inline void
 cvToCloud(const cv::Mat_<cv::Point3f>& points3d, pcl::PointCloud<PointT>& cloud, const cv::Mat& mask = cv::Mat())
 {
   cloud.clear();
   cloud.width = points3d.size().width;
   cloud.height = points3d.size().height;
   cv::Mat_<cv::Point3f>::const_iterator point_it = points3d.begin(), point_end = points3d.end();
   const bool has_mask = !mask.empty();
   cv::Mat_<uchar>::const_iterator mask_it;
   if (has_mask)
     mask_it = mask.begin<uchar>();
   for (; point_it != point_end; ++point_it, (has_mask ? ++mask_it : mask_it))
   {
     if (has_mask && !*mask_it)
       continue;
     cv::Point3f p = *point_it;
     if (p.x != p.x && p.y != p.y && p.z != p.z) //throw out NANs
       continue;
     PointT cp;
     cp.x = p.x;
     cp.y = p.y;
     cp.z = p.z;
     cloud.push_back(cp);
   }
 }
Exemplo n.º 2
0
/** get 3D points out of the image */
float matToVec(const cv::Mat_<cv::Vec3f> &src_ref, const cv::Mat_<cv::Vec3f> &src_mod, std::vector<cv::Vec3f>& pts_ref, std::vector<cv::Vec3f>& pts_mod)
{
  pts_ref.clear();
  pts_mod.clear();
  int px_missing = 0;

  cv::MatConstIterator_<cv::Vec3f> it_ref = src_ref.begin();
  cv::MatConstIterator_<cv::Vec3f> it_mod = src_mod.begin();
  for (; it_ref != src_ref.end(); ++it_ref, ++it_mod)
  {
    if (!cv::checkRange(*it_ref))
      continue;

    pts_ref.push_back(*it_ref);
    if (cv::checkRange(*it_mod))
    {
      pts_mod.push_back(*it_mod);
    }
    else
    {
      pts_mod.push_back(cv::Vec3f(0.0f, 0.0f, 0.0f));
      ++px_missing;
    }
  }

  float ratio = 0.0f;
  if ((src_ref.cols > 0) && (src_ref.rows > 0))
    ratio = float(px_missing) / float(src_ref.cols * src_ref.rows);
  return ratio;
}
  /**
   * \breif convert an opencv collection of points to a pcl::PoinCloud, your opencv mat should have NAN's for invalid points.
   * @param points3d opencv matrix of nx1 3 channel points
   * @param cloud output cloud
   * @param rgb the rgb, required, will color points
   * @param mask the mask, required, must be same size as rgb
   */
  inline void
  cvToCloudXYZRGB(const cv::Mat_<cv::Point3f>& points3d, pcl::PointCloud<pcl::PointXYZRGB>& cloud, const cv::Mat& rgb,
                  const cv::Mat& mask, bool brg = true)
  {
    cloud.clear();
    cv::Mat_<cv::Point3f>::const_iterator point_it = points3d.begin(), point_end = points3d.end();
    cv::Mat_<cv::Vec3b>::const_iterator rgb_it = rgb.begin<cv::Vec3b>();
    cv::Mat_<uchar>::const_iterator mask_it;
    if(!mask.empty())
      mask_it = mask.begin<uchar>();
    for (; point_it != point_end; ++point_it, ++rgb_it)
    {
      if(!mask.empty())
      {
        ++mask_it;
        if (!*mask_it)
          continue;
      }

      cv::Point3f p = *point_it;
      if (p.x != p.x && p.y != p.y && p.z != p.z) //throw out NANs
        continue;
      pcl::PointXYZRGB cp;
      cp.x = p.x;
      cp.y = p.y;
      cp.z = p.z;
      cp.r = (*rgb_it)[2]; //expecting in BGR format.
      cp.g = (*rgb_it)[1];
      cp.b = (*rgb_it)[0];
      cloud.push_back(cp);
    }
  }
int crslic_segmentation::operator()(const cv::Mat& image, cv::Mat_<int>& labels)
{
	float directCliqueCost = 0.3;
	unsigned int const iterations = 3;
	double const diagonalCliqueCost = directCliqueCost / sqrt(2);

	bool isColorImage = (image.channels() == 3);
	std::vector<FeatureType> features;
	if (isColorImage)
		features.push_back(Color);
	else
		features.push_back(Grayvalue);

	features.push_back(Compactness);

	ContourRelaxation<int> crslic_obj(features);
	cv::Mat labels_temp = createBlockInitialization<int>(image.size(), settings.superpixel_size, settings.superpixel_size);

	crslic_obj.setCompactnessData(settings.superpixel_compactness);

	if (isColorImage)
	{
		cv::Mat imageYCrCb;
		cv::cvtColor(image, imageYCrCb, CV_BGR2YCrCb);
		std::vector<cv::Mat> imageYCrCbChannels;
		cv::split(imageYCrCb, imageYCrCbChannels);

		crslic_obj.setColorData(imageYCrCbChannels[0], imageYCrCbChannels[1], imageYCrCbChannels[2]);
	}
	else
		crslic_obj.setGrayvalueData(image.clone());

	crslic_obj.relax(labels_temp, directCliqueCost, diagonalCliqueCost, iterations, labels);
	return 1+*(std::max_element(labels.begin(), labels.end()));
}
Exemplo n.º 5
0
// matrix version
void multi_img::setPixel(unsigned int row, unsigned int col,
						 const cv::Mat_<Value>& values)
{
	assert((int)row < height && (int)col < width);
	assert(values.rows*values.cols == (int)size());
	Pixel &p = pixels[row*width + col];
	p.assign(values.begin(), values.end());

	for (size_t i = 0; i < size(); ++i)
		bands[i](row, col) = p[i];

	dirty(row, col) = 0;
}
Exemplo n.º 6
0
//===========================================================================
// Clamping the parameter values to be within 3 standard deviations
void PDM::Clamp(cv::Mat_<float>& local_params, cv::Vec6d& params_global, const FaceModelParameters& parameters)
{
	double n_sigmas = 3;
	cv::MatConstIterator_<double> e_it  = this->eigen_values.begin();
	cv::MatIterator_<float> p_it =  local_params.begin();

	double v;

	// go over all parameters
	for(; p_it != local_params.end(); ++p_it, ++e_it)
	{
		// Work out the maximum value
		v = n_sigmas*sqrt(*e_it);

		// if the values is too extreme clamp it
		if(fabs(*p_it) > v)
		{
			// Dealing with positive and negative cases
			if(*p_it > 0.0)
			{
				*p_it=v;
			}
			else
			{
				*p_it=-v;
			}
		}
	}
	
	// do not let the pose get out of hand
	if(parameters.limit_pose)
	{
		if(params_global[1] > M_PI / 2)
			params_global[1] = M_PI/2;
		if(params_global[1] < -M_PI / 2)
			params_global[1] = -M_PI/2;
		if(params_global[2] > M_PI / 2)
			params_global[2] = M_PI/2;
		if(params_global[2] < -M_PI / 2)
			params_global[2] = -M_PI/2;
		if(params_global[3] > M_PI / 2)
			params_global[3] = M_PI/2;
		if(params_global[3] < -M_PI / 2)
			params_global[3] = -M_PI/2;
	}
	

}
Exemplo n.º 7
0
void OvershootClusterer::drawTo(cv::Mat_<cv::Vec3b> &out) const
{
    out.setTo(0);
    out.setTo(Scalar(255,255,255), img > 0);

    Mat_<Vec3b>::iterator itOut = out.begin(), itOutEnd = out.end();
    Mat_<unsigned char>::const_iterator it = smallestOvershootVisit.begin(),
                                        itEnd = smallestOvershootVisit.end();
    for (; itOut != itOutEnd && it != itEnd; ++it, ++itOut)
    {
        if ((*it) < CLUSTERER_OVERSHOOTS)
        {
            unsigned char nonRed = (*it)*(255/CLUSTERER_OVERSHOOTS);
            *itOut = Vec3b(nonRed,nonRed,255);
        }
    }
}
Exemplo n.º 8
0
std::map<std::string, cv::Matx44d> estimate(const std::map<int, Quad> &tags) {

    std::map<std::string, cv::Matx44d> objects;

    std::map<
        const std::string,     //name of the object
        std::pair<
            std::vector<cv::Point3f>,      //points in object
            std::vector<cv::Point2f> > >   //points in frame
    objectToPointMapping;


    auto configurationIt = mId2Configuration.begin();
    auto configurationEnd = mId2Configuration.end();
    for (const auto &tag : tags) {
        int tagId = tag.first;
        const cv::Mat_<cv::Point2f> corners(tag.second);

        while (configurationIt != configurationEnd
               && configurationIt->first < tagId)
            ++configurationIt;

        if (configurationIt != configurationEnd) {
            if (configurationIt->first == tagId) {
                const auto &configuration = configurationIt->second;
                if (configuration.second.mKeep) {
                    computeTransformation(cv::format("tag_%d", tagId),
                                          configuration.second.mLocalcorners,
                                          corners,
                                          objects);
                }
                auto & pointMapping = objectToPointMapping[configuration.first];
                pointMapping.first.insert(
                    pointMapping.first.end(),
                    configuration.second.mCorners.begin(),
                    configuration.second.mCorners.end());
                pointMapping.second.insert(
                    pointMapping.second.end(),
                    corners.begin(),
                    corners.end());
            } else if (!mOmitOtherTags) {
                computeTransformation(cv::format("tag_%d", tagId),
                                      mDefaultTagCorners,
                                      corners,
                                      objects);
            }

        } else if (!mOmitOtherTags) {
            computeTransformation(cv::format("tag_%d", tagId),
                                  mDefaultTagCorners,
                                  corners,
                                  objects);
        }
    }

    for (auto& objectToPoints : objectToPointMapping) {
        computeTransformation(objectToPoints.first,
                              objectToPoints.second.first,
                              cv::Mat_<cv::Point2f>(objectToPoints.second.second),
                              objects);
    }

    return mFilter(objects);
}
Exemplo n.º 9
0
//===========================================================================
void CCNF_neuron::Response(cv::Mat_<float> &im, cv::Mat_<double> &im_dft, cv::Mat &integral_img, cv::Mat &integral_img_sq, cv::Mat_<float> &resp)
{

	int h = im.rows - weights.rows + 1;
	int w = im.cols - weights.cols + 1;
	
	// the patch area on which we will calculate reponses
	cv::Mat_<float> I;

	if(neuron_type == 3)
	{
		// Perform normalisation across whole patch (ignoring the invalid values indicated by <= 0

		cv::Scalar mean;
		cv::Scalar std;
		
		// ignore missing values
		cv::Mat_<uchar> mask = im > 0;
		cv::meanStdDev(im, mean, std, mask);

		// if all values the same don't divide by 0
		if(std[0] != 0)
		{
			I = (im - mean[0]) / std[0];
		}
		else
		{
			I = (im - mean[0]);
		}

		I.setTo(0, mask == 0);
	}
	else
	{
		if(neuron_type == 0)
		{
			I = im;
		}
		else
		{
			printf("ERROR(%s,%d): Unsupported patch type %d!\n", __FILE__,__LINE__,neuron_type);
			abort();
		}
	}
  
	if(resp.empty())
	{		
		resp.create(h, w);
	}

	// The response from neuron before activation
	if(neuron_type == 3)
	{
		// In case of depth we use per area, rather than per patch normalisation
		matchTemplate_m(I, im_dft, integral_img, integral_img_sq, weights, weights_dfts, resp, CV_TM_CCOEFF); // the linear multiplication, efficient calc of response
	}
	else
	{
		matchTemplate_m(I, im_dft, integral_img, integral_img_sq, weights, weights_dfts, resp, CV_TM_CCOEFF_NORMED); // the linear multiplication, efficient calc of response
	}

	cv::MatIterator_<float> p = resp.begin();

	cv::MatIterator_<float> q1 = resp.begin(); // respone for each pixel
	cv::MatIterator_<float> q2 = resp.end();

	// the logistic function (sigmoid) applied to the response
	while(q1 != q2)
	{
		*p++ = (2 * alpha) * 1.0 /(1.0 + exp( -(*q1++ * norm_weights + bias )));
	}

}
Exemplo n.º 10
0
TagPoseMap estimate(TagCornerMap const& tags, cv::Vec<RealT, 4> const& camDeltaR, cv::Vec<RealT, 3> const& camDeltaX)
{
    TagPoseMap objects;

    //Pass the latest camera movement difference for prediction (if 3D filtering is enabled)
    mEstimatePose3D.setCamDelta(camDeltaR, camDeltaX);

    //Predict pose for all known tags with camera movement (if 3D filtering is enabled)
    mEstimatePose3D(objects);

    //Correct pose prediction with new observations
    std::map<
        const std::string,     //name of the object
        std::pair<
            std::vector<cv::Point3_<RealT> >,      //points in object
            std::vector<cv::Point2f> > >   //points in frame
    objectToPointMapping;

    auto configurationIt = mId2Configuration.begin();
    auto configurationEnd = mId2Configuration.end();
    for (const auto &tag : tags) {
        int tagId = tag.first;
        const cv::Mat_<cv::Point2f> corners(tag.second);

        while (configurationIt != configurationEnd
               && configurationIt->first < tagId)
            ++configurationIt;

        if (configurationIt != configurationEnd) {
            if (configurationIt->first == tagId) {
                const auto &configuration = configurationIt->second;
                if (configuration.second.mKeep) {
                    mEstimatePose3D(cv::format("tag_%d", tagId),
                                    configuration.second.mLocalcorners,
                                    corners,
                                    objects);
                }
                auto & pointMapping = objectToPointMapping[configuration.first];
                pointMapping.first.insert(
                    pointMapping.first.end(),
                    configuration.second.mCorners.begin(),
                    configuration.second.mCorners.end());
                pointMapping.second.insert(
                    pointMapping.second.end(),
                    corners.begin(),
                    corners.end());
            } else if (!mOmitOtherTags) {
                mEstimatePose3D(cv::format("tag_%d", tagId),
                                mDefaultTagCorners,
                                corners,
                                objects);
            }

        } else if (!mOmitOtherTags) {
            mEstimatePose3D(cv::format("tag_%d", tagId),
                            mDefaultTagCorners,
                            corners,
                            objects);
        }
    }

    for (auto& objectToPoints : objectToPointMapping) {
        mEstimatePose3D(objectToPoints.first,
                        objectToPoints.second.first,
                        cv::Mat_<cv::Point2f>(objectToPoints.second.second),
                        objects);
    }

    return objects;
}