Exemplo n.º 1
0
int  Piro::Epetra::MatrixFreeOperator::Apply
    (const Epetra_MultiVector& V, Epetra_MultiVector& Y) const
{
  TEUCHOS_TEST_FOR_EXCEPTION(!baseIsSet, std::logic_error, 
     " Piro::Epetra::MatrixFreeOperator must have Base values set before Apply");

  // Compute  Wv=y  by perturbing x
  //const Epetra_Vector* v = V(0); ??THIS DOESN'T WORK!!! Why???
  Teuchos::RCP<Epetra_Vector> v = Teuchos::rcp(new Epetra_Vector(View, V, 0));
  Teuchos::RCP<Epetra_Vector> y = Teuchos::rcp(new Epetra_Vector(Copy, Y, 0));
  Teuchos::RCP<const Epetra_Vector> xBase = modelInArgs.get_x();
  Teuchos::RCP<const Epetra_Vector> xdotBase;
  if (haveXdot) xdotBase = modelInArgs.get_x_dot();
  double vectorNorm;
  v->Norm2(&vectorNorm);

  // Any operator time zero vector is zero vector
  if (vectorNorm == 0.0) {
    Y.PutScalar(0.0);
    return 0;
  }

  double eta = lambda * (lambda + solutionNorm/vectorNorm);

  xPert->Update(1.0, *xBase, eta, *v, 0.0);
  if (haveXdot)
    xdotPert->Update(1.0, *xdotBase, eta, *v, 0.0);
  
  EpetraExt::ModelEvaluator::OutArgs modelOutArgs =
    model->createOutArgs();

  modelInArgs.set_x(xPert);
  if (haveXdot) modelInArgs.set_x_dot(xdotPert);

  // Alert model that this is a perturbed calculation, in case it does something different.
  EpetraExt::ModelEvaluator::Evaluation<Epetra_Vector> fPertEval(fPert, EpetraExt::ModelEvaluator::EVAL_TYPE_APPROX_DERIV);
  modelOutArgs.set_f(fPertEval);

  model->evalModel(modelInArgs, modelOutArgs);

  modelInArgs.set_x(xBase);
  if (haveXdot) modelInArgs.set_x_dot(xdotBase);
  modelOutArgs.set_f(fBase);

  y->Update(1.0, *fPert, -1.0, *fBase, 0.0);
  y->Scale(1.0/eta);

  Teuchos::RCP<Epetra_Vector> Y0 = Teuchos::rcp(new Epetra_Vector(View, Y, 0));
  *Y0 = *y; // copy in

  return 0;
}
 /** \brief Returns \f$ \| y \| \f$ where \f$y = \mbox{*this}\f$.
 */
 Real norm() const {
   double val;
   epetra_vec_->Norm2(&val);
   return (Real) val;
 } 
Exemplo n.º 3
0
int main(int argc, char *argv[]) {

  int status=0; // 0 = pass, failures are incremented
  bool success = true;

#ifdef ALBANY_DEBUG
  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
#else // bypass printing process startup info
  Teuchos::GlobalMPISession mpiSession(&argc, &argv, NULL);
#endif

  Kokkos::initialize(argc, argv);

#ifdef ALBANY_FLUSH_DENORMALS
  _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
  _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
#endif

#ifdef ALBANY_CHECK_FPE
   // Catch FPEs. Follow Main_SolveT.cpp's approach to checking for floating
   // point exceptions.
   //_mm_setcsr(_MM_MASK_MASK &~ (_MM_MASK_OVERFLOW | _MM_MASK_INVALID | _MM_MASK_DIV_ZERO) );
   _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~_MM_MASK_INVALID);
#endif

  using Teuchos::RCP;
  using Teuchos::rcp;

  RCP<Teuchos::FancyOStream> out(Teuchos::VerboseObjectBase::getDefaultOStream());

  // Command-line argument for input file
  Albany::CmdLineArgs cmd;
  cmd.parse_cmdline(argc, argv, *out);

  try {

    RCP<Teuchos::Time> totalTime =
      Teuchos::TimeMonitor::getNewTimer("Albany: ***Total Time***");

    RCP<Teuchos::Time> setupTime =
      Teuchos::TimeMonitor::getNewTimer("Albany: Setup Time");
    Teuchos::TimeMonitor totalTimer(*totalTime); //start timer
    Teuchos::TimeMonitor setupTimer(*setupTime); //start timer

    RCP<const Teuchos_Comm> comm =
      Tpetra::DefaultPlatform::getDefaultPlatform().getComm();

    // Connect vtune for performance profiling
    if (cmd.vtune) {
      Albany::connect_vtune(comm->getRank());
    }

    Albany::SolverFactory slvrfctry(cmd.xml_filename, comm);
    RCP<Epetra_Comm> appComm = Albany::createEpetraCommFromTeuchosComm(comm);
    RCP<Albany::Application> app;
    const RCP<Thyra::ModelEvaluator<double> > solver =
      slvrfctry.createThyraSolverAndGetAlbanyApp(app, appComm, appComm);

    setupTimer.~TimeMonitor();

//    PHX::InitializeKokkosDevice();
   
    Teuchos::ParameterList &solveParams =
      slvrfctry.getAnalysisParameters().sublist("Solve", /*mustAlreadyExist =*/ false);
    // By default, request the sensitivities if not explicitly disabled
    solveParams.get("Compute Sensitivities", true);

    Teuchos::Array<Teuchos::RCP<const Thyra::VectorBase<double> > > thyraResponses;
    Teuchos::Array<Teuchos::Array<Teuchos::RCP<const Thyra::MultiVectorBase<double> > > > thyraSensitivities;

       // The PoissonSchrodinger_SchroPo and PoissonSchroMosCap1D tests seg fault as albanyApp is null -
       // For now, do not resize the response vectors. FIXME sort out this issue.
    if(Teuchos::nonnull(app))
      Piro::PerformSolveBase(*solver, solveParams, thyraResponses, thyraSensitivities, app->getAdaptSolMgr()->getSolObserver());
    else
      Piro::PerformSolveBase(*solver, solveParams, thyraResponses, thyraSensitivities);

    Teuchos::Array<Teuchos::RCP<const Epetra_Vector> > responses;
    Teuchos::Array<Teuchos::Array<Teuchos::RCP<const Epetra_MultiVector> > > sensitivities;
    epetraFromThyra(appComm, thyraResponses, thyraSensitivities, responses, sensitivities);

    const int num_p = solver->Np(); // Number of *vectors* of parameters
    const int num_g = solver->Ng(); // Number of *vectors* of responses

    *out << "Finished eval of first model: Params, Responses "
      << std::setprecision(12) << std::endl;

    Teuchos::ParameterList& parameterParams = slvrfctry.getParameters().sublist("Problem").sublist("Parameters");
    int num_param_vecs = (parameterParams.isType<int>("Number")) ?
        int(parameterParams.get("Number", 0) > 0) :
        parameterParams.get("Number of Parameter Vectors", 0);

    const Thyra::ModelEvaluatorBase::InArgs<double> nominal = solver->getNominalValues();
    double norm2;
    for (int i=0; i<num_p; i++) {
      const Teuchos::RCP<const Epetra_Vector> p_init = epetraVectorFromThyra(appComm, nominal.get_p(i));
      if(i < num_param_vecs)
        p_init->Print(*out << "\nParameter vector " << i << ":\n");
      else { //distributed parameters, we print only 2-norm
        p_init->Norm2(&norm2);
        *out << "\nDistributed Parameter " << i << ":  " << norm2 << " (two-norm)\n" << std::endl;
      }
    }

    for (int i=0; i<num_g-1; i++) {
      const RCP<const Epetra_Vector> g = responses[i];
      bool is_scalar = true;

      if (app != Teuchos::null)
        is_scalar = app->getResponse(i)->isScalarResponse();

      if (is_scalar) {
        g->Print(*out << "\nResponse vector " << i << ":\n");

        if (num_p == 0) {
          // Just calculate regression data
          status += slvrfctry.checkSolveTestResults(i, 0, g.get(), NULL);
        } else {
          for (int j=0; j<num_p; j++) {
            const RCP<const Epetra_MultiVector> dgdp = sensitivities[i][j];
            if (Teuchos::nonnull(dgdp)) {
              if(j < num_param_vecs) {
                dgdp->Print(*out << "\nSensitivities (" << i << "," << j << "): \n");
                status += slvrfctry.checkSolveTestResults(i, j, g.get(), dgdp.get());
              }
              else {
                const Epetra_Map serial_map(-1, 1, 0, dgdp.get()->Comm());
                Epetra_MultiVector norms(serial_map,dgdp->NumVectors());
              //  RCP<Albany::ScalarResponseFunction> response = rcp_dynamic_cast<Albany::ScalarResponseFunction>(app->getResponse(i));
               // int numResponses = response->numResponses();
                *out << "\nSensitivities (" << i << "," << j  << ") for Distributed Parameters:  (two-norm)\n";
                *out << "    ";
                for(int ir=0; ir<dgdp->NumVectors(); ++ir) {
                  (*dgdp)(ir)->Norm2(&norm2);
                  (*norms(ir))[0] = norm2;
                  *out << "    " << norm2;
                }
                *out << "\n" << std::endl;
                status += slvrfctry.checkSolveTestResults(i, j, g.get(), &norms);
              }
            }
          }
        }
      }
    }

    // Create debug output object
    Teuchos::ParameterList &debugParams =
      slvrfctry.getParameters().sublist("Debug Output", true);
    bool writeToMatrixMarketSoln = debugParams.get("Write Solution to MatrixMarket", false);
    bool writeToMatrixMarketDistrSolnMap = debugParams.get("Write Distributed Solution and Map to MatrixMarket", false);
    bool writeToCoutSoln = debugParams.get("Write Solution to Standard Output", false);


    const RCP<const Epetra_Vector> xfinal = responses.back();
    double mnv; xfinal->MeanValue(&mnv);
    *out << "Main_Solve: MeanValue of final solution " << mnv << std::endl;
    *out << "\nNumber of Failed Comparisons: " << status << std::endl;
    if (writeToCoutSoln == true) 
       std::cout << "xfinal: " << *xfinal << std::endl;

#ifdef ALBANY_PERIDIGM
#if defined(ALBANY_EPETRA)
    if (Teuchos::nonnull(LCM::PeridigmManager::self())) {
      *out << setprecision(12) << "\nPERIDIGM-ALBANY OPTIMIZATION-BASED COUPLING FINAL FUNCTIONAL VALUE = "
           << LCM::PeridigmManager::self()->obcEvaluateFunctional()  << "\n" << std::endl;
    }
#endif
#endif

    if (debugParams.get<bool>("Analyze Memory", false))
      Albany::printMemoryAnalysis(std::cout, comm);

    if (writeToMatrixMarketSoln == true) { 

      //create serial map that puts the whole solution on processor 0
      int numMyElements = (xfinal->Comm().MyPID() == 0) ? app->getDiscretization()->getMap()->NumGlobalElements() : 0;
      const Epetra_Map serial_map(-1, numMyElements, 0, xfinal->Comm());

      //create importer from parallel map to serial map and populate serial solution xfinal_serial
      Epetra_Import importOperator(serial_map, *app->getDiscretization()->getMap());
      Epetra_Vector xfinal_serial(serial_map);
      xfinal_serial.Import(*app->getDiscretization()->getSolutionField(), importOperator, Insert);

      //writing to MatrixMarket file
      EpetraExt::MultiVectorToMatrixMarketFile("xfinal.mm", xfinal_serial);
    }
    if (writeToMatrixMarketDistrSolnMap == true) {
      //writing to MatrixMarket file
      EpetraExt::MultiVectorToMatrixMarketFile("xfinal_distributed.mm", *xfinal);
      EpetraExt::BlockMapToMatrixMarketFile("xfinal_distributed_map.mm", *app->getDiscretization()->getMap());
    }
  }
  TEUCHOS_STANDARD_CATCH_STATEMENTS(true, std::cerr, success);
  if (!success) status+=10000;
  

  Teuchos::TimeMonitor::summarize(*out,false,true,false/*zero timers*/);

  Kokkos::finalize_all();
 
  return status;
}