Exemplo n.º 1
0
/** Smoothing using Butterworth filter.
 *  @param n ::     The cutoff frequency control parameter.
 *               Cutoff frequency = my/n where my is the
 *               number of sample points in the data.
 *               As with the "Zeroing" case, the cutoff
 *               frequency is truncated to an integer value
 *               and set to 1 if the truncated value was zero.
 *  @param order :: The order of the Butterworth filter, 1, 2, etc.
 *               This must be a positive integer.
 *  @param unfilteredWS :: workspace for storing the unfiltered Fourier
 * transform of the input spectrum
 *  @param filteredWS :: workspace for storing the filtered spectrum
 */
void FFTSmooth2::Butterworth(int n, int order,
                             API::MatrixWorkspace_sptr &unfilteredWS,
                             API::MatrixWorkspace_sptr &filteredWS) {
  int mx = static_cast<int>(unfilteredWS->readX(0).size());
  int my = static_cast<int>(unfilteredWS->readY(0).size());
  int ny = my / n;

  if (ny == 0)
    ny = 1;

  filteredWS =
      API::WorkspaceFactory::Instance().create(unfilteredWS, 2, mx, my);

  const Mantid::MantidVec &Yr = unfilteredWS->readY(0);
  const Mantid::MantidVec &Yi = unfilteredWS->readY(1);
  const Mantid::MantidVec &X = unfilteredWS->readX(0);

  Mantid::MantidVec &yr = filteredWS->dataY(0);
  Mantid::MantidVec &yi = filteredWS->dataY(1);
  Mantid::MantidVec &xr = filteredWS->dataX(0);
  Mantid::MantidVec &xi = filteredWS->dataX(1);

  xr.assign(X.begin(), X.end());
  xi.assign(X.begin(), X.end());
  yr.assign(Yr.size(), 0);
  yi.assign(Yr.size(), 0);

  double cutoff = ny;

  for (int i = 0; i < my; i++) {
    double scale = 1.0 / (1.0 + pow(i / cutoff, 2 * order));
    yr[i] = scale * Yr[i];
    yi[i] = scale * Yi[i];
  }
}
Exemplo n.º 2
0
/** Smoothing by zeroing.
 *  @param n :: The order of truncation
 *  @param unfilteredWS :: workspace for storing the unfiltered Fourier
 * transform of the input spectrum
 *  @param filteredWS :: workspace for storing the filtered spectrum
 */
void FFTSmooth2::zero(int n, API::MatrixWorkspace_sptr &unfilteredWS,
                      API::MatrixWorkspace_sptr &filteredWS) {
  int mx = static_cast<int>(unfilteredWS->readX(0).size());
  int my = static_cast<int>(unfilteredWS->readY(0).size());
  int ny = my / n;

  if (ny == 0)
    ny = 1;

  filteredWS =
      API::WorkspaceFactory::Instance().create(unfilteredWS, 2, mx, my);

  const Mantid::MantidVec &Yr = unfilteredWS->readY(0);
  const Mantid::MantidVec &Yi = unfilteredWS->readY(1);
  const Mantid::MantidVec &X = unfilteredWS->readX(0);

  Mantid::MantidVec &yr = filteredWS->dataY(0);
  Mantid::MantidVec &yi = filteredWS->dataY(1);
  Mantid::MantidVec &xr = filteredWS->dataX(0);
  Mantid::MantidVec &xi = filteredWS->dataX(1);

  xr.assign(X.begin(), X.end());
  xi.assign(X.begin(), X.end());
  yr.assign(Yr.size(), 0);
  yi.assign(Yr.size(), 0);

  for (int i = 0; i < ny; i++) {
    yr[i] = Yr[i];
    yi[i] = Yi[i];
  }
}
Exemplo n.º 3
0
void SaveFITS::writeFITSImageMatrix(const API::MatrixWorkspace_sptr img,
                                    std::ofstream &file) {
  const size_t sizeX = img->blocksize();
  const size_t sizeY = img->getNumberHistograms();

  int bitDepth = getProperty(PROP_BIT_DEPTH);
  const size_t bytespp = static_cast<size_t>(bitDepth) / 8;

  for (size_t row = 0; row < sizeY; ++row) {
    const auto &dataY = img->readY(row);
    for (size_t col = 0; col < sizeX; ++col) {
      int32_t pixelVal;
      if (8 == bitDepth) {
        pixelVal = static_cast<uint8_t>(dataY[col]);
      } else if (16 == bitDepth) {
        pixelVal = static_cast<uint16_t>(dataY[col]);
      } else if (32 == bitDepth) {
        pixelVal = static_cast<uint32_t>(dataY[col]);
      }

      // change endianness: to sequence of bytes in big-endian
      // this needs revisiting (similarly in LoadFITS)
      // See https://github.com/mantidproject/mantid/pull/15964
      std::array<uint8_t, g_maxBytesPP> bytesPixel;
      uint8_t *iter = reinterpret_cast<uint8_t *>(&pixelVal);
      std::reverse_copy(iter, iter + bytespp, bytesPixel.data());

      file.write(reinterpret_cast<const char *>(bytesPixel.data()), bytespp);
    }
  }
}
Exemplo n.º 4
0
    /**
     * Mask the outlier values to get a better median value.
     * @param medianvec The median value calculated from the current counts.
     * @param countsWS The counts workspace. Any outliers will be masked here.
     * @param indexmap Index map.
     * @returns The number failed.
     */
    int MedianDetectorTest::maskOutliers(const std::vector<double> medianvec, API::MatrixWorkspace_sptr countsWS,std::vector<std::vector<size_t> > indexmap)
    {

      // Fractions of the median
      const double out_lo = getProperty("LowOutlier");
      const double out_hi = getProperty("HighOutlier");

      int numFailed(0);

      bool checkForMask = false;
      Geometry::Instrument_const_sptr instrument = countsWS->getInstrument();
      if (instrument != NULL)
      {
        checkForMask = ((instrument->getSource() != NULL) && (instrument->getSample() != NULL));
      }

      for (size_t i=0; i<indexmap.size();  ++i)
      {
        std::vector<size_t> hists=indexmap.at(i);
        double median=medianvec.at(i);

        PARALLEL_FOR1(countsWS)
        for(int j = 0; j < static_cast<int>(hists.size()); ++j)
        {
          const double value = countsWS->readY(hists.at(j))[0];
          if ((value == 0.) && checkForMask)
          {
            const std::set<detid_t>& detids = countsWS->getSpectrum(hists.at(j))->getDetectorIDs();
            if (instrument->isDetectorMasked(detids))
            {
              numFailed -= 1; // it was already masked
            }
          }
          if( (value < out_lo*median) && (value > 0.0) )
          {
            countsWS->maskWorkspaceIndex(hists.at(j));
            PARALLEL_ATOMIC
            ++numFailed;
          }
          else if( value > out_hi*median )
          {
            countsWS->maskWorkspaceIndex(hists.at(j));
            PARALLEL_ATOMIC
            ++numFailed;
          }
        }
        PARALLEL_CHECK_INTERUPT_REGION
      }

      return numFailed;
    }
/** Remove background per pixel
 * @brief ConvertCWSDExpToMomentum::removeBackground
 * @param dataws
 */
void ConvertCWSDExpToMomentum::removeBackground(
    API::MatrixWorkspace_sptr dataws) {
  if (dataws->getNumberHistograms() != m_backgroundWS->getNumberHistograms())
    throw std::runtime_error("Impossible to have this situation");

  size_t numhist = dataws->getNumberHistograms();
  for (size_t i = 0; i < numhist; ++i) {
    double bkgd_y = m_backgroundWS->readY(i)[0];
    if (fabs(bkgd_y) > 1.E-2) {
      dataws->dataY(i)[0] -= bkgd_y;
      dataws->dataE(i)[0] = std::sqrt(dataws->readY(i)[0]);
    }
  }
}
Exemplo n.º 6
0
/** Returns a given spectrum as a complex number
* @param inWS :: [input] The input workspace containing all the spectra
* @param spec :: [input] The spectrum of interest
* @param errors :: [input] If true, returns the errors, otherwise returns the
* counts
* @return : Spectrum 'spec' as a complex vector
*/
std::vector<double> MaxEnt::toComplex(const API::MatrixWorkspace_sptr &inWS,
                                      size_t spec, bool errors) {

  std::vector<double> result(inWS->blocksize() * 2);

  if (inWS->getNumberHistograms() % 2)
    throw std::invalid_argument(
        "Cannot convert input workspace to complex data");

  size_t nspec = inWS->getNumberHistograms() / 2;

  if (!errors) {
    for (size_t i = 0; i < inWS->blocksize(); i++) {
      result[2 * i] = inWS->readY(spec)[i];
      result[2 * i + 1] = inWS->readY(spec + nspec)[i];
    }
  } else {
    for (size_t i = 0; i < inWS->blocksize(); i++) {
      result[2 * i] = inWS->readE(spec)[i];
      result[2 * i + 1] = inWS->readE(spec + nspec)[i];
    }
  }
  return result;
}
Exemplo n.º 7
0
/** Carries out the bin-by-bin normalisation
 *  @param inputWorkspace The input workspace
 *  @param outputWorkspace The result workspace
 */
void NormaliseToMonitor::normaliseBinByBin(API::MatrixWorkspace_sptr inputWorkspace,
                                           API::MatrixWorkspace_sptr& outputWorkspace)
{ 
  EventWorkspace_sptr inputEvent = boost::dynamic_pointer_cast<EventWorkspace>(inputWorkspace);
  EventWorkspace_sptr outputEvent;

  // Only create output workspace if different to input one
  if (outputWorkspace != inputWorkspace )
  {
    if (inputEvent)
    {
      //Make a brand new EventWorkspace
      outputEvent = boost::dynamic_pointer_cast<EventWorkspace>(
          API::WorkspaceFactory::Instance().create("EventWorkspace", inputEvent->getNumberHistograms(), 2, 1));
      //Copy geometry and data
      API::WorkspaceFactory::Instance().initializeFromParent(inputEvent, outputEvent, false);
      outputEvent->copyDataFrom( (*inputEvent) );
      outputWorkspace = boost::dynamic_pointer_cast<MatrixWorkspace>(outputEvent);
    }
    else
      outputWorkspace = WorkspaceFactory::Instance().create(inputWorkspace);
  }

  // Get hold of the monitor spectrum
  const MantidVec& monX = m_monitor->readX(0);
  MantidVec& monY = m_monitor->dataY(0);
  MantidVec& monE = m_monitor->dataE(0);
  // Calculate the overall normalisation just the once if bins are all matching
  if (m_commonBins) this->normalisationFactor(m_monitor->readX(0),&monY,&monE);


  const size_t numHists = inputWorkspace->getNumberHistograms();
  MantidVec::size_type specLength = inputWorkspace->blocksize();
  Progress prog(this,0.0,1.0,numHists);
  // Loop over spectra
  PARALLEL_FOR3(inputWorkspace,outputWorkspace,m_monitor)
  for (int64_t i = 0; i < int64_t(numHists); ++i)
  {
    PARALLEL_START_INTERUPT_REGION
    prog.report();

    const MantidVec& X = inputWorkspace->readX(i);
    // If not rebinning, just point to our monitor spectra, otherwise create new vectors
    MantidVec* Y = ( m_commonBins ? &monY : new MantidVec(specLength) );
    MantidVec* E = ( m_commonBins ? &monE : new MantidVec(specLength) );

    if (!m_commonBins)
    {
      // ConvertUnits can give X vectors of all zeroes - skip these, they cause problems
      if (X.back() == 0.0 && X.front() == 0.0) continue;
      // Rebin the monitor spectrum to match the binning of the current data spectrum
      VectorHelper::rebinHistogram(monX,monY,monE,X,*Y,*E,false);
      // Recalculate the overall normalisation factor
      this->normalisationFactor(X,Y,E);
    }

    if (inputEvent)
    {
      // ----------------------------------- EventWorkspace ---------------------------------------
      EventList & outEL = outputEvent->getEventList(i);
      outEL.divide(X, *Y, *E);
    }
    else
    {
      // ----------------------------------- Workspace2D ---------------------------------------
      const MantidVec& inY = inputWorkspace->readY(i);
      const MantidVec& inE = inputWorkspace->readE(i);
      MantidVec& YOut = outputWorkspace->dataY(i);
      MantidVec& EOut = outputWorkspace->dataE(i);
      outputWorkspace->dataX(i) = inputWorkspace->readX(i);
      // The code below comes more or less straight out of Divide.cpp
      for (MantidVec::size_type k = 0; k < specLength; ++k)
      {
        // Get references to the input Y's
        const double& leftY = inY[k];
        const double& rightY = (*Y)[k];

        // Calculate result and store in local variable to avoid overwriting original data if
        // output workspace is same as one of the input ones
        const double newY = leftY/rightY;

        if (fabs(rightY)>1.0e-12 && fabs(newY)>1.0e-12)
        {
          const double lhsFactor = (inE[k]<1.0e-12|| fabs(leftY)<1.0e-12) ? 0.0 : pow((inE[k]/leftY),2);
          const double rhsFactor = (*E)[k]<1.0e-12 ? 0.0 : pow(((*E)[k]/rightY),2);
          EOut[k] = std::abs(newY) * sqrt(lhsFactor+rhsFactor);
        }

        // Now store the result
        YOut[k] = newY;
      } // end Workspace2D case
    } // end loop over current spectrum

    if (!m_commonBins) { delete Y; delete E; }
    PARALLEL_END_INTERUPT_REGION
  } // end loop over spectra
  PARALLEL_CHECK_INTERUPT_REGION
}
Exemplo n.º 8
0
/** Executes the algorithm
 *
 */
void SplineBackground::exec()
{

  API::MatrixWorkspace_sptr inWS = getProperty("InputWorkspace");
  int spec = getProperty("WorkspaceIndex");

  if (spec > static_cast<int>(inWS->getNumberHistograms()))
    throw std::out_of_range("WorkspaceIndex is out of range.");

  const MantidVec& X = inWS->readX(spec);
  const MantidVec& Y = inWS->readY(spec);
  const MantidVec& E = inWS->readE(spec);
  const bool isHistogram = inWS->isHistogramData();

  const int ncoeffs = getProperty("NCoeff");
  const int k = 4; // order of the spline + 1 (cubic)
  const int nbreak = ncoeffs - (k - 2);

  if (nbreak <= 0)
    throw std::out_of_range("Too low NCoeff");

  gsl_bspline_workspace *bw;
  gsl_vector *B;

  gsl_vector *c, *w, *x, *y;
  gsl_matrix *Z, *cov;
  gsl_multifit_linear_workspace *mw;
  double chisq;

  int n = static_cast<int>(Y.size());
  bool isMasked = inWS->hasMaskedBins(spec);
  std::vector<int> masked(Y.size());
  if (isMasked)
  {
    for(API::MatrixWorkspace::MaskList::const_iterator it=inWS->maskedBins(spec).begin();it!=inWS->maskedBins(spec).end();++it)
      masked[it->first] = 1;
    n -= static_cast<int>(inWS->maskedBins(spec).size());
  }

  if (n < ncoeffs)
  {
    g_log.error("Too many basis functions (NCoeff)");
    throw std::out_of_range("Too many basis functions (NCoeff)");
  }

  /* allocate a cubic bspline workspace (k = 4) */
  bw = gsl_bspline_alloc(k, nbreak);
  B = gsl_vector_alloc(ncoeffs);

  x = gsl_vector_alloc(n);
  y = gsl_vector_alloc(n);
  Z = gsl_matrix_alloc(n, ncoeffs);
  c = gsl_vector_alloc(ncoeffs);
  w = gsl_vector_alloc(n);
  cov = gsl_matrix_alloc(ncoeffs, ncoeffs);
  mw = gsl_multifit_linear_alloc(n, ncoeffs);

  /* this is the data to be fitted */
  int j = 0;
  for (MantidVec::size_type i = 0; i < Y.size(); ++i)
  {
    if (isMasked && masked[i]) continue;
    gsl_vector_set(x, j, (isHistogram ? (0.5*(X[i]+X[i+1])) : X[i])); // Middle of the bins, if a histogram
    gsl_vector_set(y, j, Y[i]);
    gsl_vector_set(w, j, E[i]>0.?1./(E[i]*E[i]):0.);

    ++j;
  }

  if (n != j)
  {
    gsl_bspline_free(bw);
    gsl_vector_free(B);
    gsl_vector_free(x);
    gsl_vector_free(y);
    gsl_matrix_free(Z);
    gsl_vector_free(c);
    gsl_vector_free(w);
    gsl_matrix_free(cov);
    gsl_multifit_linear_free(mw);

    throw std::runtime_error("Assertion failed: n != j");
  }

  double xStart = X.front();
  double xEnd =   X.back();

  /* use uniform breakpoints */
  gsl_bspline_knots_uniform(xStart, xEnd, bw);

  /* construct the fit matrix X */
  for (int i = 0; i < n; ++i)
  {
    double xi=gsl_vector_get(x, i);

    /* compute B_j(xi) for all j */
    gsl_bspline_eval(xi, B, bw);

    /* fill in row i of X */
    for (j = 0; j < ncoeffs; ++j)
    {
      double Bj = gsl_vector_get(B, j);
      gsl_matrix_set(Z, i, j, Bj);
    }
  }

  /* do the fit */
  gsl_multifit_wlinear(Z, w, y, c, cov, &chisq, mw);

  /* output the smoothed curve */
  API::MatrixWorkspace_sptr outWS = WorkspaceFactory::Instance().create(inWS,1,X.size(),Y.size());
  {
    outWS->getAxis(1)->setValue(0, inWS->getAxis(1)->spectraNo(spec));
    double xi, yi, yerr;
    for (MantidVec::size_type i=0;i<Y.size();i++)
    {
      xi = X[i];
      gsl_bspline_eval(xi, B, bw);
      gsl_multifit_linear_est(B, c, cov, &yi, &yerr);
      outWS->dataY(0)[i] = yi;
      outWS->dataE(0)[i] = yerr;
    }
    outWS->dataX(0) = X;
  }

  gsl_bspline_free(bw);
  gsl_vector_free(B);
  gsl_vector_free(x);
  gsl_vector_free(y);
  gsl_matrix_free(Z);
  gsl_vector_free(c);
  gsl_vector_free(w);
  gsl_matrix_free(cov);
  gsl_multifit_linear_free(mw);

  setProperty("OutputWorkspace",outWS);

}
Exemplo n.º 9
0
/** Executes the algorithm
 *  @throw Exception::FileError If the calibration file cannot be opened and
 * read successfully
 *  @throw Exception::InstrumentDefinitionError If unable to obtain the
 * source-sample distance
 */
void AlignDetectors::exec() {
  // Get the input workspace
  MatrixWorkspace_sptr inputWS = getProperty("InputWorkspace");

  this->getCalibrationWS(inputWS);

  // Initialise the progress reporting object
  m_numberOfSpectra = static_cast<int64_t>(inputWS->getNumberHistograms());

  // Check if its an event workspace
  EventWorkspace_const_sptr eventW =
      boost::dynamic_pointer_cast<const EventWorkspace>(inputWS);
  if (eventW != nullptr) {
    this->execEvent();
    return;
  }

  API::MatrixWorkspace_sptr outputWS = getProperty("OutputWorkspace");
  // If input and output workspaces are not the same, create a new workspace for
  // the output
  if (outputWS != inputWS) {
    outputWS = WorkspaceFactory::Instance().create(inputWS);
    setProperty("OutputWorkspace", outputWS);
  }

  // Set the final unit that our output workspace will have
  setXAxisUnits(outputWS);

  ConversionFactors converter = ConversionFactors(m_calibrationWS);

  Progress progress(this, 0.0, 1.0, m_numberOfSpectra);

  // Loop over the histograms (detector spectra)
  PARALLEL_FOR2(inputWS, outputWS)
  for (int64_t i = 0; i < m_numberOfSpectra; ++i) {
    PARALLEL_START_INTERUPT_REGION
    try {
      // Get the input spectrum number at this workspace index
      auto inSpec = inputWS->getSpectrum(size_t(i));
      auto toDspacing = converter.getConversionFunc(inSpec->getDetectorIDs());

      // Get references to the x data
      MantidVec &xOut = outputWS->dataX(i);

      // Make sure reference to input X vector is obtained after output one
      // because in the case
      // where the input & output workspaces are the same, it might move if the
      // vectors were shared.
      const MantidVec &xIn = inSpec->readX();

      std::transform(xIn.begin(), xIn.end(), xOut.begin(), toDspacing);

      // Copy the Y&E data
      outputWS->dataY(i) = inSpec->readY();
      outputWS->dataE(i) = inSpec->readE();

    } catch (Exception::NotFoundError &) {
      // Zero the data in this case
      outputWS->dataX(i).assign(outputWS->readX(i).size(), 0.0);
      outputWS->dataY(i).assign(outputWS->readY(i).size(), 0.0);
      outputWS->dataE(i).assign(outputWS->readE(i).size(), 0.0);
    }
    progress.report();
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION
}
Exemplo n.º 10
0
    /** 
     *  Finds the median of values in single bin histograms rejecting spectra from masked
     *  detectors and the results of divide by zero (infinite and NaN).  
     * The median is an average that is less affected by small numbers of very large values.
     * @param input :: A histogram workspace with one entry in each bin
     * @param excludeZeroes :: If true then zeroes will not be included in the median calculation
     * @param indexmap :: indexmap
     * @return The median value of the histograms in the workspace that was passed to it
     * @throw out_of_range if a value is negative
     */
    std::vector<double> DetectorDiagnostic::calculateMedian(const API::MatrixWorkspace_sptr input, bool excludeZeroes, std::vector<std::vector<size_t> > indexmap)
    {
      std::vector<double> medianvec;
      g_log.debug("Calculating the median count rate of the spectra");

      for (size_t j=0;  j< indexmap.size(); ++j)
      {
        std::vector<double> medianInput;
        std::vector<size_t> hists=indexmap.at(j);

        const int nhists = static_cast<int>(hists.size());
        // The maximum possible length is that of workspace length
        medianInput.reserve(nhists);

        bool checkForMask = false;
        Geometry::Instrument_const_sptr instrument = input->getInstrument();
        if (instrument != NULL)
        {
          checkForMask = ((instrument->getSource() != NULL) && (instrument->getSample() != NULL));
        }

        PARALLEL_FOR1(input)
        for (int i = 0; i<static_cast<int>(hists.size()); ++i)
        {
          PARALLEL_START_INTERUPT_REGION

          if (checkForMask) {
            const std::set<detid_t>& detids = input->getSpectrum(hists[i])->getDetectorIDs();
            if (instrument->isDetectorMasked(detids))
              continue;
            if (instrument->isMonitor(detids))
              continue;
          }

          const double yValue = input->readY(hists[i])[0];
          if ( yValue  < 0.0 )
          {
            throw std::out_of_range("Negative number of counts found, could be corrupted raw counts or solid angle data");
          }
          if( boost::math::isnan(yValue) || boost::math::isinf(yValue) ||
              (excludeZeroes && yValue < DBL_EPSILON)) // NaNs/Infs
          {
            continue;
          }
          // Now we have a good value
          PARALLEL_CRITICAL(DetectorDiagnostic_median_d)
          {
            medianInput.push_back(yValue);
          }

          PARALLEL_END_INTERUPT_REGION
        }
        PARALLEL_CHECK_INTERUPT_REGION

        if(medianInput.empty())
        {
          g_log.information("some group has no valid histograms. Will use 0 for median.");
          medianInput.push_back(0.);
        }

        // We need a sorted array to calculate the median
        std::sort(medianInput.begin(), medianInput.end());
        double median = gsl_stats_median_from_sorted_data( &medianInput[0], 1, medianInput.size() );

        if ( median < 0 || median > DBL_MAX/10.0 )
        {
          throw std::out_of_range("The calculated value for the median was either negative or unreliably large");
        }
        medianvec.push_back(median);
      }
      return medianvec;
    }
Exemplo n.º 11
0
/**
 * Execute smoothing of a single spectrum.
 * @param inputWS :: A workspace to pick a spectrum from.
 * @param wsIndex :: An index of a spectrum to smooth.
 * @return :: A single-spectrum workspace with the smoothed data.
 */
API::MatrixWorkspace_sptr
WienerSmooth::smoothSingleSpectrum(API::MatrixWorkspace_sptr inputWS,
                                   size_t wsIndex) {
  size_t dataSize = inputWS->blocksize();

  // it won't work for very small workspaces
  if (dataSize < 4) {
    g_log.debug() << "No smoothing, spectrum copied." << std::endl;
    return copyInput(inputWS, wsIndex);
  }

  // Due to the way RealFFT works the input should be even-sized
  const bool isOddSize = dataSize % 2 != 0;
  if (isOddSize) {
    // add a fake value to the end to make size even
    inputWS = copyInput(inputWS, wsIndex);
    wsIndex = 0;
    auto &X = inputWS->dataX(wsIndex);
    auto &Y = inputWS->dataY(wsIndex);
    auto &E = inputWS->dataE(wsIndex);
    double dx = X[dataSize - 1] - X[dataSize - 2];
    X.push_back(X.back() + dx);
    Y.push_back(Y.back());
    E.push_back(E.back());
  }

  // the input vectors
  auto &X = inputWS->readX(wsIndex);
  auto &Y = inputWS->readY(wsIndex);
  auto &E = inputWS->readE(wsIndex);

  // Digital fourier transform works best for data oscillating around 0.
  // Fit a spline with a small number of break points to the data.
  // Make sure that the spline passes through the first and the last points
  // of the data.
  // The fitted spline will be subtracted from the data and the difference
  // will be smoothed with the Wiener filter. After that the spline will be
  // added to the smoothed data to produce the output.

  // number of spline break points, must be smaller than the data size but
  // between 2 and 10
  size_t nbreak = 10;
  if (nbreak * 3 > dataSize)
    nbreak = dataSize / 3;

  // NB. The spline mustn't fit too well to the data. If it does smoothing
  // doesn't happen.
  // TODO: it's possible that the spline is unnecessary and a simple linear
  // function will
  //       do a better job.

  g_log.debug() << "Spline break points " << nbreak << std::endl;

  // define the spline
  API::IFunction_sptr spline =
      API::FunctionFactory::Instance().createFunction("BSpline");
  auto xInterval = getStartEnd(X, inputWS->isHistogramData());
  spline->setAttributeValue("StartX", xInterval.first);
  spline->setAttributeValue("EndX", xInterval.second);
  spline->setAttributeValue("NBreak", static_cast<int>(nbreak));
  // fix the first and last parameters to the first and last data values
  spline->setParameter(0, Y.front());
  spline->fix(0);
  size_t lastParamIndex = spline->nParams() - 1;
  spline->setParameter(lastParamIndex, Y.back());
  spline->fix(lastParamIndex);

  // fit the spline to the data
  auto fit = createChildAlgorithm("Fit");
  fit->initialize();
  fit->setProperty("Function", spline);
  fit->setProperty("InputWorkspace", inputWS);
  fit->setProperty("WorkspaceIndex", static_cast<int>(wsIndex));
  fit->setProperty("CreateOutput", true);
  fit->execute();

  // get the fit output workspace; spectrum 2 contains the difference that is to
  // be smoothed
  API::MatrixWorkspace_sptr fitOut = fit->getProperty("OutputWorkspace");

  // Fourier transform the difference spectrum
  auto fourier = createChildAlgorithm("RealFFT");
  fourier->initialize();
  fourier->setProperty("InputWorkspace", fitOut);
  fourier->setProperty("WorkspaceIndex", 2);
  // we don't require bin linearity as we don't need the exact transform
  fourier->setProperty("IgnoreXBins", true);
  fourier->execute();

  API::MatrixWorkspace_sptr fourierOut =
      fourier->getProperty("OutputWorkspace");

  // spectrum 2 of the transformed workspace has the transform modulus which is
  // a square
  // root of the power spectrum
  auto &powerSpec = fourierOut->dataY(2);
  // convert the modulus to power spectrum wich is the base of the Wiener filter
  std::transform(powerSpec.begin(), powerSpec.end(), powerSpec.begin(),
                 PowerSpectrum());

  // estimate power spectrum's noise as the average of its high frequency half
  size_t n2 = powerSpec.size();
  double noise =
      std::accumulate(powerSpec.begin() + n2 / 2, powerSpec.end(), 0.0);
  noise /= static_cast<double>(n2);

  // index of the maximum element in powerSpec
  const size_t imax = static_cast<size_t>(std::distance(
      powerSpec.begin(), std::max_element(powerSpec.begin(), powerSpec.end())));

  if (noise == 0.0) {
    noise = powerSpec[imax] / guessSignalToNoiseRatio;
  }

  g_log.debug() << "Maximum signal " << powerSpec[imax] << std::endl;
  g_log.debug() << "Noise          " << noise << std::endl;

  // storage for the Wiener filter, initialized with 0.0's
  std::vector<double> wf(n2);

  // The filter consists of two parts:
  //   1) low frequency region, from 0 until the power spectrum falls to the
  //   noise level, filter is calculated
  //      from the power spectrum
  //   2) high frequency noisy region, filter is a smooth function of frequency
  //   decreasing to 0

  // the following code is an adaptation of a fortran routine
  // noise starting index
  size_t i0 = 0;
  // intermediate variables
  double xx = 0.0;
  double xy = 0.0;
  double ym = 0.0;
  // low frequency filter values: the higher the power spectrum the closer the
  // filter to 1.0
  for (size_t i = 0; i < n2; ++i) {
    double cd1 = powerSpec[i] / noise;
    if (cd1 < 1.0 && i > imax) {
      i0 = i;
      break;
    }
    double cd2 = log(cd1);
    wf[i] = cd1 / (1.0 + cd1);
    double j = static_cast<double>(i + 1);
    xx += j * j;
    xy += j * cd2;
    ym += cd2;
  }

  // i0 should always be > 0 but in case something goes wrong make a check
  if (i0 > 0) {
    g_log.debug() << "Noise start index " << i0 << std::endl;

    // high frequency filter values: smooth decreasing function
    double ri0f = static_cast<double>(i0 + 1);
    double xm = (1.0 + ri0f) / 2;
    ym /= ri0f;
    double a1 = (xy - ri0f * xm * ym) / (xx - ri0f * xm * xm);
    double b1 = ym - a1 * xm;

    g_log.debug() << "(a1,b1) = (" << a1 << ',' << b1 << ')' << std::endl;

    const double dblev = -20.0;
    // cut-off index
    double ri1 = floor((dblev / 4 - b1) / a1);
    if (ri1 < static_cast<double>(i0)) {
      g_log.warning() << "Failed to build Wiener filter: no smoothing."
                      << std::endl;
      ri1 = static_cast<double>(i0);
    }
    size_t i1 = static_cast<size_t>(ri1);
    if (i1 > n2)
      i1 = n2;
    for (size_t i = i0; i < i1; ++i) {
      double s = exp(a1 * static_cast<double>(i + 1) + b1);
      wf[i] = s / (1.0 + s);
    }
    // wf[i] for i1 <= i < n2 are 0.0

    g_log.debug() << "Cut-off index " << i1 << std::endl;
  } else {
    g_log.warning() << "Power spectrum has an unexpected shape: no smoothing"
                    << std::endl;
    return copyInput(inputWS, wsIndex);
  }

  // multiply the fourier transform by the filter
  auto &re = fourierOut->dataY(0);
  auto &im = fourierOut->dataY(1);

  std::transform(re.begin(), re.end(), wf.begin(), re.begin(),
                 std::multiplies<double>());
  std::transform(im.begin(), im.end(), wf.begin(), im.begin(),
                 std::multiplies<double>());

  // inverse fourier transform
  fourier = createChildAlgorithm("RealFFT");
  fourier->initialize();
  fourier->setProperty("InputWorkspace", fourierOut);
  fourier->setProperty("IgnoreXBins", true);
  fourier->setPropertyValue("Transform", "Backward");
  fourier->execute();

  API::MatrixWorkspace_sptr out = fourier->getProperty("OutputWorkspace");
  auto &background = fitOut->readY(1);
  auto &y = out->dataY(0);

  if (y.size() != background.size()) {
    throw std::logic_error("Logic error: inconsistent arrays");
  }

  // add the spline "background" to the smoothed data
  std::transform(y.begin(), y.end(), background.begin(), y.begin(),
                 std::plus<double>());

  // copy the x-values and errors from the original spectrum
  // remove the last values for odd-sized inputs
  if (isOddSize) {
    out->dataX(0).assign(X.begin(), X.end() - 1);
    out->dataE(0).assign(E.begin(), E.end() - 1);
    out->dataY(0).resize(Y.size() - 1);
  } else {
    out->setX(0, X);
    out->dataE(0).assign(E.begin(), E.end());
  }

  return out;
}
Exemplo n.º 12
0
/**  Calculate the integral asymmetry for a workspace (red & green).
*   The calculation is done by MuonAsymmetryCalc and SimpleIntegration algorithms.
*   @param ws_red :: The red workspace
*   @param ws_green :: The green workspace
*   @param Y :: Reference to a variable receiving the value of asymmetry
*   @param E :: Reference to a variable receiving the value of the error
*/
void PlotAsymmetryByLogValue::calcIntAsymmetry(API::MatrixWorkspace_sptr ws_red,
        API::MatrixWorkspace_sptr ws_green,double& Y, double& E)
{
    if ( !m_autogroup )
    {
        groupDetectors(ws_red,m_backward_list);
        groupDetectors(ws_red,m_forward_list);
        groupDetectors(ws_green,m_backward_list);
        groupDetectors(ws_green,m_forward_list);
    }

    Property* startXprop = getProperty("TimeMin");
    Property* endXprop = getProperty("TimeMax");
    bool setX = !startXprop->isDefault() && !endXprop->isDefault();
    double startX(0.0),endX(0.0);
    if (setX)
    {
        startX = getProperty("TimeMin");
        endX = getProperty("TimeMax");
    }
    if (!m_int)
    {   //  "Differential asymmetry"

        API::MatrixWorkspace_sptr tmpWS = API::WorkspaceFactory::Instance().create(
                                              ws_red,1,ws_red->readX(0).size(),ws_red->readY(0).size());

        for(size_t i=0; i<tmpWS->dataY(0).size(); i++)
        {
            double FNORM = ws_green->readY(0)[i] + ws_red->readY(0)[i];
            FNORM = FNORM != 0.0 ? 1.0 / FNORM : 1.0;
            double BNORM = ws_green->readY(1)[i] + ws_red->readY(1)[i];
            BNORM = BNORM != 0.0 ? 1.0 / BNORM : 1.0;
            double ZF = ( ws_green->readY(0)[i] - ws_red->readY(0)[i] ) * FNORM;
            double ZB = ( ws_green->readY(1)[i] - ws_red->readY(1)[i] ) * BNORM;
            tmpWS->dataY(0)[i] = ZB - ZF;
            tmpWS->dataE(0)[i] = (1.0+ZF*ZF)*FNORM+(1.0+ZB*ZB)*BNORM;
        }

        IAlgorithm_sptr integr = createChildAlgorithm("Integration");
        integr->setProperty("InputWorkspace",tmpWS);
        integr->setPropertyValue("OutputWorkspace","tmp");
        if (setX)
        {
            integr->setProperty("RangeLower",startX);
            integr->setProperty("RangeUpper",endX);
        }
        integr->execute();
        MatrixWorkspace_sptr out = integr->getProperty("OutputWorkspace");

        Y = out->readY(0)[0] / static_cast<double>(tmpWS->dataY(0).size());
        E = out->readE(0)[0] / static_cast<double>(tmpWS->dataY(0).size());
    }
    else
    {
        //  "Integral asymmetry"
        IAlgorithm_sptr integr = createChildAlgorithm("Integration");
        integr->setProperty("InputWorkspace", ws_red);
        integr->setPropertyValue("OutputWorkspace","tmp");
        if (setX)
        {
            integr->setProperty("RangeLower",startX);
            integr->setProperty("RangeUpper",endX);
        }
        integr->execute();
        API::MatrixWorkspace_sptr intWS_red = integr->getProperty("OutputWorkspace");

        integr = createChildAlgorithm("Integration");
        integr->setProperty("InputWorkspace", ws_green);
        integr->setPropertyValue("OutputWorkspace","tmp");
        if (setX)
        {
            integr->setProperty("RangeLower",startX);
            integr->setProperty("RangeUpper",endX);
        }
        integr->execute();
        API::MatrixWorkspace_sptr intWS_green = integr->getProperty("OutputWorkspace");

        double YIF = ( intWS_green->readY(0)[0] - intWS_red->readY(0)[0] ) / ( intWS_green->readY(0)[0] + intWS_red->readY(0)[0] );
        double YIB = ( intWS_green->readY(1)[0] - intWS_red->readY(1)[0] ) / ( intWS_green->readY(1)[0] + intWS_red->readY(1)[0] );

        Y = YIB - YIF;

        double VARIF = (1.0 + YIF*YIF) / ( intWS_green->readY(0)[0] + intWS_red->readY(0)[0] );
        double VARIB = (1.0 + YIB*YIB) / ( intWS_green->readY(1)[0] + intWS_red->readY(1)[0] );

        E = sqrt( VARIF + VARIB );
    }

}
Exemplo n.º 13
0
/**  Calculate the integral asymmetry for a workspace.
*   The calculation is done by MuonAsymmetryCalc and SimpleIntegration algorithms.
*   @param ws :: The workspace
*   @param Y :: Reference to a variable receiving the value of asymmetry
*   @param E :: Reference to a variable receiving the value of the error
*/
void PlotAsymmetryByLogValue::calcIntAsymmetry(API::MatrixWorkspace_sptr ws, double& Y, double& E)
{
    Property* startXprop = getProperty("TimeMin");
    Property* endXprop = getProperty("TimeMax");
    bool setX = !startXprop->isDefault() && !endXprop->isDefault();
    double startX(0.0),endX(0.0);
    if (setX)
    {
        startX = getProperty("TimeMin");
        endX = getProperty("TimeMax");
    }
    if (!m_int)
    {   //  "Differential asymmetry"
        IAlgorithm_sptr asym = createChildAlgorithm("AsymmetryCalc");
        asym->initialize();
        asym->setProperty("InputWorkspace",ws);
        asym->setPropertyValue("OutputWorkspace","tmp");
        if ( !m_autogroup )
        {
            asym->setProperty("ForwardSpectra",m_forward_list);
            asym->setProperty("BackwardSpectra",m_backward_list);
        }
        asym->execute();
        MatrixWorkspace_sptr asymWS = asym->getProperty("OutputWorkspace");

        IAlgorithm_sptr integr = createChildAlgorithm("Integration");
        integr->setProperty("InputWorkspace",asymWS);
        integr->setPropertyValue("OutputWorkspace","tmp");
        if (setX)
        {
            integr->setProperty("RangeLower",startX);
            integr->setProperty("RangeUpper",endX);
        }
        integr->execute();
        API::MatrixWorkspace_sptr out = integr->getProperty("OutputWorkspace");

        Y = out->readY(0)[0];
        E = out->readE(0)[0];
    }
    else
    {
        //  "Integral asymmetry"
        IAlgorithm_sptr integr = createChildAlgorithm("Integration");
        integr->setProperty("InputWorkspace", ws);
        integr->setPropertyValue("OutputWorkspace","tmp");
        if (setX)
        {
            integr->setProperty("RangeLower",startX);
            integr->setProperty("RangeUpper",endX);
        }
        integr->execute();
        API::MatrixWorkspace_sptr intWS = integr->getProperty("OutputWorkspace");

        IAlgorithm_sptr asym = createChildAlgorithm("AsymmetryCalc");
        asym->initialize();
        asym->setProperty("InputWorkspace",intWS);
        asym->setPropertyValue("OutputWorkspace","tmp");
        if ( !m_autogroup )
        {
            asym->setProperty("ForwardSpectra",m_forward_list);
            asym->setProperty("BackwardSpectra",m_backward_list);
        }
        asym->execute();
        MatrixWorkspace_sptr out = asym->getProperty("OutputWorkspace");

        Y = out->readY(0)[0];
        E = out->readE(0)[0];

    }


}
Exemplo n.º 14
0
/** Executes the algorithm
 *  @throw Exception::FileError If the calibration file cannot be opened and read successfully
 *  @throw Exception::InstrumentDefinitionError If unable to obtain the source-sample distance
 */
void AlignDetectors::exec()
{
    // Get the input workspace
    MatrixWorkspace_sptr inputWS = getProperty("InputWorkspace");

    // Read in the calibration data
    const std::string calFileName = getProperty("CalibrationFile");
    OffsetsWorkspace_sptr offsetsWS = getProperty("OffsetsWorkspace");

    progress(0.0,"Reading calibration file");
    if (offsetsWS && !calFileName.empty())
        throw std::invalid_argument("You must specify either CalibrationFile or OffsetsWorkspace but not both.");
    if (!offsetsWS && calFileName.empty())
        throw std::invalid_argument("You must specify either CalibrationFile or OffsetsWorkspace.");

    if (!calFileName.empty())
    {
        // Load the .cal file
        IAlgorithm_sptr alg = createChildAlgorithm("LoadCalFile");
        alg->setPropertyValue("CalFilename", calFileName);
        alg->setProperty("InputWorkspace", inputWS);
        alg->setProperty<bool>("MakeGroupingWorkspace", false);
        alg->setProperty<bool>("MakeOffsetsWorkspace", true);
        alg->setProperty<bool>("MakeMaskWorkspace", false);
        alg->setPropertyValue("WorkspaceName", "temp");
        alg->executeAsChildAlg();
        offsetsWS = alg->getProperty("OutputOffsetsWorkspace");
    }

    const int64_t numberOfSpectra = inputWS->getNumberHistograms();

    // generate map of the tof->d conversion factors
    this->tofToDmap = calcTofToD_ConversionMap(inputWS, offsetsWS);

    //Check if its an event workspace
    EventWorkspace_const_sptr eventW = boost::dynamic_pointer_cast<const EventWorkspace>(inputWS);
    if (eventW != NULL)
    {
        this->execEvent();
        return;
    }

    API::MatrixWorkspace_sptr outputWS = getProperty("OutputWorkspace");
    // If input and output workspaces are not the same, create a new workspace for the output
    if (outputWS != inputWS )
    {
        outputWS = WorkspaceFactory::Instance().create(inputWS);
        setProperty("OutputWorkspace",outputWS);
    }

    // Set the final unit that our output workspace will have
    outputWS->getAxis(0)->unit() = UnitFactory::Instance().create("dSpacing");

    // Initialise the progress reporting object
    Progress progress(this,0.0,1.0,numberOfSpectra);

    // Loop over the histograms (detector spectra)
    PARALLEL_FOR2(inputWS,outputWS)
    for (int64_t i = 0; i < int64_t(numberOfSpectra); ++i)
    {
        PARALLEL_START_INTERUPT_REGION
        try {
            // Get the input spectrum number at this workspace index
            const ISpectrum * inSpec = inputWS->getSpectrum(size_t(i));
            const double factor = calcConversionFromMap(this->tofToDmap, inSpec->getDetectorIDs());

            // Get references to the x data
            MantidVec& xOut = outputWS->dataX(i);

            // Make sure reference to input X vector is obtained after output one because in the case
            // where the input & output workspaces are the same, it might move if the vectors were shared.
            const MantidVec& xIn = inSpec->readX();

            //std::transform( xIn.begin(), xIn.end(), xOut.begin(), std::bind2nd(std::multiplies<double>(), factor) );
            // the above transform creates wrong output in parallel in debug in Visual Studio
            for(size_t k = 0; k < xOut.size(); ++k)
            {
                xOut[k] = xIn[k] * factor;
            }

            // Copy the Y&E data
            outputWS->dataY(i) = inSpec->readY();
            outputWS->dataE(i) = inSpec->readE();

        } catch (Exception::NotFoundError &) {
            // Zero the data in this case
            outputWS->dataX(i).assign(outputWS->readX(i).size(),0.0);
            outputWS->dataY(i).assign(outputWS->readY(i).size(),0.0);
            outputWS->dataE(i).assign(outputWS->readE(i).size(),0.0);
        }
        progress.report();
        PARALLEL_END_INTERUPT_REGION
    }
    PARALLEL_CHECK_INTERUPT_REGION

}