inline void cvToCloud(const cv::Mat_<cv::Point3f>& points3d, pcl::PointCloud<PointT>& cloud, const cv::Mat& mask = cv::Mat()) { cloud.clear(); cloud.width = points3d.size().width; cloud.height = points3d.size().height; cv::Mat_<cv::Point3f>::const_iterator point_it = points3d.begin(), point_end = points3d.end(); const bool has_mask = !mask.empty(); cv::Mat_<uchar>::const_iterator mask_it; if (has_mask) mask_it = mask.begin<uchar>(); for (; point_it != point_end; ++point_it, (has_mask ? ++mask_it : mask_it)) { if (has_mask && !*mask_it) continue; cv::Point3f p = *point_it; if (p.x != p.x && p.y != p.y && p.z != p.z) //throw out NANs continue; PointT cp; cp.x = p.x; cp.y = p.y; cp.z = p.z; cloud.push_back(cp); } }
/** get 3D points out of the image */ float matToVec(const cv::Mat_<cv::Vec3f> &src_ref, const cv::Mat_<cv::Vec3f> &src_mod, std::vector<cv::Vec3f>& pts_ref, std::vector<cv::Vec3f>& pts_mod) { pts_ref.clear(); pts_mod.clear(); int px_missing = 0; cv::MatConstIterator_<cv::Vec3f> it_ref = src_ref.begin(); cv::MatConstIterator_<cv::Vec3f> it_mod = src_mod.begin(); for (; it_ref != src_ref.end(); ++it_ref, ++it_mod) { if (!cv::checkRange(*it_ref)) continue; pts_ref.push_back(*it_ref); if (cv::checkRange(*it_mod)) { pts_mod.push_back(*it_mod); } else { pts_mod.push_back(cv::Vec3f(0.0f, 0.0f, 0.0f)); ++px_missing; } } float ratio = 0.0f; if ((src_ref.cols > 0) && (src_ref.rows > 0)) ratio = float(px_missing) / float(src_ref.cols * src_ref.rows); return ratio; }
/** * \breif convert an opencv collection of points to a pcl::PoinCloud, your opencv mat should have NAN's for invalid points. * @param points3d opencv matrix of nx1 3 channel points * @param cloud output cloud * @param rgb the rgb, required, will color points * @param mask the mask, required, must be same size as rgb */ inline void cvToCloudXYZRGB(const cv::Mat_<cv::Point3f>& points3d, pcl::PointCloud<pcl::PointXYZRGB>& cloud, const cv::Mat& rgb, const cv::Mat& mask, bool brg = true) { cloud.clear(); cv::Mat_<cv::Point3f>::const_iterator point_it = points3d.begin(), point_end = points3d.end(); cv::Mat_<cv::Vec3b>::const_iterator rgb_it = rgb.begin<cv::Vec3b>(); cv::Mat_<uchar>::const_iterator mask_it; if(!mask.empty()) mask_it = mask.begin<uchar>(); for (; point_it != point_end; ++point_it, ++rgb_it) { if(!mask.empty()) { ++mask_it; if (!*mask_it) continue; } cv::Point3f p = *point_it; if (p.x != p.x && p.y != p.y && p.z != p.z) //throw out NANs continue; pcl::PointXYZRGB cp; cp.x = p.x; cp.y = p.y; cp.z = p.z; cp.r = (*rgb_it)[2]; //expecting in BGR format. cp.g = (*rgb_it)[1]; cp.b = (*rgb_it)[0]; cloud.push_back(cp); } }
int crslic_segmentation::operator()(const cv::Mat& image, cv::Mat_<int>& labels) { float directCliqueCost = 0.3; unsigned int const iterations = 3; double const diagonalCliqueCost = directCliqueCost / sqrt(2); bool isColorImage = (image.channels() == 3); std::vector<FeatureType> features; if (isColorImage) features.push_back(Color); else features.push_back(Grayvalue); features.push_back(Compactness); ContourRelaxation<int> crslic_obj(features); cv::Mat labels_temp = createBlockInitialization<int>(image.size(), settings.superpixel_size, settings.superpixel_size); crslic_obj.setCompactnessData(settings.superpixel_compactness); if (isColorImage) { cv::Mat imageYCrCb; cv::cvtColor(image, imageYCrCb, CV_BGR2YCrCb); std::vector<cv::Mat> imageYCrCbChannels; cv::split(imageYCrCb, imageYCrCbChannels); crslic_obj.setColorData(imageYCrCbChannels[0], imageYCrCbChannels[1], imageYCrCbChannels[2]); } else crslic_obj.setGrayvalueData(image.clone()); crslic_obj.relax(labels_temp, directCliqueCost, diagonalCliqueCost, iterations, labels); return 1+*(std::max_element(labels.begin(), labels.end())); }
// matrix version void multi_img::setPixel(unsigned int row, unsigned int col, const cv::Mat_<Value>& values) { assert((int)row < height && (int)col < width); assert(values.rows*values.cols == (int)size()); Pixel &p = pixels[row*width + col]; p.assign(values.begin(), values.end()); for (size_t i = 0; i < size(); ++i) bands[i](row, col) = p[i]; dirty(row, col) = 0; }
//=========================================================================== // Clamping the parameter values to be within 3 standard deviations void PDM::Clamp(cv::Mat_<float>& local_params, cv::Vec6d& params_global, const FaceModelParameters& parameters) { double n_sigmas = 3; cv::MatConstIterator_<double> e_it = this->eigen_values.begin(); cv::MatIterator_<float> p_it = local_params.begin(); double v; // go over all parameters for(; p_it != local_params.end(); ++p_it, ++e_it) { // Work out the maximum value v = n_sigmas*sqrt(*e_it); // if the values is too extreme clamp it if(fabs(*p_it) > v) { // Dealing with positive and negative cases if(*p_it > 0.0) { *p_it=v; } else { *p_it=-v; } } } // do not let the pose get out of hand if(parameters.limit_pose) { if(params_global[1] > M_PI / 2) params_global[1] = M_PI/2; if(params_global[1] < -M_PI / 2) params_global[1] = -M_PI/2; if(params_global[2] > M_PI / 2) params_global[2] = M_PI/2; if(params_global[2] < -M_PI / 2) params_global[2] = -M_PI/2; if(params_global[3] > M_PI / 2) params_global[3] = M_PI/2; if(params_global[3] < -M_PI / 2) params_global[3] = -M_PI/2; } }
void OvershootClusterer::drawTo(cv::Mat_<cv::Vec3b> &out) const { out.setTo(0); out.setTo(Scalar(255,255,255), img > 0); Mat_<Vec3b>::iterator itOut = out.begin(), itOutEnd = out.end(); Mat_<unsigned char>::const_iterator it = smallestOvershootVisit.begin(), itEnd = smallestOvershootVisit.end(); for (; itOut != itOutEnd && it != itEnd; ++it, ++itOut) { if ((*it) < CLUSTERER_OVERSHOOTS) { unsigned char nonRed = (*it)*(255/CLUSTERER_OVERSHOOTS); *itOut = Vec3b(nonRed,nonRed,255); } } }
std::map<std::string, cv::Matx44d> estimate(const std::map<int, Quad> &tags) { std::map<std::string, cv::Matx44d> objects; std::map< const std::string, //name of the object std::pair< std::vector<cv::Point3f>, //points in object std::vector<cv::Point2f> > > //points in frame objectToPointMapping; auto configurationIt = mId2Configuration.begin(); auto configurationEnd = mId2Configuration.end(); for (const auto &tag : tags) { int tagId = tag.first; const cv::Mat_<cv::Point2f> corners(tag.second); while (configurationIt != configurationEnd && configurationIt->first < tagId) ++configurationIt; if (configurationIt != configurationEnd) { if (configurationIt->first == tagId) { const auto &configuration = configurationIt->second; if (configuration.second.mKeep) { computeTransformation(cv::format("tag_%d", tagId), configuration.second.mLocalcorners, corners, objects); } auto & pointMapping = objectToPointMapping[configuration.first]; pointMapping.first.insert( pointMapping.first.end(), configuration.second.mCorners.begin(), configuration.second.mCorners.end()); pointMapping.second.insert( pointMapping.second.end(), corners.begin(), corners.end()); } else if (!mOmitOtherTags) { computeTransformation(cv::format("tag_%d", tagId), mDefaultTagCorners, corners, objects); } } else if (!mOmitOtherTags) { computeTransformation(cv::format("tag_%d", tagId), mDefaultTagCorners, corners, objects); } } for (auto& objectToPoints : objectToPointMapping) { computeTransformation(objectToPoints.first, objectToPoints.second.first, cv::Mat_<cv::Point2f>(objectToPoints.second.second), objects); } return mFilter(objects); }
//=========================================================================== void CCNF_neuron::Response(cv::Mat_<float> &im, cv::Mat_<double> &im_dft, cv::Mat &integral_img, cv::Mat &integral_img_sq, cv::Mat_<float> &resp) { int h = im.rows - weights.rows + 1; int w = im.cols - weights.cols + 1; // the patch area on which we will calculate reponses cv::Mat_<float> I; if(neuron_type == 3) { // Perform normalisation across whole patch (ignoring the invalid values indicated by <= 0 cv::Scalar mean; cv::Scalar std; // ignore missing values cv::Mat_<uchar> mask = im > 0; cv::meanStdDev(im, mean, std, mask); // if all values the same don't divide by 0 if(std[0] != 0) { I = (im - mean[0]) / std[0]; } else { I = (im - mean[0]); } I.setTo(0, mask == 0); } else { if(neuron_type == 0) { I = im; } else { printf("ERROR(%s,%d): Unsupported patch type %d!\n", __FILE__,__LINE__,neuron_type); abort(); } } if(resp.empty()) { resp.create(h, w); } // The response from neuron before activation if(neuron_type == 3) { // In case of depth we use per area, rather than per patch normalisation matchTemplate_m(I, im_dft, integral_img, integral_img_sq, weights, weights_dfts, resp, CV_TM_CCOEFF); // the linear multiplication, efficient calc of response } else { matchTemplate_m(I, im_dft, integral_img, integral_img_sq, weights, weights_dfts, resp, CV_TM_CCOEFF_NORMED); // the linear multiplication, efficient calc of response } cv::MatIterator_<float> p = resp.begin(); cv::MatIterator_<float> q1 = resp.begin(); // respone for each pixel cv::MatIterator_<float> q2 = resp.end(); // the logistic function (sigmoid) applied to the response while(q1 != q2) { *p++ = (2 * alpha) * 1.0 /(1.0 + exp( -(*q1++ * norm_weights + bias ))); } }
TagPoseMap estimate(TagCornerMap const& tags, cv::Vec<RealT, 4> const& camDeltaR, cv::Vec<RealT, 3> const& camDeltaX) { TagPoseMap objects; //Pass the latest camera movement difference for prediction (if 3D filtering is enabled) mEstimatePose3D.setCamDelta(camDeltaR, camDeltaX); //Predict pose for all known tags with camera movement (if 3D filtering is enabled) mEstimatePose3D(objects); //Correct pose prediction with new observations std::map< const std::string, //name of the object std::pair< std::vector<cv::Point3_<RealT> >, //points in object std::vector<cv::Point2f> > > //points in frame objectToPointMapping; auto configurationIt = mId2Configuration.begin(); auto configurationEnd = mId2Configuration.end(); for (const auto &tag : tags) { int tagId = tag.first; const cv::Mat_<cv::Point2f> corners(tag.second); while (configurationIt != configurationEnd && configurationIt->first < tagId) ++configurationIt; if (configurationIt != configurationEnd) { if (configurationIt->first == tagId) { const auto &configuration = configurationIt->second; if (configuration.second.mKeep) { mEstimatePose3D(cv::format("tag_%d", tagId), configuration.second.mLocalcorners, corners, objects); } auto & pointMapping = objectToPointMapping[configuration.first]; pointMapping.first.insert( pointMapping.first.end(), configuration.second.mCorners.begin(), configuration.second.mCorners.end()); pointMapping.second.insert( pointMapping.second.end(), corners.begin(), corners.end()); } else if (!mOmitOtherTags) { mEstimatePose3D(cv::format("tag_%d", tagId), mDefaultTagCorners, corners, objects); } } else if (!mOmitOtherTags) { mEstimatePose3D(cv::format("tag_%d", tagId), mDefaultTagCorners, corners, objects); } } for (auto& objectToPoints : objectToPointMapping) { mEstimatePose3D(objectToPoints.first, objectToPoints.second.first, cv::Mat_<cv::Point2f>(objectToPoints.second.second), objects); } return objects; }