Exemplo n.º 1
0
void projectorFromSvd(const Eigen::MatrixXd& jac,
                      Eigen::JacobiSVD<Eigen::MatrixXd>& svd,
                      Eigen::VectorXd& svdSingular,
                      Eigen::MatrixXd& preResult,
                      Eigen::MatrixXd& result,
                      double epsilon=std::numeric_limits<double>::epsilon(),
                      double minTol=1e-8)
{
  // we are force to compute the Full matrix because of
  // the nullspace matrix computation
  svd.compute(jac, Eigen::ComputeFullU | Eigen::ComputeFullV);

  double tolerance =
      epsilon*double(std::max(jac.cols(), jac.rows()))*
      std::abs(svd.singularValues()[0]);
  tolerance = std::max(tolerance, minTol);

  svdSingular.setOnes();
  for(int i = 0; i < svd.singularValues().rows(); ++i)
  {
    svdSingular[i] = svd.singularValues()[i] > tolerance ? 0. : 1.;
  }

  preResult.noalias() = svd.matrixV()*svdSingular.asDiagonal();
  result.noalias() = preResult*svd.matrixV().adjoint();
}
Exemplo n.º 2
0
void projectorDummy(const Eigen::MatrixXd& pseudoInv,
                    const Eigen::MatrixXd& jac,
                    Eigen::MatrixXd& result)
{
  result.setIdentity();
  result.noalias() -= pseudoInv*jac;
}
Exemplo n.º 3
0
void pseudoInverse(const Eigen::MatrixXd& jac,
                   Eigen::JacobiSVD<Eigen::MatrixXd>& svd,
                   Eigen::VectorXd& svdSingular,
                   Eigen::MatrixXd& prePseudoInv,
                   Eigen::MatrixXd& result,
                   double epsilon=std::numeric_limits<double>::epsilon(),
                   double minTol=1e-8)
{
  svd.compute(jac, Eigen::ComputeThinU | Eigen::ComputeThinV);

  // singular values are sorted in decreasing order
  // so the first one is the max one
  double tolerance =
      epsilon*double(std::max(jac.cols(), jac.rows()))*
      std::abs(svd.singularValues()[0]);
  tolerance = std::max(tolerance, minTol);

  svdSingular = ((svd.singularValues().array().abs() > tolerance).
      select(svd.singularValues().array().inverse(), 0.));

  prePseudoInv.noalias() = svd.matrixV()*svdSingular.asDiagonal();
  result.noalias() = prePseudoInv*svd.matrixU().adjoint();
}
Exemplo n.º 4
0
  void Ekf::correct(const Measurement &measurement)
  {
    FB_DEBUG("---------------------- Ekf::correct ----------------------\n" <<
             "State is:\n" << state_ << "\n"
             "Topic is:\n" << measurement.topicName_ << "\n"
             "Measurement is:\n" << measurement.measurement_ << "\n"
             "Measurement topic name is:\n" << measurement.topicName_ << "\n\n"
             "Measurement covariance is:\n" << measurement.covariance_ << "\n");

    // We don't want to update everything, so we need to build matrices that only update
    // the measured parts of our state vector. Throughout prediction and correction, we
    // attempt to maximize efficiency in Eigen.

    // First, determine how many state vector values we're updating
    std::vector<size_t> updateIndices;
    for (size_t i = 0; i < measurement.updateVector_.size(); ++i)
    {
      if (measurement.updateVector_[i])
      {
        // Handle nan and inf values in measurements
        if (std::isnan(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was nan. Excluding from update.\n");
        }
        else if (std::isinf(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was inf. Excluding from update.\n");
        }
        else
        {
          updateIndices.push_back(i);
        }
      }
    }

    FB_DEBUG("Update indices are:\n" << updateIndices << "\n");

    size_t updateSize = updateIndices.size();

    // Now set up the relevant matrices
    Eigen::VectorXd stateSubset(updateSize);                              // x (in most literature)
    Eigen::VectorXd measurementSubset(updateSize);                        // z
    Eigen::MatrixXd measurementCovarianceSubset(updateSize, updateSize);  // R
    Eigen::MatrixXd stateToMeasurementSubset(updateSize, state_.rows());  // H
    Eigen::MatrixXd kalmanGainSubset(state_.rows(), updateSize);          // K
    Eigen::VectorXd innovationSubset(updateSize);                         // z - Hx

    stateSubset.setZero();
    measurementSubset.setZero();
    measurementCovarianceSubset.setZero();
    stateToMeasurementSubset.setZero();
    kalmanGainSubset.setZero();
    innovationSubset.setZero();

    // Now build the sub-matrices from the full-sized matrices
    for (size_t i = 0; i < updateSize; ++i)
    {
      measurementSubset(i) = measurement.measurement_(updateIndices[i]);
      stateSubset(i) = state_(updateIndices[i]);

      for (size_t j = 0; j < updateSize; ++j)
      {
        measurementCovarianceSubset(i, j) = measurement.covariance_(updateIndices[i], updateIndices[j]);
      }

      // Handle negative (read: bad) covariances in the measurement. Rather
      // than exclude the measurement or make up a covariance, just take
      // the absolute value.
      if (measurementCovarianceSubset(i, i) < 0)
      {
        FB_DEBUG("WARNING: Negative covariance for index " << i <<
                 " of measurement (value is" << measurementCovarianceSubset(i, i) <<
                 "). Using absolute value...\n");

        measurementCovarianceSubset(i, i) = ::fabs(measurementCovarianceSubset(i, i));
      }

      // If the measurement variance for a given variable is very
      // near 0 (as in e-50 or so) and the variance for that
      // variable in the covariance matrix is also near zero, then
      // the Kalman gain computation will blow up. Really, no
      // measurement can be completely without error, so add a small
      // amount in that case.
      if (measurementCovarianceSubset(i, i) < 1e-9)
      {
        FB_DEBUG("WARNING: measurement had very small error covariance for index " << updateIndices[i] <<
                 ". Adding some noise to maintain filter stability.\n");

        measurementCovarianceSubset(i, i) = 1e-9;
      }
    }

    // The state-to-measurement function, h, will now be a measurement_size x full_state_size
    // matrix, with ones in the (i, i) locations of the values to be updated
    for (size_t i = 0; i < updateSize; ++i)
    {
      stateToMeasurementSubset(i, updateIndices[i]) = 1;
    }

    FB_DEBUG("Current state subset is:\n" << stateSubset <<
             "\nMeasurement subset is:\n" << measurementSubset <<
             "\nMeasurement covariance subset is:\n" << measurementCovarianceSubset <<
             "\nState-to-measurement subset is:\n" << stateToMeasurementSubset << "\n");

    // (1) Compute the Kalman gain: K = (PH') / (HPH' + R)
    Eigen::MatrixXd pht = estimateErrorCovariance_ * stateToMeasurementSubset.transpose();
    Eigen::MatrixXd hphrInv  = (stateToMeasurementSubset * pht + measurementCovarianceSubset).inverse();
    kalmanGainSubset.noalias() = pht * hphrInv;

    innovationSubset = (measurementSubset - stateSubset);

    // Wrap angles in the innovation
    for (size_t i = 0; i < updateSize; ++i)
    {
      if (updateIndices[i] == StateMemberRoll  ||
          updateIndices[i] == StateMemberPitch ||
          updateIndices[i] == StateMemberYaw)
      {
        while (innovationSubset(i) < -PI)
        {
          innovationSubset(i) += TAU;
        }

        while (innovationSubset(i) > PI)
        {
          innovationSubset(i) -= TAU;
        }
      }
    }
    
    // (2) Check Mahalanobis distance between mapped measurement and state.
    if (checkMahalanobisThreshold(innovationSubset, hphrInv, measurement.mahalanobisThresh_))
    {
      // (3) Apply the gain to the difference between the state and measurement: x = x + K(z - Hx)
      state_.noalias() += kalmanGainSubset * innovationSubset;

      // (4) Update the estimate error covariance using the Joseph form: (I - KH)P(I - KH)' + KRK'
      Eigen::MatrixXd gainResidual = identity_;
      gainResidual.noalias() -= kalmanGainSubset * stateToMeasurementSubset;
      estimateErrorCovariance_ = gainResidual * estimateErrorCovariance_ * gainResidual.transpose();
      estimateErrorCovariance_.noalias() += kalmanGainSubset *
                                            measurementCovarianceSubset *
                                            kalmanGainSubset.transpose();

      // Handle wrapping of angles
      wrapStateAngles();

      FB_DEBUG("Kalman gain subset is:\n" << kalmanGainSubset <<
               "\nInnovation is:\n" << innovationSubset <<
               "\nCorrected full state is:\n" << state_ <<
               "\nCorrected full estimate error covariance is:\n" << estimateErrorCovariance_ <<
               "\n\n---------------------- /Ekf::correct ----------------------\n");
    }
  }