Exemplo n.º 1
0
/***
 * This will add the maximum spectrum number from ws1 to the data coming from ws2.
 *
 * @param ws1 The first workspace supplied to the algorithm.
 * @param ws2 The second workspace supplied to the algorithm.
 * @param output The workspace that is going to be returned by the algorithm.
 */
void ConjoinWorkspaces::fixSpectrumNumbers(API::MatrixWorkspace_const_sptr ws1, API::MatrixWorkspace_const_sptr /*ws2*/,
                                      API::MatrixWorkspace_sptr output)
{
  // make sure we should bother. If you don't check for overlap, you don't need to
  if (this->getProperty("CheckOverlapping"))
    return;

  // is everything possibly ok?
  specid_t min;
  specid_t max;
  getMinMax(output, min, max);
  if (max - min >= static_cast<specid_t>(output->getNumberHistograms())) // nothing to do then
    return;

  // information for remapping the spectra numbers
  specid_t ws1min;
  specid_t ws1max;
  getMinMax(ws1, ws1min, ws1max);

  // change the axis by adding the maximum existing spectrum number to the current value
  for (size_t i = ws1->getNumberHistograms(); i < output->getNumberHistograms(); i++)
  {
    specid_t origid;
    origid = output->getSpectrum(i)->getSpectrumNo();
    output->getSpectrum(i)->setSpectrumNo(origid + ws1max);
  }
  // To be deprecated:
  output->generateSpectraMap();
}
Exemplo n.º 2
0
/** Calculates the normalization constant for the exponential decay
* @param ws :: [input] Workspace containing the spectra to remove exponential
* from
* @return :: Vector containing the normalization constants, N0, for each
* spectrum
*/
std::vector<double>
PhaseQuadMuon::getExponentialDecay(const API::MatrixWorkspace_sptr &ws) {

  size_t nspec = ws->getNumberHistograms();
  size_t npoints = ws->blocksize();

  // Muon life time in microseconds
  double muLife = PhysicalConstants::MuonLifetime * 1e6;

  std::vector<double> n0(nspec, 0.);

  for (size_t h = 0; h < ws->getNumberHistograms(); h++) {

    const auto &X = ws->getSpectrum(h).x();
    const auto &Y = ws->getSpectrum(h).y();
    const auto &E = ws->getSpectrum(h).e();

    double s, sx, sy;
    s = sx = sy = 0;
    for (size_t i = 0; i < npoints; i++) {

      if (Y[i] > 0) {
        double sig = E[i] * E[i] / Y[i] / Y[i];
        s += 1. / sig;
        sx += (X[i] - X[0]) / sig;
        sy += log(Y[i]) / sig;
      }
    }
    n0[h] = exp((sy + sx / muLife) / s);
  }

  return n0;
}
Exemplo n.º 3
0
/** Add workspace2 to workspace1 by adding spectrum.
  */
MatrixWorkspace_sptr
AlignAndFocusPowder::conjoinWorkspaces(API::MatrixWorkspace_sptr ws1,
                                       API::MatrixWorkspace_sptr ws2,
                                       size_t offset) {
  // Get information from ws1: maximum spectrum number, and store original
  // spectrum Nos
  size_t nspec1 = ws1->getNumberHistograms();
  specnum_t maxspecNo1 = 0;
  std::vector<specnum_t> origspecNos;
  for (size_t i = 0; i < nspec1; ++i) {
    specnum_t tmpspecNo = ws1->getSpectrum(i).getSpectrumNo();
    origspecNos.push_back(tmpspecNo);
    if (tmpspecNo > maxspecNo1)
      maxspecNo1 = tmpspecNo;
  }

  g_log.information() << "[DBx536] Max spectrum number of ws1 = " << maxspecNo1
                      << ", Offset = " << offset << ".\n";

  size_t nspec2 = ws2->getNumberHistograms();

  // Conjoin 2 workspaces
  Algorithm_sptr alg = this->createChildAlgorithm("AppendSpectra");
  alg->initialize();
  ;

  alg->setProperty("InputWorkspace1", ws1);
  alg->setProperty("InputWorkspace2", ws2);
  alg->setProperty("OutputWorkspace", ws1);
  alg->setProperty("ValidateInputs", false);

  alg->executeAsChildAlg();

  API::MatrixWorkspace_sptr outws = alg->getProperty("OutputWorkspace");

  // FIXED : Restore the original spectrum Nos to spectra from ws1
  for (size_t i = 0; i < nspec1; ++i) {
    specnum_t tmpspecNo = outws->getSpectrum(i).getSpectrumNo();
    outws->getSpectrum(i).setSpectrumNo(origspecNos[i]);

    g_log.information() << "[DBx540] Conjoined spectrum " << i
                        << ": restore spectrum number to "
                        << outws->getSpectrum(i).getSpectrumNo()
                        << " from spectrum number = " << tmpspecNo << ".\n";
  }

  // Rename spectrum number
  if (offset >= 1) {
    for (size_t i = 0; i < nspec2; ++i) {
      specnum_t newspecid = maxspecNo1 + static_cast<specnum_t>((i) + offset);
      outws->getSpectrum(nspec1 + i).setSpectrumNo(newspecid);
      // ISpectrum* spec = outws->getSpectrum(nspec1+i);
      // if (spec)
      // spec->setSpectrumNo(3);
    }
  }

  return outws;
}
Exemplo n.º 4
0
/**
 * Read spectra from the DAE
 * @param period :: Current period index
 * @param index :: First spectrum index
 * @param count :: Number of spectra to read
 * @param workspace :: Workspace to store the data
 * @param workspaceIndex :: index in workspace to store data
 */
void ISISHistoDataListener::getData(int period, int index, int count,
                                    API::MatrixWorkspace_sptr workspace,
                                    size_t workspaceIndex) {
  const int numberOfBins = m_numberOfBins[m_timeRegime];
  const size_t bufferSize = count * (numberOfBins + 1) * sizeof(int);
  std::vector<int> dataBuffer(bufferSize);
  // Read in spectra from DAE
  int ndims = 2, dims[2];
  dims[0] = count;
  dims[1] = numberOfBins + 1;

  int spectrumIndex = index + period * (m_totalNumberOfSpectra + 1);
  if (IDCgetdat(m_daeHandle, spectrumIndex, count, dataBuffer.data(), dims,
                &ndims) != 0) {
    g_log.error("Unable to read DATA from DAE " + m_daeName);
    throw Kernel::Exception::FileError("Unable to read DATA from DAE ",
                                       m_daeName);
  }

  for (size_t i = 0; i < static_cast<size_t>(count); ++i) {
    size_t wi = workspaceIndex + i;
    workspace->setX(wi, m_bins[m_timeRegime]);
    MantidVec &y = workspace->dataY(wi);
    MantidVec &e = workspace->dataE(wi);
    workspace->getSpectrum(wi)->setSpectrumNo(index + static_cast<specid_t>(i));
    size_t shift = i * (numberOfBins + 1) + 1;
    y.assign(dataBuffer.begin() + shift, dataBuffer.begin() + shift + y.size());
    std::transform(y.begin(), y.end(), e.begin(), dblSqrt);
  }
}
Exemplo n.º 5
0
    /** This function will check how to group spectra when calculating median
     *
     *
     */
    std::vector<std::vector<size_t> > DetectorDiagnostic::makeMap(API::MatrixWorkspace_sptr countsWS)
    {
      std::multimap<Mantid::Geometry::ComponentID,size_t> mymap;

      Geometry::Instrument_const_sptr instrument = countsWS->getInstrument();
      if (m_parents==0)
      {
        return makeInstrumentMap(countsWS);
      }
      if (!instrument)
      {
        g_log.warning("Workspace has no instrument. LevelsUP is ignored");
        return makeInstrumentMap(countsWS);
      }

      //check if not grouped. If grouped, it will throw
      if ( countsWS->hasGroupedDetectors() )
      {
        throw std::runtime_error("Median detector test: not able to create detector to spectra map. Try with LevelUp=0.");
      }

      for(size_t i=0;i < countsWS->getNumberHistograms();i++)
      {
        detid_t d=(*((countsWS->getSpectrum(i))->getDetectorIDs().begin()));
        std::vector<boost::shared_ptr<const Mantid::Geometry::IComponent> > anc=instrument->getDetector(d)->getAncestors();
        //std::vector<boost::shared_ptr<const IComponent> > anc=(*(countsWS->getSpectrum(i)->getDetectorIDs().begin()))->getAncestors();
        if (anc.size()<static_cast<size_t>(m_parents))
        {
          g_log.warning("Too many levels up. Will ignore LevelsUp");
          m_parents=0;
          return makeInstrumentMap(countsWS);
        }
        mymap.insert(std::pair<Mantid::Geometry::ComponentID,size_t>(anc[m_parents-1]->getComponentID(),i));
      }

      std::vector<std::vector<size_t> > speclist;
      std::vector<size_t>  speclistsingle;

      std::multimap<Mantid::Geometry::ComponentID,size_t>::iterator m_it, s_it;

      for (m_it = mymap.begin();  m_it != mymap.end();  m_it = s_it)
      {
        Mantid::Geometry::ComponentID theKey = (*m_it).first;

        std::pair<std::multimap<Mantid::Geometry::ComponentID,size_t>::iterator,std::multimap<Mantid::Geometry::ComponentID,size_t>::iterator> keyRange = mymap.equal_range(theKey);

        // Iterate over all map elements with key == theKey
        speclistsingle.clear();
        for (s_it = keyRange.first;  s_it != keyRange.second;  ++s_it)
        {
          speclistsingle.push_back( (*s_it).second );
        }
        speclist.push_back(speclistsingle);
      }

      return speclist;
    }
Exemplo n.º 6
0
/** Convert X units from nano-secs to micro-secs and shift to start at m_tMin
* @param inputWs :: [input/output] workspace to convert
*/
void PhaseQuadMuon::convertToMicroSecs (API::MatrixWorkspace_sptr inputWs)
{
  for (size_t h=0; h<inputWs->getNumberHistograms(); h++)
  {
    auto spec = inputWs->getSpectrum(h);
    for (int t=0; t<m_nData+1; t++)
    {
     spec->dataX()[t] = spec->dataX()[t]/1000+m_tMin;
    }
  }
}
Exemplo n.º 7
0
/***
 * This will ensure the spectrum numbers do not overlap by starting the second
 *on at the first + 1
 *
 * @param ws1 The first workspace supplied to the algorithm.
 * @param ws2 The second workspace supplied to the algorithm.
 * @param output The workspace that is going to be returned by the algorithm.
 */
void ConjoinWorkspaces::fixSpectrumNumbers(API::MatrixWorkspace_const_sptr ws1,
                                           API::MatrixWorkspace_const_sptr ws2,
                                           API::MatrixWorkspace_sptr output) {
  bool needsFix(false);

  if (this->getProperty("CheckOverlapping")) {
    // If CheckOverlapping is required, then either skip fixing spectrum number
    // or get stopped by an exception
    if (!m_overlapChecked)
      checkForOverlap(ws1, ws2, true);
    needsFix = false;
  } else {
    // It will be determined later whether spectrum number needs to be fixed.
    needsFix = true;
  }
  if (!needsFix)
    return;

  // is everything possibly ok?
  specid_t min;
  specid_t max;
  getMinMax(output, min, max);
  if (max - min >= static_cast<specid_t>(
                       output->getNumberHistograms())) // nothing to do then
    return;

  // information for remapping the spectra numbers
  specid_t ws1min;
  specid_t ws1max;
  getMinMax(ws1, ws1min, ws1max);

  // change the axis by adding the maximum existing spectrum number to the
  // current value
  for (size_t i = ws1->getNumberHistograms(); i < output->getNumberHistograms();
       i++) {
    specid_t origid;
    origid = output->getSpectrum(i)->getSpectrumNo();
    output->getSpectrum(i)->setSpectrumNo(origid + ws1max);
  }
}
Exemplo n.º 8
0
    /**
     * Mask the outlier values to get a better median value.
     * @param medianvec The median value calculated from the current counts.
     * @param countsWS The counts workspace. Any outliers will be masked here.
     * @param indexmap Index map.
     * @returns The number failed.
     */
    int MedianDetectorTest::maskOutliers(const std::vector<double> medianvec, API::MatrixWorkspace_sptr countsWS,std::vector<std::vector<size_t> > indexmap)
    {

      // Fractions of the median
      const double out_lo = getProperty("LowOutlier");
      const double out_hi = getProperty("HighOutlier");

      int numFailed(0);

      bool checkForMask = false;
      Geometry::Instrument_const_sptr instrument = countsWS->getInstrument();
      if (instrument != NULL)
      {
        checkForMask = ((instrument->getSource() != NULL) && (instrument->getSample() != NULL));
      }

      for (size_t i=0; i<indexmap.size();  ++i)
      {
        std::vector<size_t> hists=indexmap.at(i);
        double median=medianvec.at(i);

        PARALLEL_FOR1(countsWS)
        for(int j = 0; j < static_cast<int>(hists.size()); ++j)
        {
          const double value = countsWS->readY(hists.at(j))[0];
          if ((value == 0.) && checkForMask)
          {
            const std::set<detid_t>& detids = countsWS->getSpectrum(hists.at(j))->getDetectorIDs();
            if (instrument->isDetectorMasked(detids))
            {
              numFailed -= 1; // it was already masked
            }
          }
          if( (value < out_lo*median) && (value > 0.0) )
          {
            countsWS->maskWorkspaceIndex(hists.at(j));
            PARALLEL_ATOMIC
            ++numFailed;
          }
          else if( value > out_hi*median )
          {
            countsWS->maskWorkspaceIndex(hists.at(j));
            PARALLEL_ATOMIC
            ++numFailed;
          }
        }
        PARALLEL_CHECK_INTERUPT_REGION
      }

      return numFailed;
    }
Exemplo n.º 9
0
/** Apply dead time correction to spectra in inputWs and create temporary workspace with corrected spectra
* @param inputWs :: [input] input workspace containing spectra to correct
* @param deadTimeTable :: [input] table containing dead times
* @param tempWs :: [output] workspace containing corrected spectra
*/
void PhaseQuadMuon::deadTimeCorrection(API::MatrixWorkspace_sptr inputWs, API::ITableWorkspace_sptr deadTimeTable, API::MatrixWorkspace_sptr& tempWs)
{

  // Apply correction only from t = m_tPulseOver
  // To do so, we first apply corrections to the whole spectrum (ApplyDeadTimeCorr
  // does not allow to select a range in the spectrum)
  // Then we recover counts from 0 to m_tPulseOver

  auto alg = this->createChildAlgorithm("ApplyDeadTimeCorr",-1,-1);
  alg->initialize();
  alg->setProperty("DeadTimeTable", deadTimeTable);
  alg->setPropertyValue("InputWorkspace", inputWs->getName());
  alg->setPropertyValue("OutputWorkspace", inputWs->getName()+"_deadtime");
  bool sucDeadTime = alg->execute();
  if (!sucDeadTime)
  {
    g_log.error() << "PhaseQuad: Unable to apply dead time corrections" << std::endl;
    throw std::runtime_error("PhaseQuad: Unable to apply dead time corrections");
  }
  tempWs = alg->getProperty("OutputWorkspace");

  // Now recover counts from t=0 to m_tPulseOver
  // Errors are set to m_bigNumber
  for (int h=0; h<m_nHist; h++)
  {
    auto specOld = inputWs->getSpectrum(h);
    auto specNew = tempWs->getSpectrum(h);

    for (int t=0; t<m_tPulseOver; t++)
    {
      specNew->dataY()[t] = specOld->dataY()[t];
      specNew->dataE()[t] = m_bigNumber;
    }
  }

}
Exemplo n.º 10
0
/**
*  Only to be used if the KeepUnGrouped property is true, moves the spectra that were not selected
*  to be in a group to the end of the output spectrum
*  @param unGroupedSet :: list of WORKSPACE indexes that were included in a group
*  @param inputWS :: user selected input workspace for the algorithm
*  @param outputWS :: user selected output workspace for the algorithm
*  @param outIndex :: the next spectra index available after the grouped spectra
*/
void GroupDetectors2::moveOthers(const std::set<int64_t> &unGroupedSet, API::MatrixWorkspace_const_sptr inputWS, API::MatrixWorkspace_sptr outputWS,
         size_t outIndex)
{
  g_log.debug() << "Starting to copy the ungrouped spectra" << std::endl;
  double prog4Copy = (1. - 1.*static_cast<double>(m_FracCompl))/static_cast<double>(unGroupedSet.size());

  std::set<int64_t>::const_iterator copyFrIt = unGroupedSet.begin();
  // go thorugh all the spectra in the input workspace
  for ( ; copyFrIt != unGroupedSet.end(); ++copyFrIt )
  {
    if( *copyFrIt == USED ) continue; //Marked as not to be used
    size_t sourceIndex = static_cast<size_t>(*copyFrIt);

    // The input spectrum we'll copy
    const ISpectrum * inputSpec = inputWS->getSpectrum(sourceIndex);

    // Destination of the copying
    ISpectrum * outputSpec = outputWS->getSpectrum(outIndex);

    // Copy the data
    outputSpec->dataX() = inputSpec->dataX();
    outputSpec->dataY() = inputSpec->dataY();
    outputSpec->dataE() = inputSpec->dataE();

    // Spectrum numbers etc.
    outputSpec->setSpectrumNo(inputSpec->getSpectrumNo());
    outputSpec->clearDetectorIDs();
    outputSpec->addDetectorIDs( inputSpec->getDetectorIDs() );

    // go to the next free index in the output workspace
    outIndex ++;
    // make regular progress reports and check for cancelling the algorithm
    if ( outIndex % INTERVAL == 0 )
    {
      m_FracCompl += INTERVAL*prog4Copy;
      if ( m_FracCompl > 1.0 )
      {
        m_FracCompl = 1.0;
      }
      progress(m_FracCompl);
      interruption_point();
    }
  }
  // Refresh the spectraDetectorMap
  outputWS->generateSpectraMap();

  g_log.debug() << name() << " copied " << unGroupedSet.size()-1 << " ungrouped spectra\n";
}
Exemplo n.º 11
0
/** Fits each spectrum in the workspace to f(x) = A * sin( w * x + p)
* @param ws :: [input] The workspace to fit
* @param freq :: [input] Hint for the frequency (w)
* @param groupName :: [input] The name of the output workspace group
* @param resTab :: [output] Table workspace storing the asymmetries and phases
* @param resGroup :: [output] Workspace group storing the fitting results
*/
void CalMuonDetectorPhases::fitWorkspace(const API::MatrixWorkspace_sptr &ws,
                                         double freq, std::string groupName,
                                         API::ITableWorkspace_sptr &resTab,
                                         API::WorkspaceGroup_sptr &resGroup) {

  int nhist = static_cast<int>(ws->getNumberHistograms());

  // Create the fitting function f(x) = A * sin ( w * x + p )
  // The same function and initial parameters are used for each fit
  std::string funcStr = createFittingFunction(freq, true);

  // Set up results table
  resTab->addColumn("int", "Spectrum number");
  resTab->addColumn("double", "Asymmetry");
  resTab->addColumn("double", "Phase");

  // Loop through fitting all spectra individually
  const static std::string success = "success";
  for (int wsIndex = 0; wsIndex < nhist; wsIndex++) {
    reportProgress(wsIndex, nhist);
    auto fit = createChildAlgorithm("Fit");
    fit->initialize();
    fit->setPropertyValue("Function", funcStr);
    fit->setProperty("InputWorkspace", ws);
    fit->setProperty("WorkspaceIndex", wsIndex);
    fit->setProperty("CreateOutput", true);
    fit->setPropertyValue("Output", groupName);
    fit->execute();

    std::string status = fit->getProperty("OutputStatus");
    if (!fit->isExecuted() || status != success) {
      std::ostringstream error;
      error << "Fit failed for spectrum at workspace index " << wsIndex;
      error << ": " << status;
      throw std::runtime_error(error.str());
    }

    API::MatrixWorkspace_sptr fitOut = fit->getProperty("OutputWorkspace");
    resGroup->addWorkspace(fitOut);
    API::ITableWorkspace_sptr tab = fit->getProperty("OutputParameters");
    // Now we have our fitting results stored in tab
    // but we need to extract the relevant information, i.e.
    // the detector phases (parameter 'p') and asymmetries ('A')
    const auto &spectrum = ws->getSpectrum(static_cast<size_t>(wsIndex));
    extractDetectorInfo(tab, resTab, spectrum.getSpectrumNo());
  }
}
Exemplo n.º 12
0
  /** If there is an overlap in spectrum numbers between ws1 and ws2,
   * then the spectrum numbers are reset as a simple 1-1 correspondence
   * with the workspace index.
   *
   * @param ws1 The first workspace supplied to the algorithm.
   * @param ws2 The second workspace supplied to the algorithm.
   * @param output The workspace that is going to be returned by the algorithm.
   */
  void AppendSpectra::fixSpectrumNumbers(API::MatrixWorkspace_const_sptr ws1, API::MatrixWorkspace_const_sptr ws2,
                                             API::MatrixWorkspace_sptr output)
  {
    specid_t ws1min;
    specid_t ws1max;
    getMinMax(ws1, ws1min, ws1max);

    specid_t ws2min;
    specid_t ws2max;
    getMinMax(ws2, ws2min, ws2max);

    // is everything possibly ok?
    if (ws2min > ws1max)
      return;

    // change the axis by adding the maximum existing spectrum number to the current value
    for (size_t i = 0; i < output->getNumberHistograms(); i++)
      output->getSpectrum(i)->setSpectrumNo( specid_t(i) );
  }
Exemplo n.º 13
0
/**
 * The main method to calculate the ring profile for workspaces based on
 *instruments.
 *
 * It will iterate over all the spectrum inside the workspace.
 * For each spectrum, it will use the RingProfile::getBinForPixel method to
 *identify
 * where, in the output_bins, the sum of all the spectrum values should be
 *placed in.
 *
 * @param inputWS: pointer to the input workspace
 * @param output_bins: the reference to the vector to be filled with the
 *integration values
 */
void RingProfile::processInstrumentRingProfile(
    const API::MatrixWorkspace_sptr inputWS, std::vector<double> &output_bins) {

  for (int i = 0; i < static_cast<int>(inputWS->getNumberHistograms()); i++) {
    m_progress->report("Computing ring bins positions for detectors");
    // for the detector based, the positions will be taken from the detector
    // itself.
    try {
      Mantid::Geometry::IDetector_const_sptr det = inputWS->getDetector(i);

      // skip monitors
      if (det->isMonitor()) {
        continue;
      }

      // this part will be executed if the instrument is attached to the
      // workspace

      // get the bin position
      int bin_n = getBinForPixel(det);

      if (bin_n < 0) // -1 is the agreement for an invalid bin, or outside the
                     // ring being integrated
        continue;

      g_log.debug() << "Bin for the index " << i << " = " << bin_n
                    << " Pos = " << det->getPos() << std::endl;

      // get the reference to the spectrum
      auto spectrum_pt = inputWS->getSpectrum(i);
      const MantidVec &refY = spectrum_pt->dataY();
      // accumulate the values of this spectrum inside this bin
      for (size_t sp_ind = 0; sp_ind < inputWS->blocksize(); sp_ind++)
        output_bins[bin_n] += refY[sp_ind];

    } catch (Kernel::Exception::NotFoundError &ex) {
      g_log.information() << "It found that detector for " << i
                          << " is not valid. " << ex.what() << std::endl;
      continue;
    }
  }
}
Exemplo n.º 14
0
/** Create the final output workspace after converting the X axis
* @returns the final output workspace
*
* @param progress :: Progress indicator
* @param targetUnit :: Target conversion unit
* @param inputWS :: Input workspace
* @param nHist :: Stores the number of histograms
*/
MatrixWorkspace_sptr ConvertSpectrumAxis2::createOutputWorkspace(
    API::Progress &progress, const std::string &targetUnit,
    API::MatrixWorkspace_sptr &inputWS, size_t nHist) {
  // Create the output workspace. Can not re-use the input one because the
  // spectra are re-ordered.
  MatrixWorkspace_sptr outputWorkspace = WorkspaceFactory::Instance().create(
      inputWS, m_indexMap.size(), inputWS->x(0).size(), inputWS->y(0).size());

  // Now set up a new numeric axis holding the theta values corresponding to
  // each spectrum.
  auto const newAxis = new NumericAxis(m_indexMap.size());
  outputWorkspace->replaceAxis(1, newAxis);

  progress.setNumSteps(nHist + m_indexMap.size());

  // Set the units of the axis.
  if (targetUnit == "theta" || targetUnit == "Theta" ||
      targetUnit == "signed_theta" || targetUnit == "SignedTheta") {
    newAxis->unit() = boost::make_shared<Units::Degrees>();
  } else if (targetUnit == "ElasticQ") {
    newAxis->unit() = UnitFactory::Instance().create("MomentumTransfer");
  } else if (targetUnit == "ElasticQSquared") {
    newAxis->unit() = UnitFactory::Instance().create("QSquared");
  }

  std::multimap<double, size_t>::const_iterator it;
  size_t currentIndex = 0;
  for (it = m_indexMap.begin(); it != m_indexMap.end(); ++it) {
    // Set the axis value.
    newAxis->setValue(currentIndex, it->first);
    // Copy over the data.
    outputWorkspace->setHistogram(currentIndex, inputWS->histogram(it->second));
    // We can keep the spectrum numbers etc.
    outputWorkspace->getSpectrum(currentIndex)
        .copyInfoFrom(inputWS->getSpectrum(it->second));
    ++currentIndex;

    progress.report("Creating output workspace...");
  }
  return outputWorkspace;
}
Exemplo n.º 15
0
/**
 * Construct an "empty" output workspace in virtual-lambda for summation in Q.
 *
 * @param detectorWS [in] :: the input workspace
 * @param indices [in] :: the workspace indices of the foreground histograms
 * @param refAngles [in] :: the reference angles
 * @return :: a 1D workspace where y values are all zero
 */
API::MatrixWorkspace_sptr ReflectometrySumInQ::constructIvsLamWS(
    const API::MatrixWorkspace &detectorWS,
    const Indexing::SpectrumIndexSet &indices, const Angles &refAngles) {

  // Calculate the number of bins based on the min/max wavelength, using
  // the same bin width as the input workspace
  const auto &edges = detectorWS.binEdges(refAngles.referenceWSIndex);
  const double binWidth =
      (edges.back() - edges.front()) / static_cast<double>(edges.size());
  const auto wavelengthRange =
      findWavelengthMinMax(detectorWS, indices, refAngles);
  if (std::abs(wavelengthRange.max - wavelengthRange.min) < binWidth) {
    throw std::runtime_error("Given wavelength range too small.");
  }
  const int numBins = static_cast<int>(
      std::ceil((wavelengthRange.max - wavelengthRange.min) / binWidth));
  // Construct the histogram with these X values. Y and E values are zero.
  const HistogramData::BinEdges bins(
      numBins + 1,
      HistogramData::LinearGenerator(wavelengthRange.min, binWidth));
  const HistogramData::Counts counts(numBins, 0.);
  const HistogramData::Histogram modelHistogram(std::move(bins),
                                                std::move(counts));
  // Create the output workspace
  API::MatrixWorkspace_sptr outputWS =
      DataObjects::create<DataObjects::Workspace2D>(detectorWS, 1,
                                                    std::move(modelHistogram));

  // Set the detector IDs and specturm number from the twoThetaR detector.
  const auto &thetaSpec = detectorWS.getSpectrum(refAngles.referenceWSIndex);
  auto &outSpec = outputWS->getSpectrum(0);
  outSpec.clearDetectorIDs();
  outSpec.addDetectorIDs(thetaSpec.getDetectorIDs());
  outSpec.setSpectrumNo(thetaSpec.getSpectrumNo());

  return outputWS;
}
Exemplo n.º 16
0
/**
*  Move the user selected spectra in the input workspace into groups in the output workspace
*  @param inputWS :: user selected input workspace for the algorithm
*  @param outputWS :: user selected output workspace for the algorithm
*  @param prog4Copy :: the amount of algorithm progress to attribute to moving a single spectra
*  @return number of new grouped spectra
*/
size_t GroupDetectors2::formGroups( API::MatrixWorkspace_const_sptr inputWS, API::MatrixWorkspace_sptr outputWS, 
            const double prog4Copy)
{
  // get "Behaviour" string
  const std::string behaviour = getProperty("Behaviour");
  int bhv = 0;
  if ( behaviour == "Average" ) bhv = 1;

  API::MatrixWorkspace_sptr beh = API::WorkspaceFactory::Instance().create(
    "Workspace2D", static_cast<int>(m_GroupSpecInds.size()), 1, 1);

  g_log.debug() << name() << ": Preparing to group spectra into " << m_GroupSpecInds.size() << " groups\n";

  // where we are copying spectra to, we start copying to the start of the output workspace
  size_t outIndex = 0;
  // Only used for averaging behaviour. We may have a 1:1 map where a Divide would be waste as it would be just dividing by 1
  bool requireDivide(false);
  for ( storage_map::const_iterator it = m_GroupSpecInds.begin(); it != m_GroupSpecInds.end() ; ++it )
  {
    // This is the grouped spectrum
    ISpectrum * outSpec = outputWS->getSpectrum(outIndex);

    // The spectrum number of the group is the key
    outSpec->setSpectrumNo(it->first);
    // Start fresh with no detector IDs
    outSpec->clearDetectorIDs();

    // Copy over X data from first spectrum, the bin boundaries for all spectra are assumed to be the same here
    outSpec->dataX() = inputWS->readX(0);

    // the Y values and errors from spectra being grouped are combined in the output spectrum
    // Keep track of number of detectors required for masking
    size_t nonMaskedSpectra(0);
    beh->dataX(outIndex)[0] = 0.0;
    beh->dataE(outIndex)[0] = 0.0;
    for( std::vector<size_t>::const_iterator wsIter = it->second.begin(); wsIter != it->second.end(); ++wsIter)
    {
      const size_t originalWI = *wsIter;

      // detectors to add to firstSpecNum
      const ISpectrum * fromSpectrum = inputWS->getSpectrum(originalWI);

      // Add up all the Y spectra and store the result in the first one
      // Need to keep the next 3 lines inside loop for now until ManagedWorkspace mru-list works properly
      MantidVec &firstY = outSpec->dataY();
      MantidVec::iterator fYit;
      MantidVec::iterator fEit = outSpec->dataE().begin();
      MantidVec::const_iterator Yit = fromSpectrum->dataY().begin();
      MantidVec::const_iterator Eit = fromSpectrum->dataE().begin();
      for (fYit = firstY.begin(); fYit != firstY.end(); ++fYit, ++fEit, ++Yit, ++Eit)
      {
        *fYit += *Yit;
        // Assume 'normal' (i.e. Gaussian) combination of errors
        *fEit = std::sqrt( (*fEit)*(*fEit) + (*Eit)*(*Eit) );
      }

      // detectors to add to the output spectrum
      outSpec->addDetectorIDs(fromSpectrum->getDetectorIDs() );
      try
      {
        Geometry::IDetector_const_sptr det = inputWS->getDetector(originalWI);
        if( !det->isMasked() ) ++nonMaskedSpectra;
      }
      catch(Exception::NotFoundError&)
      {
        // If a detector cannot be found, it cannot be masked
        ++nonMaskedSpectra;
      }
    }
    if( nonMaskedSpectra == 0 ) ++nonMaskedSpectra; // Avoid possible divide by zero
    if(!requireDivide) requireDivide = (nonMaskedSpectra > 1);
    beh->dataY(outIndex)[0] = static_cast<double>(nonMaskedSpectra);

    // make regular progress reports and check for cancelling the algorithm
    if ( outIndex % INTERVAL == 0 )
    {
      m_FracCompl += INTERVAL*prog4Copy;
      if ( m_FracCompl > 1.0 )
        m_FracCompl = 1.0;
      progress(m_FracCompl);
      interruption_point();
    }
    outIndex ++;
  }
  
  // Refresh the spectraDetectorMap
  outputWS->generateSpectraMap();

  if ( bhv == 1 && requireDivide )
  {
    g_log.debug() << "Running Divide algorithm to perform averaging.\n";
    Mantid::API::IAlgorithm_sptr divide = createChildAlgorithm("Divide");
    divide->initialize();
    divide->setProperty<API::MatrixWorkspace_sptr>("LHSWorkspace", outputWS);
    divide->setProperty<API::MatrixWorkspace_sptr>("RHSWorkspace", beh);
    divide->setProperty<API::MatrixWorkspace_sptr>("OutputWorkspace", outputWS);
    divide->execute();
  }

  g_log.debug() << name() << " created " << outIndex << " new grouped spectra\n";
  return outIndex;
}
Exemplo n.º 17
0
/** Load a single bank into the workspace
 *
 * @param nexusfilename :: file to open
 * @param entry_name :: NXentry name
 * @param bankName :: NXdata bank name
 * @param WS :: workspace to modify
 * @param id_to_wi :: det ID to workspace index mapping
 */
void LoadTOFRawNexus::loadBank(const std::string &nexusfilename,
                               const std::string &entry_name,
                               const std::string &bankName,
                               API::MatrixWorkspace_sptr WS,
                               const detid2index_map &id_to_wi) {
  g_log.debug() << "Loading bank " << bankName << std::endl;
  // To avoid segfaults on RHEL5/6 and Fedora
  m_fileMutex.lock();

  // Navigate to the point in the file
  auto file = new ::NeXus::File(nexusfilename);
  file->openGroup(entry_name, "NXentry");
  file->openGroup("instrument", "NXinstrument");
  file->openGroup(bankName, "NXdetector");

  size_t m_numPixels = 0;
  std::vector<uint32_t> pixel_id;

  if (!m_assumeOldFile) {
    // Load the pixel IDs
    file->readData("pixel_id", pixel_id);
    m_numPixels = pixel_id.size();
    if (m_numPixels == 0) {
      file->close();
      m_fileMutex.unlock();
      g_log.warning() << "Invalid pixel_id data in " << bankName << std::endl;
      return;
    }
  } else {
    // Load the x and y pixel offsets
    std::vector<float> xoffsets;
    std::vector<float> yoffsets;
    file->readData("x_pixel_offset", xoffsets);
    file->readData("y_pixel_offset", yoffsets);

    m_numPixels = xoffsets.size() * yoffsets.size();
    if (0 == m_numPixels) {
      file->close();
      m_fileMutex.unlock();
      g_log.warning() << "Invalid (x,y) offsets in " << bankName << std::endl;
      return;
    }

    size_t bankNum = 0;
    if (bankName.size() > 4) {
      if (bankName.substr(0, 4) == "bank") {
        bankNum = boost::lexical_cast<size_t>(bankName.substr(4));
        bankNum--;
      } else {
        file->close();
        m_fileMutex.unlock();
        g_log.warning() << "Invalid bank number for " << bankName << std::endl;
        return;
      }
    }

    // All good, so construct the pixel ID listing
    size_t numX = xoffsets.size();
    size_t numY = yoffsets.size();

    for (size_t i = 0; i < numX; i++) {
      for (size_t j = 0; j < numY; j++) {
        pixel_id.push_back(
            static_cast<uint32_t>(j + numY * (i + numX * bankNum)));
      }
    }
  }

  size_t iPart = 0;
  if (m_spec_max != Mantid::EMPTY_INT()) {
    uint32_t ifirst = pixel_id[0];
    range_check out_range(m_spec_min, m_spec_max, id_to_wi);
    auto newEnd = std::remove_if(pixel_id.begin(), pixel_id.end(), out_range);
    pixel_id.erase(newEnd, pixel_id.end());
    // check if beginning or end of array was erased
    if (ifirst != pixel_id[0])
      iPart = m_numPixels - pixel_id.size();
    m_numPixels = pixel_id.size();
    if (m_numPixels == 0) {
      file->close();
      m_fileMutex.unlock();
      g_log.warning() << "No pixels from " << bankName << std::endl;
      return;
    };
  }
  // Load the TOF vector
  std::vector<float> tof;
  file->readData(m_axisField, tof);
  size_t m_numBins = tof.size() - 1;
  if (tof.size() <= 1) {
    file->close();
    m_fileMutex.unlock();
    g_log.warning() << "Invalid " << m_axisField << " data in " << bankName
                    << std::endl;
    return;
  }

  // Make a shared pointer
  MantidVecPtr Xptr;
  MantidVec &X = Xptr.access();
  X.resize(tof.size(), 0);
  X.assign(tof.begin(), tof.end());

  // Load the data. Coerce ints into double.
  std::string errorsField = "";
  std::vector<double> data;
  file->openData(m_dataField);
  file->getDataCoerce(data);
  if (file->hasAttr("errors"))
    file->getAttr("errors", errorsField);
  file->closeData();

  // Load the errors
  bool hasErrors = !errorsField.empty();
  std::vector<double> errors;
  if (hasErrors) {
    try {
      file->openData(errorsField);
      file->getDataCoerce(errors);
      file->closeData();
    } catch (...) {
      g_log.information() << "Error loading the errors field, '" << errorsField
                          << "' for bank " << bankName
                          << ". Will use sqrt(counts). " << std::endl;
      hasErrors = false;
    }
  }

  /*if (data.size() != m_numBins * m_numPixels)
  { file->close(); m_fileMutex.unlock(); g_log.warning() << "Invalid size of '"
  << m_dataField << "' data in " << bankName << std::endl; return; }
  if (hasErrors && (errors.size() != m_numBins * m_numPixels))
  { file->close(); m_fileMutex.unlock(); g_log.warning() << "Invalid size of '"
  << errorsField << "' errors in " << bankName << std::endl; return; }
*/
  // Have all the data I need
  m_fileMutex.unlock();
  file->close();

  for (size_t i = iPart; i < iPart + m_numPixels; i++) {
    // Find the workspace index for this detector
    detid_t pixelID = pixel_id[i - iPart];
    size_t wi = id_to_wi.find(pixelID)->second;

    // Set the basic info of that spectrum
    ISpectrum *spec = WS->getSpectrum(wi);
    spec->setSpectrumNo(specid_t(wi + 1));
    spec->setDetectorID(pixel_id[i - iPart]);
    // Set the shared X pointer
    spec->setX(X);

    // Extract the Y
    MantidVec &Y = spec->dataY();
    Y.assign(data.begin() + i * m_numBins, data.begin() + (i + 1) * m_numBins);

    MantidVec &E = spec->dataE();

    if (hasErrors) {
      // Copy the errors from the loaded document
      E.assign(errors.begin() + i * m_numBins,
               errors.begin() + (i + 1) * m_numBins);
    } else {
      // Now take the sqrt(Y) to give E
      E = Y;
      std::transform(E.begin(), E.end(), E.begin(), (double (*)(double))sqrt);
    }
  }

  // Done!
}
Exemplo n.º 18
0
    /** 
     * Takes a single valued histogram workspace and assesses which histograms are within the limits. 
     * Those that are not are masked on the input workspace.
     * @param countsWS :: Input/Output Integrated workspace to diagnose.
     * @param medianvec The median value calculated from the current counts.
     * @param indexmap Index map.
     * @param maskWS :: A mask workspace to apply.
     * @return The number of detectors that failed the tests, not including those skipped.
     */
    int MedianDetectorTest::doDetectorTests(const API::MatrixWorkspace_sptr countsWS, const std::vector<double> medianvec,
                                            std::vector<std::vector<size_t> > indexmap, API::MatrixWorkspace_sptr maskWS)
    {
      g_log.debug("Applying the criteria to find failing detectors");

      // A spectra can't fail if the statistics show its value is consistent with the mean value, 
      // check the error and how many errorbars we are away
      const double minSigma = getProperty("SignificanceTest");

      // prepare to report progress
      const int numSpec(m_maxSpec - m_minSpec);
      const int progStep = static_cast<int>(ceil(numSpec/30.0));
      int steps(0);

      const double deadValue(1.0);
      int numFailed(0);


      bool checkForMask = false;
      Geometry::Instrument_const_sptr instrument = countsWS->getInstrument();
      if (instrument != NULL)
      {
        checkForMask = ((instrument->getSource() != NULL) && (instrument->getSample() != NULL));
      }

      PARALLEL_FOR2(countsWS, maskWS)
      for (int j=0;j<static_cast<int>(indexmap.size());++j)
      {
        std::vector<size_t> hists=indexmap.at(j);
        double median=medianvec.at(j);
        const size_t nhist = hists.size();
        g_log.debug() << "new component with " <<nhist <<" spectra.\n";
        for (size_t i = 0; i < nhist; ++i)
        {
          g_log.debug() << "Counts workspace index=" << i 
                        << ", Mask workspace index=" << hists.at(i) << std::endl;
          PARALLEL_START_INTERUPT_REGION
          ++steps;
          // update the progressbar information
          if (steps % progStep == 0)
          {
            progress(advanceProgress(progStep*static_cast<double>(RTMarkDetects)/numSpec));
          }

          if (checkForMask)
          {
            const std::set<detid_t>& detids = countsWS->getSpectrum(i)->getDetectorIDs();
            if (instrument->isDetectorMasked(detids))
            {
              maskWS->dataY(hists.at(i))[0] = deadValue;
              continue;
            }
            if (instrument->isMonitor(detids))
            {
              // Don't include in calculation but don't mask it
              continue;
            }
          }

          const double signal = countsWS->dataY(hists.at(i))[0];

          // Mask out NaN and infinite
          if( boost::math::isinf(signal) || boost::math::isnan(signal) )
          {
            maskWS->dataY(hists.at(i))[0] = deadValue;
            PARALLEL_ATOMIC
            ++numFailed;
            continue;
          }

          const double error = minSigma*countsWS->readE(hists.at(i))[0];

          if( (signal < median*m_loFrac && (signal-median < -error)) ||
              (signal > median*m_hiFrac && (signal-median > error)) )
          {
            maskWS->dataY(hists.at(i))[0] = deadValue;
            PARALLEL_ATOMIC
            ++numFailed;
          }

          PARALLEL_END_INTERUPT_REGION
        }
        PARALLEL_CHECK_INTERUPT_REGION

      // Log finds
      g_log.information() << numFailed << " spectra failed the median tests.\n";

      }
      return numFailed;
    }
Exemplo n.º 19
0
/** Forms the quadrature phase signal (squashogram)
* @param ws :: [input] workspace containing the measured spectra
* @param phase :: [input] table workspace containing the detector phases
* @param n0 :: [input] vector containing the normalization constants
* @return :: workspace containing the quadrature phase signal
*/
API::MatrixWorkspace_sptr
PhaseQuadMuon::squash(const API::MatrixWorkspace_sptr &ws,
                      const API::ITableWorkspace_sptr &phase,
                      const std::vector<double> &n0) {

  // Poisson limit: below this number we consider we don't have enough
  // statistics
  // to apply sqrt(N). This is an arbitrary number used in the original code
  // provided by scientists
  double poissonLimit = 30.;

  size_t nspec = ws->getNumberHistograms();
  size_t npoints = ws->blocksize();

  // Muon life time in microseconds
  double muLife = PhysicalConstants::MuonLifetime * 1e6;

  if (n0.size() != nspec) {
    throw std::invalid_argument("Invalid normalization constants");
  }

  // Get the maximum asymmetry
  double maxAsym = 0.;
  for (size_t h = 0; h < nspec; h++) {
    if (phase->Double(h, 1) > maxAsym) {
      maxAsym = phase->Double(h, 1);
    }
  }
  if (maxAsym == 0.0) {
    throw std::invalid_argument("Invalid detector asymmetries");
  }

  std::vector<double> aj, bj;
  {
    // Calculate coefficients aj, bj

    double sxx = 0;
    double syy = 0;
    double sxy = 0;

    for (size_t h = 0; h < nspec; h++) {
      double asym = phase->Double(h, 1) / maxAsym;
      double phi = phase->Double(h, 2);
      double X = n0[h] * asym * cos(phi);
      double Y = n0[h] * asym * sin(phi);
      sxx += X * X;
      syy += Y * Y;
      sxy += X * Y;
    }

    double lam1 = 2 * syy / (sxx * syy - sxy * sxy);
    double mu1 = 2 * sxy / (sxy * sxy - sxx * syy);
    double lam2 = 2 * sxy / (sxy * sxy - sxx * syy);
    double mu2 = 2 * sxx / (sxx * syy - sxy * sxy);
    for (size_t h = 0; h < nspec; h++) {
      double asym = phase->Double(h, 1) / maxAsym;
      double phi = phase->Double(h, 2);
      double X = n0[h] * asym * cos(phi);
      double Y = n0[h] * asym * sin(phi);
      aj.push_back((lam1 * X + mu1 * Y) * 0.5);
      bj.push_back((lam2 * X + mu2 * Y) * 0.5);
    }
  }

  // First X value
  double X0 = ws->x(0).front();

  // Create and populate output workspace
  API::MatrixWorkspace_sptr ows = API::WorkspaceFactory::Instance().create(
      "Workspace2D", 2, npoints + 1, npoints);

  // X
  ows->setSharedX(0, ws->sharedX(0));
  ows->setSharedX(1, ws->sharedX(0));

  // Phase quadrature
  auto &realY = ows->mutableY(0);
  auto &imagY = ows->mutableY(1);
  auto &realE = ows->mutableE(0);
  auto &imagE = ows->mutableE(1);

  for (size_t i = 0; i < npoints; i++) {
    for (size_t h = 0; h < nspec; h++) {

      // (X,Y,E) with exponential decay removed
      const double X = ws->x(h)[i];
      const double Y = ws->y(h)[i] - n0[h] * exp(-(X - X0) / muLife);
      const double E = (ws->y(h)[i] > poissonLimit)
                           ? ws->e(h)[i]
                           : sqrt(n0[h] * exp(-(X - X0) / muLife));

      realY[i] += aj[h] * Y;
      imagY[i] += bj[h] * Y;
      realE[i] += aj[h] * aj[h] * E * E;
      imagE[i] += bj[h] * bj[h] * E * E;
    }
    realE[i] = sqrt(realE[i]);
    imagE[i] = sqrt(imagE[i]);

    // Regain exponential decay
    const double X = ws->getSpectrum(0).x()[i];
    const double e = exp(-(X - X0) / muLife);
    realY[i] /= e;
    imagY[i] /= e;
    realE[i] /= e;
    imagE[i] /= e;
  }

  return ows;
}
Exemplo n.º 20
0
    /** 
     *  Finds the median of values in single bin histograms rejecting spectra from masked
     *  detectors and the results of divide by zero (infinite and NaN).  
     * The median is an average that is less affected by small numbers of very large values.
     * @param input :: A histogram workspace with one entry in each bin
     * @param excludeZeroes :: If true then zeroes will not be included in the median calculation
     * @param indexmap :: indexmap
     * @return The median value of the histograms in the workspace that was passed to it
     * @throw out_of_range if a value is negative
     */
    std::vector<double> DetectorDiagnostic::calculateMedian(const API::MatrixWorkspace_sptr input, bool excludeZeroes, std::vector<std::vector<size_t> > indexmap)
    {
      std::vector<double> medianvec;
      g_log.debug("Calculating the median count rate of the spectra");

      for (size_t j=0;  j< indexmap.size(); ++j)
      {
        std::vector<double> medianInput;
        std::vector<size_t> hists=indexmap.at(j);

        const int nhists = static_cast<int>(hists.size());
        // The maximum possible length is that of workspace length
        medianInput.reserve(nhists);

        bool checkForMask = false;
        Geometry::Instrument_const_sptr instrument = input->getInstrument();
        if (instrument != NULL)
        {
          checkForMask = ((instrument->getSource() != NULL) && (instrument->getSample() != NULL));
        }

        PARALLEL_FOR1(input)
        for (int i = 0; i<static_cast<int>(hists.size()); ++i)
        {
          PARALLEL_START_INTERUPT_REGION

          if (checkForMask) {
            const std::set<detid_t>& detids = input->getSpectrum(hists[i])->getDetectorIDs();
            if (instrument->isDetectorMasked(detids))
              continue;
            if (instrument->isMonitor(detids))
              continue;
          }

          const double yValue = input->readY(hists[i])[0];
          if ( yValue  < 0.0 )
          {
            throw std::out_of_range("Negative number of counts found, could be corrupted raw counts or solid angle data");
          }
          if( boost::math::isnan(yValue) || boost::math::isinf(yValue) ||
              (excludeZeroes && yValue < DBL_EPSILON)) // NaNs/Infs
          {
            continue;
          }
          // Now we have a good value
          PARALLEL_CRITICAL(DetectorDiagnostic_median_d)
          {
            medianInput.push_back(yValue);
          }

          PARALLEL_END_INTERUPT_REGION
        }
        PARALLEL_CHECK_INTERUPT_REGION

        if(medianInput.empty())
        {
          g_log.information("some group has no valid histograms. Will use 0 for median.");
          medianInput.push_back(0.);
        }

        // We need a sorted array to calculate the median
        std::sort(medianInput.begin(), medianInput.end());
        double median = gsl_stats_median_from_sorted_data( &medianInput[0], 1, medianInput.size() );

        if ( median < 0 || median > DBL_MAX/10.0 )
        {
          throw std::out_of_range("The calculated value for the median was either negative or unreliably large");
        }
        medianvec.push_back(median);
      }
      return medianvec;
    }