "!=", "notEqual", node, goit );
      return false;               

   case EOpLessThan: 
      writeComparison ( "<", "lessThan", node, goit );
      return false;               

   case EOpGreaterThan:
      writeComparison ( ">", "greaterThan", node, goit );
      return false;               

   case EOpLessThanEqual:    
      writeComparison ( "<=", "lessThanEqual", node, goit );
      return false;               


   case EOpGreaterThanEqual: 
      writeComparison ( ">=", "greaterThanEqual", node, goit );
      return false;               


   case EOpVectorTimesScalar: op = "*"; infix = true; break;
   case EOpVectorTimesMatrix: op = "*"; infix = true; break;
   case EOpMatrixTimesVector: op = "*"; infix = true; break;
   case EOpMatrixTimesScalar: op = "*"; infix = true; break;
   case EOpMatrixTimesMatrix: op = "*"; infix = true; break;

   case EOpLogicalOr:  op = "||"; infix = true; break;
   case EOpLogicalXor: op = "^^"; infix = true; break;
   case EOpLogicalAnd: op = "&&"; infix = true; break;
   default: assert(0);
   }

   current->beginStatement();

   if (infix)
   {
	   // special case for swizzled matrix assignment
	   if (node->getOp() == EOpAssign && node->getLeft() && node->getRight()) {
		   TIntermBinary* lval = node->getLeft()->getAsBinaryNode();
		   
		   if (lval && lval->getOp() == EOpMatrixSwizzle) {
			   static const char* vec_swizzles = "xyzw";
			   TIntermTyped* rval = node->getRight();
			   TIntermTyped* lexp = lval->getLeft();
			   
			   goit->visitConstantUnion = TGlslOutputTraverser::traverseImmediateConstant;
			   goit->generatingCode = false;
			   
			   lval->getRight()->traverse(goit);
			   
			   goit->visitConstantUnion = TGlslOutputTraverser::traverseConstantUnion;
			   goit->generatingCode = true;
			   
			   std::vector<int> swizzles = goit->indexList;
			   goit->indexList.clear();
			   
			   char temp_rval[128];
			   unsigned n_swizzles = swizzles.size();
			   
			   if (n_swizzles > 1) {
				   snprintf(temp_rval, 128, "xlat_swiztemp%d", goit->swizzleAssignTempCounter++);
				   
				   current->beginStatement();
				   out << "vec" << n_swizzles << " " << temp_rval << " = ";
				   rval->traverse(goit);			   
				   current->endStatement();
			   }
			   
			   for (unsigned i = 0; i != n_swizzles; ++i) {
				   unsigned col = swizzles[i] / 4;
				   unsigned row = swizzles[i] % 4;
				   
				   current->beginStatement();
				   lexp->traverse(goit);
				   out << "[" << row << "][" << col << "] = ";
				   if (n_swizzles > 1)
					   out << temp_rval << "." << vec_swizzles[i];
				   else
					   rval->traverse(goit);
				   
				   current->endStatement();
			   }

			   return false;
		   }
	   }

      if (needsParens)
         out << '(';

      if (node->getLeft())
         node->getLeft()->traverse(goit);
      out << ' ' << op << ' ';
      if (node->getRight())
         node->getRight()->traverse(goit);

      if (needsParens)
         out << ')';
   }
   else
   {
      if (assign)
      {		  
         // Need to traverse the left child twice to allow for the assign and the op
         // This is OK, because we know it is an lvalue
         if (node->getLeft())
            node->getLeft()->traverse(goit);

         out << " = " << op << '(';

         if (node->getLeft())
            node->getLeft()->traverse(goit);
         out << ", ";
         if (node->getRight())
            node->getRight()->traverse(goit);

         out << ')';
      }
      else
      {
         out << op << '(';

         if (node->getLeft())
            node->getLeft()->traverse(goit);
         out << ", ";
         if (node->getRight())
            node->getRight()->traverse(goit);

         out << ')';
      }
   }

   return false;
}
void ScalarizeVecAndMatConstructorArgs::scalarizeArgs(
    TIntermAggregate *aggregate, bool scalarizeVector, bool scalarizeMatrix)
{
    ASSERT(aggregate);
    int size = 0;
    switch (aggregate->getOp())
    {
      case EOpConstructVec2:
      case EOpConstructBVec2:
      case EOpConstructIVec2:
        size = 2;
        break;
      case EOpConstructVec3:
      case EOpConstructBVec3:
      case EOpConstructIVec3:
        size = 3;
        break;
      case EOpConstructVec4:
      case EOpConstructBVec4:
      case EOpConstructIVec4:
      case EOpConstructMat2:
        size = 4;
        break;
      case EOpConstructMat2x3:
      case EOpConstructMat3x2:
        size = 6;
        break;
      case EOpConstructMat2x4:
      case EOpConstructMat4x2:
        size = 8;
        break;
      case EOpConstructMat3:
        size = 9;
        break;
      case EOpConstructMat3x4:
      case EOpConstructMat4x3:
        size = 12;
        break;
      case EOpConstructMat4:
        size = 16;
        break;
      default:
        break;
    }
    TIntermSequence *sequence = aggregate->getSequence();
    TIntermSequence original(*sequence);
    sequence->clear();
    for (size_t ii = 0; ii < original.size(); ++ii)
    {
        ASSERT(size > 0);
        TIntermTyped *node = original[ii]->getAsTyped();
        ASSERT(node);
        TString varName = createTempVariable(node);
        if (node->isScalar())
        {
            TIntermSymbol *symbolNode =
                new TIntermSymbol(-1, varName, node->getType());
            sequence->push_back(symbolNode);
            size--;
        }
        else if (node->isVector())
        {
            if (scalarizeVector)
            {
                int repeat = std::min(size, node->getNominalSize());
                size -= repeat;
                for (int index = 0; index < repeat; ++index)
                {
                    TIntermSymbol *symbolNode =
                        new TIntermSymbol(-1, varName, node->getType());
                    TIntermBinary *newNode = ConstructVectorIndexBinaryNode(
                        symbolNode, index);
                    sequence->push_back(newNode);
                }
            }
            else
            {
                TIntermSymbol *symbolNode =
                    new TIntermSymbol(-1, varName, node->getType());
                sequence->push_back(symbolNode);
                size -= node->getNominalSize();
            }
        }
        else
        {
            ASSERT(node->isMatrix());
            if (scalarizeMatrix)
            {
                int colIndex = 0, rowIndex = 0;
                int repeat = std::min(size, node->getCols() * node->getRows());
                size -= repeat;
                while (repeat > 0)
                {
                    TIntermSymbol *symbolNode =
                        new TIntermSymbol(-1, varName, node->getType());
                    TIntermBinary *newNode = ConstructMatrixIndexBinaryNode(
                        symbolNode, colIndex, rowIndex);
                    sequence->push_back(newNode);
                    rowIndex++;
                    if (rowIndex >= node->getRows())
                    {
                        rowIndex = 0;
                        colIndex++;
                    }
                    repeat--;
                }
            }
            else
            {
                TIntermSymbol *symbolNode =
                    new TIntermSymbol(-1, varName, node->getType());
                sequence->push_back(symbolNode);
                size -= node->getCols() * node->getRows();
            }
        }
    }
}