/**
 * Estimate the Gaussian distribution directly from the given observations.
 *
 * @param observations List of observations.
 */
void GaussianDistribution::Estimate(const arma::mat& observations)
{
  if (observations.n_cols > 0)
  {
    mean.zeros(observations.n_rows);
    covariance.zeros(observations.n_rows, observations.n_rows);
  }
  else // This will end up just being empty.
  {
    mean.zeros(0);
    covariance.zeros(0);
    return;
  }

  // Calculate the mean.
  for (size_t i = 0; i < observations.n_cols; i++)
    mean += observations.col(i);

  // Normalize the mean.
  mean /= observations.n_cols;

  // Now calculate the covariance.
  for (size_t i = 0; i < observations.n_cols; i++)
  {
    arma::vec obsNoMean = observations.col(i) - mean;
    covariance += obsNoMean * trans(obsNoMean);
  }

  // Finish estimating the covariance by normalizing, with the (1 / (n - 1)) so
  // that it is the unbiased estimator.
  covariance /= (observations.n_cols - 1);

  // Ensure that the covariance is positive definite.
  if (det(covariance) <= 1e-50)
  {
    Log::Debug << "GaussianDistribution::Estimate(): Covariance matrix is not "
        << "positive definite. Adding perturbation." << std::endl;

    double perturbation = 1e-30;
    while (det(covariance) <= 1e-50)
    {
      covariance.diag() += perturbation;
      perturbation *= 10; // Slow, but we don't want to add too much.
    }
  }
}
Exemplo n.º 2
0
// [[Rcpp::export]]
List ZupdateLSM(arma::mat Y,arma::mat Z,double Intercept,int dd,
            int nn,arma::mat var,
            arma::vec llikOld,arma::vec acc,arma::vec tune)
{
        arma::vec Zsm(dd);
        arma::vec Znewsm(dd);
        arma::vec ZsmPrev(dd);
        double prior;
        double priorNew;
        double llikNew;
        double logratio;
    // print(var0)
        arma::mat Znew(&Z[0],nn,dd);
        arma::mat Znewt = Znew.t();//matrix to store updated values         
        arma::mat Ztt = Z.t();
         //update for t = 1
            //update Z_t by row    
            for(int i=0; i < nn; i ++){
                Zsm = Ztt.col(i); 
                ZsmPrev = arma::zeros<arma::vec>(dd);
            //    ZsmPrev.print(); 
                //prior density at current values
                prior = logdmvnorm(Zsm,ZsmPrev,var,dd);
                // Rprintf("pO1 %f",prior1);
//                Rprintf("pO2 %f",prior2);
                //propose new vector
                for(int ww = 0 ; ww < dd ; ww++){ 
                     Znewsm(ww) = Zsm(ww) + tune(i)*rnorm(1,0.0,1.0)[0];
                 }    
            //    Znewsm.print("Znewsm: ");
                Znewt.col(i) = Znewsm;
         //       Znew.print();
                //prior density at proposed values
           //     meanNew2.print();
                priorNew =  logdmvnorm(Znewsm,ZsmPrev,var,dd);
                llikNew = likelihoodi((i+1),dd,nn,Y,Znewt.t(),Intercept);
                //compute log acceptance ratio
                double ll = llikOld(i);
                logratio = llikNew-ll+priorNew-prior;
          //      Rprintf("logratio %f",logratio);
                if(log(runif(1,0.0,1.0)[0]) < logratio){
            //            Rprintf("step %f",1.0);
                        Ztt.col(i) = Znewsm; //move to proposed values
                        acc(i) = acc(i)+1; //update acceptance
                        llikOld(i) = llikNew; //update the likelihood matrix
                    }else{
                //        Rprintf("step %f",1.0);
                        Znewt.col(i) = Zsm;
                        
                        } //otherwise stay at current state
            }
       Z = Ztt.t();
       return List::create(
           _["Z"] = Z,
           _["acc"] = acc,
           _["llikOld"] = llikOld
           );
}
Exemplo n.º 3
0
static arma::vec s_recall(arma::mat &runMatrix, Qrels &qrels, int rank){
    // Use a greedy approach to find the max subtopics at rank k

    // Initialize working variables
    int numOfSubtopics = int(*qrels.subtopics.rbegin());
    int numOfRows = min(rank, qrels.numOfRelDocs);
    arma::vec maxSubtopics = arma::zeros(rank);
    arma::rowvec seenSubtopics = arma::zeros<arma::rowvec>(numOfSubtopics);
    arma::vec tmpVector;
    set<int> idealRankList;
    set<int>::iterator it;

    // Greedy approach searches for the best document at each rank
    for(int i = 0; i < numOfRows; i++){
        int maxNewSubtopics = 0;
        int pickedDoc = -1;
        // Iterate through the set of relevant documents to find
        //   the best document
        for(int j = 0; j < qrels.matrix.n_rows; j++){

            // Ignore the document already picked
            it = idealRankList.find(j);
            if(it != idealRankList.end() )
                continue;

            // Compute the number of new subtopics the document contains
            int numOfNewSubtopics = arma::sum((qrels.matrix.row(j) + seenSubtopics) >
                                arma::zeros<arma::vec>(numOfSubtopics));

            // Keep track of the best document/ max number of subtopics
            if(numOfNewSubtopics > maxNewSubtopics){
                maxNewSubtopics = numOfNewSubtopics;
                pickedDoc = j;
            }
        }

        // Add the best document to the ideal rank list
        //  and keep track of subtopics seen
        seenSubtopics += qrels.matrix.row(pickedDoc);
        idealRankList.insert(pickedDoc);
        maxSubtopics(i) = arma::sum(seenSubtopics >
                                        arma::zeros<arma::vec>(numOfSubtopics));
    }
    if(numOfRows < rank){
        for(int i=numOfRows; i < rank; i++)
            maxSubtopics(i) = maxSubtopics(numOfRows - 1);
    }

    // Consider only the top 'rank' number of documents
    arma::vec s_recall = arma::zeros(rank);
    for(int i=0; i < rank; i++){
        arma::mat matrix = runMatrix.rows(0,i);
        double retSubtopics = arma::sum(arma::sum(matrix) >
                                        arma::zeros<arma::vec>(numOfSubtopics));
        s_recall(i) = (retSubtopics/maxSubtopics(i));
    }
    return s_recall;
}
Exemplo n.º 4
0
double
HMM::forwardProcedure(const arma::mat & data) {

  if (N_ != BModels_.size()) throw std::logic_error("The number of mixture models doesn't match the number of states");

  //initialisation
  for(unsigned int i = 0; i < N_; ++i) {
    alpha_(i, 0) = pi_[i] * BModels_[i].getProb(data.col(0));
  }

  c_(0) = arma::accu(alpha_.col(0));
  alpha_.col(0) /= arma::as_scalar(c_(0));

  //alpha_.print("alpha");
  //c_.print("scale");
  //iteration
  for(unsigned int t = 1; t < T_; ++t) {
    for (unsigned int j = 0; j < N_; ++j) {
      alpha_(j, t) = arma::as_scalar(A_.col(j).t() * alpha_.col(t-1)) * BModels_[j].getProb(data.col(t)); 
    }
    c_(t) = arma::accu(alpha_.col(t));
    alpha_.col(t) /= arma::as_scalar(c_(t)); 
  }

  pprob_ = arma::accu(arma::log(c_));
  return pprob_;
}
Exemplo n.º 5
0
// [[Rcpp::export]]
double jag_fun(const double Eps, const double Tau, const arma::vec k, const arma::mat& Y, const arma::vec snp, const arma::mat& R){
	
	const double nobs = Y.n_cols;
	const double kmax = R.n_cols;
	double Ub=0.0, meanB=0.0, meanG=0.0;
	
	arma::vec Yhat(kmax);
	arma::mat Ugam(kmax,nobs,arma::fill::zeros);
	arma::mat varGMAT(kmax,kmax,arma::fill::zeros);
	arma::rowvec Ysum = sum(Y,0);
	
	for(int i =0; i<nobs; i++){
		double G = snp[i]-mean(snp);
		double V1 = (Eps+(k[i]-1)*Tau) / ( (Eps*Eps)+k[i]*Eps*Tau );
		double V2 = - ( (Tau)/(Eps*Eps+k[i]*Eps*Tau) );
		arma::mat V(kmax,kmax); V.fill(V2);
		arma::vec V1_vec = rep(V1,kmax); V.diag() = V1_vec;
		arma::rowvec R_vec = R.row(i);
		arma::mat RR = trans(R.row(i)) * R.row(i);
		varGMAT+= G*G*(RR % V);
		arma::colvec Yhat = Y.col(i);
		Ugam.col(i) = (trans(R_vec)*G) % ( (V1*Yhat) + (V2*(Ysum[i]-Yhat)) );
		Ub+=G * (V1 + (k[i]-1)*V2)*Ysum[i];
		meanB+= G * G * (V1+(k[i]-1)*V2) * k[i];
		meanG+=k[i] * G * G * V1;
	}
	
	const double U2beta = Ub*Ub;
	const double Ugamma = 0.5 * accu( sum(Ugam,1) % sum(Ugam,1) );
	const double varB = 2 * meanB * meanB;
	meanG = 0.5 * meanG;
	const double varG = 0.5 * accu(varGMAT%varGMAT);
	const double cov = accu( sum(varGMAT,0)%sum(varGMAT,0) );
	const double agam = (varB - cov)/(varB+varG-2*cov);
	const double abeta = (varG - cov)/(varB+varG-2*cov);
	const double Upsi = abeta*U2beta + agam*Ugamma;
	const double meanPSI = (abeta*meanB)+ (agam*meanG);
	const double varPSI = (abeta*varB*abeta) + (agam*agam*varG);
	const double a1 = varPSI/(2*meanPSI);
	const double a2 = (2*meanPSI*meanPSI)/varPSI;
	const double scaled_upsi = Upsi/a1;
	double jag_pval = 1 - R::pchisq(scaled_upsi,a2,1,0);
	if(jag_pval==0) jag_pval = 2e-16;
	return jag_pval;
}
Exemplo n.º 6
0
  void
    print(std::string header = "") {
      A_.print("A");
      for (size_t i = 0; i < BModels_.size(); ++i) {
        BModels_[i].print("B");
      }
      pi_.print("pi");

    }
Exemplo n.º 7
0
arma::mat MinimizerBase::findPositionDeviations(const arma::mat& simPos, const arma::mat& expPos) const
{
    // ASSUMPTION: matrices must be sorted in increasing Z order.
    // Assume also that the matrices are structured as:
    //     (x, y, z, ...)

    arma::vec xInterp;
    arma::vec yInterp;

    arma::interp1(simPos.col(2), simPos.col(0), expPos.col(2), xInterp);
    arma::interp1(simPos.col(2), simPos.col(1), expPos.col(2), yInterp);

    arma::mat result (xInterp.n_rows, 2);
    result.col(0) = (xInterp - expPos.col(0)) / posChi2Norm;
    result.col(1) = (yInterp - expPos.col(1)) / posChi2Norm;

    return result;
}
std::vector<std::vector<float>>
signatureWindows(arma::mat &path, int logSigDepth, int windowSize) {
  std::vector<std::vector<float>> sW(path.n_rows);
  std::vector<float> repPath;
  for (int i = 0; i < path.n_rows; ++i) {
    repPath.push_back(i);
    repPath.push_back(path(i, 0));
    repPath.push_back(path(i, 1));
  }
  for (int i = 0; i < path.size(); ++i) {
    sW[i].resize(logsigdim(3, logSigDepth));
    int first = std::max(0, i - windowSize);
    int last = std::min((int)path.size() - 1, i + windowSize);
    logSignature(&repPath[3 * first], last - first + 1, 3, logSigDepth,
                 &sW[i][0]);
  }
  return sW;
}
Exemplo n.º 9
0
// objective -------------------------------------------------------------------
// @title Objective function to minimize
// @description This is the sum of squared error at observed entries,
// between the ratings matrix and its approximation by latent factors and
// covariates.
// @param X The ratings matrix. Unobserved entries must be marked NA. Users
// must be along rows, and tracks must be along columns.
// @param Z The covariates associated with each pair. This must be shaped as an
// array with users along rows, tracks along columns, and features along
// slices.
// @param P The learned user latent factors.
// @param Q The learned track latent factors.
// @param beta The learned regression coefficients.
// @param lambda  The regularization parameters for P, Q, and beta, respectively.
// @return The value of the objective function given the current parameter
// values.
double objective_fun(arma::mat X, arma::cube Z, arma::mat P, arma::mat Q, arma::vec beta,
		     Rcpp::NumericVector lambdas) {
  arma::uvec obs_ix = arma::conv_to<arma::uvec>::from(arma::find_finite(X));
  arma::mat resid = X - P * Q.t() - cube_multiply(Z, beta);
  return arma::sum(arma::pow(resid(obs_ix), 2)) +
    arma::as_scalar(lambdas[0] * arma::accu(arma::pow(P, 2))) +
    arma::as_scalar(lambdas[1] * arma::accu(arma::pow(Q, 2))) +
    arma::as_scalar(lambdas[2] * arma::accu(arma::pow(beta, 2)));
}
Exemplo n.º 10
0
//[[Rcpp::export]]
double computeSStat_cpp(arma::colvec beta, arma::mat invS, arma::colvec y, arma::mat X,
                        int j, int m) {
  mat newX = X.rows(j - 1, j + m - 2); colvec newY = y.rows(j - 1, j + m - 2);
  mat A = trans(newX) * invS * (newY - newX * beta);
  mat V =  trans(newX) * invS * newX;
  mat S = trans(A) * inv(V) * A;
  double s = S(0, 0);
  return(s);
}
Exemplo n.º 11
0
void MaximalInputs(const arma::mat& parameters, arma::mat& output)
{
  arma::mat paramTemp(parameters.submat(0, 0, (parameters.n_rows - 1) / 2 - 1,
                                        parameters.n_cols - 2).t());
  double const mean = arma::mean(arma::mean(paramTemp));
  paramTemp -= mean;

  NormalizeColByMax(paramTemp, output);
}
Exemplo n.º 12
0
/*
 * Computes the H matrix (used in computation of LR stat)
 */
arma::mat compute_H (const arma::mat& V, const std::vector<int>& groups, int num_groups){
  arma::mat H (num_groups, num_groups, arma::fill::zeros);
  for (int k = 0; k < groups.size(); k++){
    int group_k = groups[k];
    for (int l = k; l < groups.size(); l++){
      int group_l = groups[l];
      double dot = arma::dot(V.col(k), V.col(l));
      double dot_sq = dot*dot;

      H.col(group_l)[group_k] += dot_sq;
      if (group_k != group_l){
	H.col(group_k)[group_l] += dot_sq;
      }
    }
  }

  return H;
}
Exemplo n.º 13
0
void RNN<
LayerTypes, OutputLayerType, InitializationRuleType, PerformanceFunction
>::Predict(arma::mat& predictors, arma::mat& responses)
{
  arma::mat responsesTemp;
  SinglePredict(arma::mat(predictors.colptr(0), predictors.n_rows,
      1, false, true), responsesTemp);

  responses = arma::mat(responsesTemp.n_elem, predictors.n_cols);
  responses.col(0) = responsesTemp.col(0);

  for (size_t i = 1; i < predictors.n_cols; i++)
  {
    SinglePredict(arma::mat(predictors.colptr(i), predictors.n_rows,
      1, false, true), responsesTemp);
    responses.col(i) = responsesTemp.col(0);
  }
}
Exemplo n.º 14
0
	MocapStream::Frame MocapStream::createFrame(arma::mat m, const std::set<int>& allowedIDs){
		Frame f;
		// std::cout << "Loading " << m.n_cols << " rigid bodies" << std::endl;
		// std::cout << m << std::endl;
		for(int n = 0; n < m.n_cols; n++){
			arma::vec data = m.col(n);

			RigidBody r;
			
			arma::vec3 pos = data.rows(1,3);
			Rotation3D rot;
			int start = 4;
			for(int i = 0; i < 3; i++){
				rot.row(i) = data.rows(start + 3 * i, start + 3 * i + 2).t();
			}
			//Change back to mocap coords from nubots coords (sigh...)
			if(correctForAutocalibrationCoordinateSystem){
				r.pose.translation() = arma::vec3{-pos[1],pos[2],-pos[0]};
			} else {
				r.pose.translation() = pos;
			}
			
			if(correctForAutocalibrationCoordinateSystem){
				UnitQuaternion q(rot);
				//Change back to mocap coords from nubots coords (sigh...)
				UnitQuaternion q_(arma::vec4{
					 q.kX(),
					-q.kZ(),
					 q.kW(),
					-q.kY(),
					});
				//Turn back into rotation
				r.pose.rotation() = Rotation3D(q_);
			}else{
				r.pose.rotation() = rot;
			}

			if(LHInput){
				transformLHtoRH(r.pose);
			}

			// std::cout << "data: " <<  data << std::endl;
			// std::cout << "id:" << int(data[0]) << std::endl;
			// std::cout << "position:" << r.pose.translation() << std::endl;
			// std::cout << "rotation:" << r.pose.rotation() << std::endl;
			if(!r.pose.is_finite()) {
				std::cout << __FILE__ << " - " << __LINE__ << "Warning: nan data not loaded for RB " << int(data[0]) << std::endl;
				continue;
			}
			
			if(allowedIDs.empty() //empty allowed IDs means allow any
			|| allowedIDs.count(int(data[0])) > 0){
				f.rigidBodies[int(data[0])] = r;
			}
		}
		return f;
	}
Exemplo n.º 15
0
arma::vec Vespucci::Math::Quantification::CorrelationMat(const arma::mat &X, arma::vec control)
{
    arma::vec results;
    results.set_size(X.n_cols);
    for(arma::uword i = 0; i < X.n_cols; ++i){
        results(i) = arma::as_scalar(cor(control, X.col(i)));
    }
    return results;
}
Exemplo n.º 16
0
///
/// \brief Vespucci::Math::DimensionReduction::EstimateAdditiveNoise
/// \param noise
/// \param noise_correlation
/// \param sample
/// The slow additive noise mat::mator from the HySime paper. I'm looking into
/// faster ones.
void Vespucci::Math::DimensionReduction::EstimateAdditiveNoise(arma::mat &noise, arma::mat &noise_correlation, const arma::mat &sample)
{
    double small = 1e-6;
    noise = arma::zeros(sample.n_rows, sample.n_cols);
    arma::mat RR = sample * sample.t();
    arma::mat RRi = arma::inv(RR + small*arma::eye(sample.n_rows, sample.n_rows));
    arma::mat XX, RRa, beta;
    for (arma::uword i = 0; i < sample.n_rows; ++i){
        XX = RRi - (RRi.col(i) * RRi.row(i))/RRi(i, i);
        RRa = RR.col(i);
        RRa(i) = 0;
        beta = XX * RRa;
        beta(i) = 0;
        noise.row(i) = sample.row(i) - beta.t() * sample;
    }
    arma::mat nn = noise * noise.t() / sample.n_rows;
    noise_correlation = arma::diagmat(nn.diag());
}
bool subspaceIdMoor::simple_dlyap(arma::mat const &A, arma::mat const &Q, arma::mat &X){
	mat kronProd = kron(A, A);
	mat I = eye(kronProd.n_rows, kronProd.n_cols);
	bool slvflg = solve(X, I - kronProd, vectorise(Q));

	/*Reshape vec to matrix:*/
	X.reshape(A.n_rows, A.n_rows);
	return slvflg;
}
void CosineTreeBuilder::LSSampling(arma::mat A, arma::vec& probability)
{
  Log::Info<<"LSSampling"<<std::endl;
  //Saving the frobenious norm of the matrix
  double normA = arma::norm(A,"fro");
  //Calculating probability of each point to be sampled
  for (size_t i=0;i<A.n_rows;i++)
    probability(i) = arma::norm(A.row(i),"fro")/normA;
}
Exemplo n.º 19
0
    /**
     * The update function that actually updates the H matrix. The function takes
     * in all the matrices and only changes the value of the H matrix.
     *
     * @param V Input matrix to be factorized.
     * @param W Basis matrix.
     * @param H Encoding matrix to updated.
     */
    inline static void Update(const arma::mat& V,
                              const arma::mat& W,
                              arma::mat& H)
    {
        // Simple implementation left in the header file.
        arma::mat t1;
        arma::colvec t2;

        t1 = W * H;
        for (size_t i = 0; i < H.n_rows; i++)
        {
            for (size_t j = 0; j < H.n_cols; j++)
            {
                t2 = W.col(i) % V.col(j) / t1.col(j);
                H(i,j) = H(i,j) * sum(t2) / sum(W.col(i));
            }
        }
    }
  /**
   * The update rule for the encoding matrix H.
   * The function takes in all the matrices and only changes the
   * value of the H matrix.
   *
   * @param V Input matrix to be factorized.
   * @param W Basis matrix.
   * @param H Encoding matrix to be updated.
   */
  inline void HUpdate(const arma::sp_mat& V,
                      const arma::mat& W,
                      arma::mat& H)
  {
    (void)V;

    arma::mat deltaH(H.n_rows, 1);
    deltaH.zeros();

    size_t currentUserIndex = it->col();
    size_t currentItemIndex = it->row();

    deltaH += (**it - arma::dot(W.row(currentItemIndex), H.col(currentUserIndex)))
                                        * arma::trans(W.row(currentItemIndex));
    if(kh != 0) deltaH -= kh * H.col(currentUserIndex);

    H.col(currentUserIndex) += u * deltaH;
  }
Exemplo n.º 21
0
    /**
     * The update function that actually updates the W matrix. The function takes
     * in all the matrices and only changes the value of the W matrix.
     *
     * @param V Input matrix to be factorized.
     * @param W Basis matrix to be updated.
     * @param H Encoding matrix.
     */
    inline static void Update(const arma::mat& V,
                              arma::mat& W,
                              const arma::mat& H)
    {
        // Simple implementation left in the header file.
        arma::mat t1;
        arma::rowvec t2;

        t1 = W * H;
        for (size_t i = 0; i < W.n_rows; ++i)
        {
            for (size_t j = 0; j < W.n_cols; ++j)
            {
                t2 = H.row(j) % V.row(i) / t1.row(i);
                W(i, j) = W(i, j) * sum(t2) / sum(H.row(j));
            }
        }
    }
Exemplo n.º 22
0
// The step size should be chosen carefully to guarantee convergence given a 
// reasonable number of computations.
int GradientDescent::RunGradientDescent(const DataNormalized &data) {
  assert(num_iters_ >= 1);
  const int kNumTrainEx = data.num_train_ex();
  assert(kNumTrainEx >= 1);

  // For this exercise, there should be at least two training features.
  const int kNumFeatures = data.num_features();
  assert(kNumFeatures >= 2);

  const arma::mat kTrainingFeaturesNormalized = \
    data.training_features_normalized();
  const arma::vec kTrainingLabels = data.training_labels();

  double *j_theta_array = new double[num_iters_];

  // Recall that we are trying to minimize the following cost function:
  // ((training features) * (current weights) - (training labels))^2
  // Each iteration of this algorithm updates the weights as a scaled 
  // version of the gradient of this cost function.
  // This gradient is computed with respect to the weights.
  // Thus, each iteration of gradient descent performs the following:
  // (update) = (step size) * ((training features) * (current weights) - (training labels)) * (training features)
  // (new weights) = (current weights) - (update)
  for(int theta_index=0; theta_index<num_iters_; theta_index++)
  {
    const arma::vec kDiffVec = \
      kTrainingFeaturesNormalized*theta_-kTrainingLabels;
    arma::mat kDiffVecTimesTrainFeat = \
      kDiffVec % kTrainingFeaturesNormalized.col(0);
    for(int feature_index=1; feature_index<=kNumFeatures; feature_index++)
    {
      kDiffVecTimesTrainFeat = join_rows(kDiffVecTimesTrainFeat,\
        kDiffVec % kTrainingFeaturesNormalized.col(feature_index));
    }
    const arma::vec kThetaNew = theta_-alpha_*(1/(float)kNumTrainEx)*\
      (sum(kDiffVecTimesTrainFeat)).t();
    j_theta_array[theta_index] = ComputeCost(data);
    set_theta(kThetaNew);
  }

  delete [] j_theta_array;

  return 0;
}
Exemplo n.º 23
0
double find_P(const arma::mat& X, const arma::mat& Y, double sigma2,
              float outliers, arma::vec& P1, arma::vec& Pt1, arma::mat& PX,
              bool use_fgt, const float epsilon) {
    P1.zeros();
    Pt1.zeros();
    PX.zeros();

    const arma::uword N = X.n_rows;
    const arma::uword M = Y.n_rows;
    const arma::uword D = Y.n_cols;

    const double h = std::sqrt(2 * sigma2);
    const double ndi = (outliers * M * std::pow(2 * M_PI * sigma2, 0.5 * D)) /
                       ((1 - outliers) * N);
    arma::vec q = arma::ones<arma::vec>(M);

    fgt::GaussTransformUnqPtr transformY;
    if (use_fgt) {
        transformY = fgt::choose_gauss_transform(Y, h, epsilon);
    } else {
        transformY.reset(new fgt::Direct(Y, h));
    }
    arma::vec denomP = transformY->compute(X, q);

    denomP = denomP + ndi;
    Pt1 = 1 - ndi / denomP;
    q = 1 / denomP;

    fgt::GaussTransformUnqPtr transformX;
    if (use_fgt) {
        transformX = fgt::choose_gauss_transform(X, h, epsilon);
    } else {
        transformX.reset(new fgt::Direct(X, h));
    }
    P1 = transformX->compute(Y, q);

    for (arma::uword i = 0; i < D; ++i) {
        q = X.col(i) / denomP;
        arma::vec c = PX.unsafe_col(i);
        PX.col(i) = transformX->compute(Y, q);
    }

    return -arma::sum(arma::log(denomP)) + D * N * std::log(sigma2) / 2;
}
void MaxVarianceNewCluster::Precalculate(const MatType& data,
                                         const arma::mat& oldCentroids,
                                         arma::Col<size_t>& clusterCounts,
                                         MetricType& metric)
{
  // We have to calculate the variances of each cluster and the assignments of
  // each point.  This is most easily done by iterating through the entire
  // dataset.
  variances.zeros(oldCentroids.n_cols);
  assignments.set_size(data.n_cols);

  // Add the variance of each point's distance away from the cluster.  I think
  // this is the sensible thing to do.
  for (size_t i = 0; i < data.n_cols; ++i)
  {
    // Find the closest centroid to this point.
    double minDistance = std::numeric_limits<double>::infinity();
    size_t closestCluster = oldCentroids.n_cols; // Invalid value.

    for (size_t j = 0; j < oldCentroids.n_cols; j++)
    {
      const double distance = metric.Evaluate(data.col(i), oldCentroids.col(j));

      if (distance < minDistance)
      {
        minDistance = distance;
        closestCluster = j;
      }
    }

    assignments[i] = closestCluster;
    variances[closestCluster] += std::pow(metric.Evaluate(data.col(i),
        oldCentroids.col(closestCluster)), 2.0);
  }

  // Divide by the number of points in the cluster to produce the variance,
  // unless the cluster is empty or contains only one point, in which case we
  // set the variance to 0.
  for (size_t i = 0; i < clusterCounts.n_elem; ++i)
    if (clusterCounts[i] <= 1)
      variances[i] = 0;
    else
      variances[i] /= clusterCounts[i];
}
Exemplo n.º 25
0
// // [[Rcpp::export()]]
void getEystar_hierIRT(arma::mat &Eystar,
					const arma::mat &y,
					const arma::mat &z,
                    const arma::mat &g,
                    const arma::mat &i,
                    const arma::mat &j,
                    const arma::mat &Ea,
                    const arma::mat &Eb,
                    const arma::mat &Egamma,
                    const arma::mat &Eta,
                    const int ND,
                    const int NG,
                    const int NI,
                    const int NJ,
                    const int NL
                    ) {

	double ml;
	signed int l;

    // Main Calculation
#pragma omp parallel for
  	for(l=0; l < NL; l++){

  		ml = Ea(j(l,0),0) + Eb(j(l,0),0)*accu(Egamma.row(g(i(l,0),0)) % z.row(i(l,0))) + Eta(i(l,0),0)*Eb(j(l,0),0);

//		if(y(l,0)==1)     Eystar(l,0) = RcppTN::etn1(ml, 1.0, 0.0, R_PosInf);
//		if(y(l,0)==-1)    Eystar(l,0) = RcppTN::etn1(ml, 1.0, R_NegInf, 0.0);
//		if(y(l,0)==0)     Eystar(l,0) = RcppTN::etn1(ml, 1.0, R_NegInf, R_PosInf);

		if(y(l,0)==1)     Eystar(l,0) = etn1(ml, 1.0, 0.0, R_PosInf);
		if(y(l,0)==-1)    Eystar(l,0) = etn1(ml, 1.0, R_NegInf, 0.0);
		if(y(l,0)==0)     Eystar(l,0) = etn1(ml, 1.0, R_NegInf, R_PosInf);

		// Note: Taking etn() of extreme truncated normals is a problem			    
		// etn(-9.49378,1,0,1000) gives Inf for Eystar, which crashes everything
		// In these cases, we should ignore the vote
		if( !(arma::is_finite(Eystar(l,0))) ) Eystar(l,0) = ml;

			    
  	}  // end for(l=0; l < NL; l++)

    return; 
} 
Exemplo n.º 26
0
// [[Rcpp::export]]
double energyscoreC(arma::colvec y, arma::mat dat){
  
  double s1 = 0;
  double m = dat.n_cols;
  for (int i = 1; i < (m+1); i++) {
    s1 += euclnormC(dat.col(i-1) - y);
  }
  
  double s2 = 0;
  for (int i = 1; i < (m+1); i++) {
    for (int j = i; j < (m+1); j++) {
      s2 += 2*euclnormC(dat.col(i-1) - dat.col(j-1));
    }
  }
  
  double out = (s1 / m) - s2 / (2 * pow(m, 2));
  return (out);
  
}
Exemplo n.º 27
0
void Gaussian::fit(const arma::mat& data)
{
    if(data.size() > 0){
        D = data.n_rows;
        Mean = arma::mean(data);
        Covariance  = arma::cov(data);
        A    = arma::chol(Covariance);
        det  = arma::det(Covariance);
    }
}
  inline void HUpdate(const MatType& V,
                      const arma::mat& W,
                      arma::mat& H)
  {
    arma::mat deltaH(H.n_rows, 1);
    deltaH.zeros();

    for(size_t i = 0;i < n;i++)
    {
      double val;
      if((val = V(i, currentUserIndex)) != 0)
        deltaH += (val - arma::dot(W.row(i), H.col(currentUserIndex))) *
                                                    arma::trans(W.row(i));
    }
    if(kh != 0) deltaH -= kh * H.col(currentUserIndex);

    H.col(currentUserIndex++) += u * deltaH;
    currentUserIndex = currentUserIndex % m;
  }
inline void SVDIncompleteIncrementalLearning::
                                    WUpdate<arma::sp_mat>(const arma::sp_mat& V,
                                                          arma::mat& W,
                                                          const arma::mat& H)
{
  arma::mat deltaW(n, W.n_cols);
  deltaW.zeros();
  for(arma::sp_mat::const_iterator it = V.begin_col(currentUserIndex);
                                      it != V.end_col(currentUserIndex);it++)
  {
    double val = *it;
    size_t i = it.row();
    deltaW.row(i) += (val - arma::dot(W.row(i), H.col(currentUserIndex))) *
                                         arma::trans(H.col(currentUserIndex));
    if(kw != 0) deltaW.row(i) -= kw * W.row(i);
  }

  W += u*deltaW;
}
Exemplo n.º 30
0
/**
 * Apply Dimensionality Reduction using Principal Component Analysis
 * to the provided data set.
 *
 * @param data - M x N Data matrix
 * @param newDimension - matrix consisting of N column vectors,
 * where each vector is the projection of the corresponding data vector
 * from data matrix onto the basis vectors contained in the columns of
 * coeff/eigen vector matrix with only newDimension number of columns chosen.
 */
void PCA::Apply(arma::mat& data, const size_t newDimension) const
{
  arma::mat coeffs;
  arma::vec eigVal;

  Apply(data, data, eigVal, coeffs);

  if (newDimension < coeffs.n_rows && newDimension > 0)
    data.shed_rows(newDimension, data.n_rows - 1);
}