Пример #1
0
uint32_t GPDMA_CalcRxControl(uint32_t transfer_size, uint32_t src_conn)
{
     return GPDMA_DMACCxControl_TransferSize(transfer_size)				\
	  | GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[src_conn]) \
	  | GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[src_conn]) \
	  | GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[src_conn]) \
	  | GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[src_conn]) \
	  | GPDMA_DMACCxControl_DI \
	  | GPDMA_DMACCxControl_I;
}
Пример #2
0
/********************************************************************//**
 * @brief 		Setup GPDMA channel peripheral according to the specified
 *               parameters in the GPDMAChannelConfig.
 * @param[in]	GPDMAChannelConfig Pointer to a GPDMA_CH_CFG_Type
 * 									structure that contains the configuration
 * 									information for the specified GPDMA channel peripheral.
 * @return		ERROR if selected channel is enabled before
 * 				or SUCCESS if channel is configured successfully
 *********************************************************************/
Status GPDMA_Setup(GPDMA_Channel_CFG_Type *GPDMAChannelConfig)
{
	LPC_GPDMACH_TypeDef *pDMAch;
	uint32_t tmp1, tmp2;

	if (LPC_GPDMA->DMACEnbldChns & (GPDMA_DMACEnbldChns_Ch(GPDMAChannelConfig->ChannelNum))) {
		// This channel is enabled, return ERROR, need to release this channel first
		return ERROR;
	}

	// Get Channel pointer
	pDMAch = (LPC_GPDMACH_TypeDef *) pGPDMACh[GPDMAChannelConfig->ChannelNum];

	// Reset the Interrupt status
	LPC_GPDMA->DMACIntTCClear = GPDMA_DMACIntTCClear_Ch(GPDMAChannelConfig->ChannelNum);
	LPC_GPDMA->DMACIntErrClr = GPDMA_DMACIntErrClr_Ch(GPDMAChannelConfig->ChannelNum);

	// Clear DMA configure
	pDMAch->DMACCControl = 0x00;
	pDMAch->DMACCConfig = 0x00;

	/* Assign Linker List Item value */
	pDMAch->DMACCLLI = GPDMAChannelConfig->DMALLI;

	/* Set value to Channel Control Registers */
	switch (GPDMAChannelConfig->TransferType)
	{
	// Memory to memory
	case GPDMA_TRANSFERTYPE_M2M:
		// Assign physical source and destination address
		pDMAch->DMACCSrcAddr = GPDMAChannelConfig->SrcMemAddr;
		pDMAch->DMACCDestAddr = GPDMAChannelConfig->DstMemAddr;
		pDMAch->DMACCControl
				= GPDMA_DMACCxControl_TransferSize(GPDMAChannelConfig->TransferSize) \
						| GPDMA_DMACCxControl_SBSize(GPDMA_BSIZE_32) \
						| GPDMA_DMACCxControl_DBSize(GPDMA_BSIZE_32) \
						| GPDMA_DMACCxControl_SWidth(GPDMAChannelConfig->TransferWidth) \
						| GPDMA_DMACCxControl_DWidth(GPDMAChannelConfig->TransferWidth) \
						| GPDMA_DMACCxControl_SI \
						| GPDMA_DMACCxControl_DI \
						| GPDMA_DMACCxControl_I;
		break;
	// Memory to peripheral
	case GPDMA_TRANSFERTYPE_M2P:
		// Assign physical source
		pDMAch->DMACCSrcAddr = GPDMAChannelConfig->SrcMemAddr;
		// Assign peripheral destination address
		pDMAch->DMACCDestAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->DstConn];
		pDMAch->DMACCControl
				= GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMAChannelConfig->TransferSize) \
						| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_SI \
						| GPDMA_DMACCxControl_I;
		break;
	// Peripheral to memory
	case GPDMA_TRANSFERTYPE_P2M:
		// Assign peripheral source address
		pDMAch->DMACCSrcAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->SrcConn];
		// Assign memory destination address
		pDMAch->DMACCDestAddr = GPDMAChannelConfig->DstMemAddr;
		pDMAch->DMACCControl
				= GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMAChannelConfig->TransferSize) \
						| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_DI \
						| GPDMA_DMACCxControl_I;
		break;
	// Peripheral to peripheral
	case GPDMA_TRANSFERTYPE_P2P:
		// Assign peripheral source address
		pDMAch->DMACCSrcAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->SrcConn];
		// Assign peripheral destination address
		pDMAch->DMACCDestAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->DstConn];
		pDMAch->DMACCControl
				= GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMAChannelConfig->TransferSize) \
						| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_I;
		break;
	// Do not support any more transfer type, return ERROR
	default:
		return ERROR;
	}

	/* Re-Configure DMA Request Select for source peripheral */
	if (GPDMAChannelConfig->SrcConn > 15)
	{
		DMAREQSEL |= (1<<(GPDMAChannelConfig->SrcConn - 16));
	} else {
		DMAREQSEL &= ~(1<<(GPDMAChannelConfig->SrcConn - 8));
	}

	/* Re-Configure DMA Request Select for Destination peripheral */
	if (GPDMAChannelConfig->DstConn > 15)
	{
		DMAREQSEL |= (1<<(GPDMAChannelConfig->DstConn - 16));
	} else {
		DMAREQSEL &= ~(1<<(GPDMAChannelConfig->DstConn - 8));
	}

	/* Enable DMA channels, little endian */
	LPC_GPDMA->DMACConfig = GPDMA_DMACConfig_E;
	while (!(LPC_GPDMA->DMACConfig & GPDMA_DMACConfig_E));

	// Calculate absolute value for Connection number
	tmp1 = GPDMAChannelConfig->SrcConn;
	tmp1 = ((tmp1 > 15) ? (tmp1 - 8) : tmp1);
	tmp2 = GPDMAChannelConfig->DstConn;
	tmp2 = ((tmp2 > 15) ? (tmp2 - 8) : tmp2);

	// Configure DMA Channel, enable Error Counter and Terminate counter
	pDMAch->DMACCConfig = GPDMA_DMACCxConfig_IE | GPDMA_DMACCxConfig_ITC /*| GPDMA_DMACCxConfig_E*/ \
		| GPDMA_DMACCxConfig_TransferType((uint32_t)GPDMAChannelConfig->TransferType) \
		| GPDMA_DMACCxConfig_SrcPeripheral(tmp1) \
		| GPDMA_DMACCxConfig_DestPeripheral(tmp2);

	return SUCCESS;
}
Пример #3
0
/********************************************************************//**
 * @brief 		Setup GPDMA channel peripheral according to the specified
 *              parameters in the GPDMAChannelConfig.
 * @param[in]	GPDMAChannelConfig Pointer to a GPDMA_CH_CFG_Type structure
 * 				that contains the configuration information for the specified
 * 				GPDMA channel peripheral.
 * @return		Setup status, could be:
 * 					- ERROR		:if selected channel is enabled before
 * 					- SUCCESS 	:if channel is configured successfully
 *********************************************************************/
Status GPDMA_Setup(GPDMA_Channel_CFG_Type *GPDMAChannelConfig)
{
	LPC_GPDMACH_TypeDef *pDMAch;
	uint8_t SrcPeripheral=0, DestPeripheral=0;

	if (LPC_GPDMA->ENBLDCHNS & (GPDMA_DMACEnbldChns_Ch(GPDMAChannelConfig->ChannelNum))) {
		// This channel is enabled, return ERROR, need to release this channel first
		return ERROR;
	}

	// Get Channel pointer
	pDMAch = (LPC_GPDMACH_TypeDef *) pGPDMACh[GPDMAChannelConfig->ChannelNum];

	// Reset the Interrupt status
	LPC_GPDMA->INTTCCLEAR = GPDMA_DMACIntTCClear_Ch(GPDMAChannelConfig->ChannelNum);
	LPC_GPDMA->INTERRCLR = GPDMA_DMACIntErrClr_Ch(GPDMAChannelConfig->ChannelNum);

	// Clear DMA configure
	pDMAch->CControl = 0x00;
	pDMAch->CConfig = 0x00;

	/* Assign Linker List Item value */
	pDMAch->CLLI = GPDMAChannelConfig->DMALLI;

	/* Set value to Channel Control Registers */
	switch (GPDMAChannelConfig->TransferType)
	{
	// Memory to memory
	case GPDMA_TRANSFERTYPE_M2M_CONTROLLER_DMA:
		// Assign physical source and destination address
		pDMAch->CSrcAddr = GPDMAChannelConfig->SrcMemAddr;
		pDMAch->CDestAddr = GPDMAChannelConfig->DstMemAddr;
		pDMAch->CControl
				= GPDMA_DMACCxControl_TransferSize(GPDMAChannelConfig->TransferSize) \
						| GPDMA_DMACCxControl_SBSize(GPDMA_BSIZE_32) \
						| GPDMA_DMACCxControl_DBSize(GPDMA_BSIZE_32) \
						| GPDMA_DMACCxControl_SWidth(GPDMAChannelConfig->TransferWidth) \
						| GPDMA_DMACCxControl_DWidth(GPDMAChannelConfig->TransferWidth) \
						| GPDMA_DMACCxControl_SI \
						| GPDMA_DMACCxControl_DI \
						| GPDMA_DMACCxControl_I;
		break;
	// Memory to peripheral
	case GPDMA_TRANSFERTYPE_M2P_CONTROLLER_DMA:
		// Assign physical source
		pDMAch->CSrcAddr = GPDMAChannelConfig->SrcMemAddr;
		// Assign peripheral destination address
		pDMAch->CDestAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->DstConn];
		pDMAch->CControl
				= GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMAChannelConfig->TransferSize) \
						| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_DestTransUseAHBMaster1 \
						| GPDMA_DMACCxControl_SI \
						| GPDMA_DMACCxControl_I;
		DestPeripheral = DMAMUX_Config(GPDMAChannelConfig->DstConn);
		break;
	// Peripheral to memory
	case GPDMA_TRANSFERTYPE_P2M_CONTROLLER_DMA:
		// Assign peripheral source address
		pDMAch->CSrcAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->SrcConn];
		// Assign memory destination address
		pDMAch->CDestAddr = GPDMAChannelConfig->DstMemAddr;
		pDMAch->CControl
				= GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMAChannelConfig->TransferSize) \
						| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_SrcTransUseAHBMaster1 \
						| GPDMA_DMACCxControl_DI \
						| GPDMA_DMACCxControl_I;
		SrcPeripheral = DMAMUX_Config(GPDMAChannelConfig->SrcConn);
		break;
	// Peripheral to peripheral
	case GPDMA_TRANSFERTYPE_P2P_CONTROLLER_DMA:
		// Assign peripheral source address
		pDMAch->CSrcAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->SrcConn];
		// Assign peripheral destination address
		pDMAch->CDestAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->DstConn];
		pDMAch->CControl
				= GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMAChannelConfig->TransferSize) \
						| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->SrcConn]) \
						| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->DstConn]) \
						| GPDMA_DMACCxControl_SrcTransUseAHBMaster1 \
						| GPDMA_DMACCxControl_DestTransUseAHBMaster1 \
						| GPDMA_DMACCxControl_I;
		SrcPeripheral = DMAMUX_Config(GPDMAChannelConfig->SrcConn);
		DestPeripheral = DMAMUX_Config(GPDMAChannelConfig->DstConn);
		break;

	case GPDMA_TRANSFERTYPE_P2P_CONTROLLER_DestPERIPHERAL:
	case GPDMA_TRANSFERTYPE_M2P_CONTROLLER_PERIPHERAL:
	case GPDMA_TRANSFERTYPE_P2M_CONTROLLER_PERIPHERAL:
	case GPDMA_TRANSFERTYPE_P2P_CONTROLLER_SrcPERIPHERAL:
		//to be defined
	// Do not support any more transfer type, return ERROR
	default:
		return ERROR;
	}

	/* Enable DMA channels, little endian */
	LPC_GPDMA->CONFIG = GPDMA_DMACConfig_E;
	while (!(LPC_GPDMA->CONFIG & GPDMA_DMACConfig_E));

	// Configure DMA Channel, enable Error Counter and Terminate counter
	pDMAch->CConfig = GPDMA_DMACCxConfig_IE | GPDMA_DMACCxConfig_ITC /*| GPDMA_DMACCxConfig_E*/ \
		| GPDMA_DMACCxConfig_TransferType((uint32_t)GPDMAChannelConfig->TransferType) \
		| GPDMA_DMACCxConfig_SrcPeripheral(SrcPeripheral) \
		| GPDMA_DMACCxConfig_DestPeripheral(DestPeripheral);

	return SUCCESS;
}
uint32_t IP_GPDMA_MakeCtrlWord(const GPDMA_Channel_CFG_Type *GPDMAChannelConfig,
							   uint32_t GPDMA_LUTPerBurstSrcConn,
							   uint32_t GPDMA_LUTPerBurstDstConn,
							   uint32_t GPDMA_LUTPerWidSrcConn,
							   uint32_t GPDMA_LUTPerWidDstConn)
{
	uint32_t ctrl_word = 0;

	switch (GPDMAChannelConfig->TransferType) {
	/* Memory to memory */
	case GPDMA_TRANSFERTYPE_M2M_CONTROLLER_DMA:
		ctrl_word = GPDMA_DMACCxControl_TransferSize(GPDMAChannelConfig->TransferSize)
					| GPDMA_DMACCxControl_SBSize((4UL))				/**< Burst size = 32 */
					| GPDMA_DMACCxControl_DBSize((4UL))				/**< Burst size = 32 */
					| GPDMA_DMACCxControl_SWidth(GPDMAChannelConfig->TransferWidth)
					| GPDMA_DMACCxControl_DWidth(GPDMAChannelConfig->TransferWidth)
					| GPDMA_DMACCxControl_SI
					| GPDMA_DMACCxControl_DI
					| GPDMA_DMACCxControl_I;
		break;

	case GPDMA_TRANSFERTYPE_M2P_CONTROLLER_DMA:
	case GPDMA_TRANSFERTYPE_M2P_CONTROLLER_PERIPHERAL:
		ctrl_word = GPDMA_DMACCxControl_TransferSize((uint32_t) GPDMAChannelConfig->TransferSize)
					| GPDMA_DMACCxControl_SBSize(GPDMA_LUTPerBurstDstConn)
					| GPDMA_DMACCxControl_DBSize(GPDMA_LUTPerBurstDstConn)
					| GPDMA_DMACCxControl_SWidth(GPDMA_LUTPerWidDstConn)
					| GPDMA_DMACCxControl_DWidth(GPDMA_LUTPerWidDstConn)
					| GPDMA_DMACCxControl_DestTransUseAHBMaster1
					| GPDMA_DMACCxControl_SI
					| GPDMA_DMACCxControl_I;
		break;

	case GPDMA_TRANSFERTYPE_P2M_CONTROLLER_DMA:
	case GPDMA_TRANSFERTYPE_P2M_CONTROLLER_PERIPHERAL:
		ctrl_word = GPDMA_DMACCxControl_TransferSize((uint32_t) GPDMAChannelConfig->TransferSize)
					| GPDMA_DMACCxControl_SBSize(GPDMA_LUTPerBurstSrcConn)
					| GPDMA_DMACCxControl_DBSize(GPDMA_LUTPerBurstSrcConn)
					| GPDMA_DMACCxControl_SWidth(GPDMA_LUTPerWidSrcConn)
					| GPDMA_DMACCxControl_DWidth(GPDMA_LUTPerWidSrcConn)
					| GPDMA_DMACCxControl_SrcTransUseAHBMaster1
					| GPDMA_DMACCxControl_DI
					| GPDMA_DMACCxControl_I;
		break;

	case GPDMA_TRANSFERTYPE_P2P_CONTROLLER_DMA:
	case GPDMA_TRANSFERTYPE_P2P_CONTROLLER_DestPERIPHERAL:
	case GPDMA_TRANSFERTYPE_P2P_CONTROLLER_SrcPERIPHERAL:
		ctrl_word = GPDMA_DMACCxControl_TransferSize((uint32_t) GPDMAChannelConfig->TransferSize)
					| GPDMA_DMACCxControl_SBSize(GPDMA_LUTPerBurstSrcConn)
					| GPDMA_DMACCxControl_DBSize(GPDMA_LUTPerBurstDstConn)
					| GPDMA_DMACCxControl_SWidth(GPDMA_LUTPerWidSrcConn)
					| GPDMA_DMACCxControl_DWidth(GPDMA_LUTPerWidDstConn)
					| GPDMA_DMACCxControl_SrcTransUseAHBMaster1
					| GPDMA_DMACCxControl_DestTransUseAHBMaster1
					| GPDMA_DMACCxControl_I;

		break;

	/* Do not support any more transfer type, return ERROR */
	default:
		return ERROR;
	}
	return ctrl_word;
}
Пример #5
0
void dma_setup(char ChannelNum, unsigned int SrcMemAddr,unsigned int DstMemAddr, unsigned int SrcPeriph, unsigned int DstPeriph, unsigned int TransferSize, unsigned int BurstSize, unsigned int TransferWidth, unsigned int TransferType,  unsigned int Dmalli  ){
	
    LPC_GPDMACH_TypeDef *pDMAch;

    // Get Channel pointer
    pDMAch = ((LPC_GPDMACH_TypeDef *) (LPC_GPDMACH0_BASE + 0x20 * (ChannelNum)));
     
    // Reset the Interrupt status
    LPC_GPDMA->IntTCClear = GPDMA_DMACIntTCClear_Ch(ChannelNum);
    LPC_GPDMA->IntErrClr = GPDMA_DMACIntErrClr_Ch(ChannelNum);

    // Clear DMA configure
    pDMAch->CControl = 0x00;
    pDMAch->CConfig = 0x00;

    /* Assign Linker List Item value */
    pDMAch->CLLI = Dmalli;	
	
    switch (TransferType)
    {
    // Memory to memory
    case GPDMA_TRANSFERTYPE_M2M:
        // Assign physical source and destination address
        pDMAch->CSrcAddr = SrcMemAddr;
        pDMAch->CDestAddr = DstMemAddr;
        pDMAch->CControl  = 
		                      GPDMA_DMACCxControl_TransferSize(TransferSize) \
                        | GPDMA_DMACCxControl_SBSize(BurstSize) \
                        | GPDMA_DMACCxControl_DBSize(BurstSize) \
                        | GPDMA_DMACCxControl_SWidth(TransferWidth) \
                        | GPDMA_DMACCxControl_DWidth(TransferWidth) \
                        | GPDMA_DMACCxControl_SI \
                        | GPDMA_DMACCxControl_DI \
                        | GPDMA_DMACCxControl_I;
        break;
    // Memory to peripheral
    case GPDMA_TRANSFERTYPE_M2P:
    case GPDMA_TRANSFERTYPE_M2P_DEST_CTRL:
        // Assign physical source
        pDMAch->CSrcAddr = SrcMemAddr;
        // Assign peripheral destination address
        pDMAch->CDestAddr = (uint32_t)DMA_LUTPerAddr[DstPeriph]; 
        pDMAch->CControl = 
													GPDMA_DMACCxControl_TransferSize((uint32_t)TransferSize) \
                        | GPDMA_DMACCxControl_SBSize((uint32_t)BurstSize) \
                        | GPDMA_DMACCxControl_DBSize((uint32_t)BurstSize) \
                        | GPDMA_DMACCxControl_SWidth((uint32_t)TransferWidth) \
                        | GPDMA_DMACCxControl_DWidth((uint32_t)TransferWidth) \
                        | GPDMA_DMACCxControl_SI \
                        | GPDMA_DMACCxControl_I;
        break;
    // Peripheral to memory
    case GPDMA_TRANSFERTYPE_P2M:
    case GPDMA_TRANSFERTYPE_P2M_SRC_CTRL:
        // Assign peripheral source address
        pDMAch->CSrcAddr = (uint32_t)DMA_LUTPerAddr[SrcPeriph];
        // Assign memory destination address
        pDMAch->CDestAddr = DstMemAddr;
        pDMAch->CControl  = 
													GPDMA_DMACCxControl_TransferSize((uint32_t)TransferSize) \
                        | GPDMA_DMACCxControl_SBSize((uint32_t)BurstSize) \
                        | GPDMA_DMACCxControl_DBSize((uint32_t)BurstSize) \
                        | GPDMA_DMACCxControl_SWidth((uint32_t)TransferWidth) \
                        | GPDMA_DMACCxControl_DWidth((uint32_t)TransferWidth) \
                        | GPDMA_DMACCxControl_DI \
                        | GPDMA_DMACCxControl_I;
        break;
    // Peripheral to peripheral
    case GPDMA_TRANSFERTYPE_P2P:
        // Assign peripheral source address
       pDMAch->CSrcAddr = (uint32_t)DMA_LUTPerAddr[SrcPeriph];
        // Assign peripheral destination address
       pDMAch->CDestAddr = (uint32_t)DMA_LUTPerAddr[DstPeriph];

       pDMAch->CControl = GPDMA_DMACCxControl_TransferSize((uint32_t)TransferSize) \
                        | GPDMA_DMACCxControl_SBSize((uint32_t)BurstSize) \
                        | GPDMA_DMACCxControl_DBSize((uint32_t)BurstSize) \
                        | GPDMA_DMACCxControl_SWidth((uint32_t)TransferWidth) \
                        | GPDMA_DMACCxControl_DWidth((uint32_t)TransferWidth) \
                        | GPDMA_DMACCxControl_I;
        break;
     }	
//Configure DAM Request Select register
    if((SrcPeriph != 8)&&(SrcPeriph != 9))
    {
        if (SrcPeriph > 15)
        {
            LPC_SC->DMAREQSEL |= (1<< (SrcPeriph - 16));
        } else {
            LPC_SC->DMAREQSEL &= ~(1<<(SrcPeriph));
        }
    }
    if((DstPeriph != 8)&&(DstPeriph != 9))
    {
        if (DstPeriph > 15)
        {
            LPC_SC->DMAREQSEL |= (1<< (DstPeriph - 16));
        } else {
            LPC_SC->DMAREQSEL &= ~(1<<(DstPeriph));
        }
    }

    /* Enable DMA channels, little endian */
    LPC_GPDMA->Config = (0x01);
    while (!(LPC_GPDMA->Config & 0x01));
		
    // Calculate DMA connection
if (SrcPeriph > 15) {SrcPeriph = SrcPeriph -16;}
if (DstPeriph > 15) {DstPeriph = DstPeriph -16;}
		
//Configure GPDMA Config register
   pDMAch->CConfig = GPDMA_DMACCxConfig_ITC 
									 | GPDMA_DMACCxConfig_TransferType((uint32_t)TransferType) \
									 | GPDMA_DMACCxConfig_SrcPeripheral(SrcPeriph) \
									 | GPDMA_DMACCxConfig_DestPeripheral(DstPeriph);		
	}
Пример #6
0
void LED_init(){

	GPIO_SetDir(LED_OE_PORT, LED_OE_BIT, 1);
	GPIO_SetValue(LED_OE_PORT, LED_OE_BIT);//turn off leds active low
	LatchIn();//reset
	GPIO_SetDir(LED_LE_PORT, LED_LE_BIT, 1);
	GPIO_ClearValue(LED_LE_PORT, LED_LE_BIT);

	//reset all arrays
	for (uint8_t tmp=0;tmp<no_SEQ_BITS;tmp++){
		SEQ_BIT[tmp] = BITORDER[tmp];
		SEQ_TIME[tmp] = BITTIME[BITORDER[tmp]];
	}

	resetLeds();
	calulateLEDMIBAMBits();

	// Initialize SPI pin connect
	PINSEL_CFG_Type PinCfg;
	/* LE1 */
	PinCfg.Funcnum   = PINSEL_FUNC_0;
	PinCfg.OpenDrain = PINSEL_PINMODE_NORMAL;
	PinCfg.Pinmode   = PINSEL_PINMODE_PULLDOWN;
	PinCfg.Pinnum    = LED_LE_PIN;
	PinCfg.Portnum   = LED_LE_PORT;
	PINSEL_ConfigPin(&PinCfg);
	/* SSEL1 */
	PinCfg.Funcnum   = PINSEL_FUNC_0;
	PinCfg.OpenDrain = PINSEL_PINMODE_NORMAL;
	PinCfg.Pinmode   = PINSEL_PINMODE_PULLDOWN;
	PinCfg.Pinnum    = LED_OE_PIN;
	PinCfg.Portnum   = LED_OE_PORT;
	PINSEL_ConfigPin(&PinCfg);
	/* SCK1 */
	PinCfg.Funcnum   = PINSEL_FUNC_2;
	PinCfg.OpenDrain = PINSEL_PINMODE_NORMAL;
	PinCfg.Pinmode   = PINSEL_PINMODE_PULLUP;
	PinCfg.Pinnum    = LED_SCK_PIN;
	PinCfg.Portnum   = LED_SCK_PORT;
	PINSEL_ConfigPin(&PinCfg);
	/* MISO1 */
	PinCfg.Funcnum   = PINSEL_FUNC_2;
	PinCfg.OpenDrain = PINSEL_PINMODE_NORMAL;
	PinCfg.Pinmode   = PINSEL_PINMODE_PULLUP;
	PinCfg.Pinnum    = LED_MISO_PIN;
	PinCfg.Portnum   = LED_MISO_PORT;
	PINSEL_ConfigPin(&PinCfg);
	PinCfg.Funcnum   = PINSEL_FUNC_2;
	/* MOSI1 */
	PinCfg.Funcnum   = PINSEL_FUNC_2;
	PinCfg.OpenDrain = PINSEL_PINMODE_NORMAL;
	PinCfg.Pinmode   = PINSEL_PINMODE_PULLUP;
	PinCfg.Pinnum    = LED_MOSI_PIN;
	PinCfg.Portnum   = LED_MOSI_PORT;
	PINSEL_ConfigPin(&PinCfg);

	/* initialize SSP configuration structure */
	SSP_CFG_Type SSP_ConfigStruct;
	SSP_ConfigStruct.CPHA = SSP_CPHA_SECOND;
	SSP_ConfigStruct.CPOL = SSP_CPOL_LO;
	SSP_ConfigStruct.ClockRate = SSP_SPEED; // TLC5927 max freq = 30Mhz
	SSP_ConfigStruct.FrameFormat = SSP_FRAME_SPI;
	SSP_ConfigStruct.Databit = SSP_DATABIT_16;
	SSP_ConfigStruct.Mode = SSP_MASTER_MODE;
	SSP_Init(LED_SPI_CHN, &SSP_ConfigStruct);
	SSP_Cmd(LED_SPI_CHN, ENABLE);	// Enable SSP peripheral

	// Setup LED interupt
//	xprintf(INFO "LED TIM0_ConfigMatch");FFL_();
	TIM_TIMERCFG_Type TIM0_ConfigStruct;
	TIM_MATCHCFG_Type TIM0_MatchConfigStruct;
	TIM0_ConfigStruct.PrescaleOption = TIM_PRESCALE_USVAL;	// Initialize timer 0, prescale count time of 1us //1000000uS = 1S
	TIM0_ConfigStruct.PrescaleValue	= 1;
	TIM0_MatchConfigStruct.MatchChannel = 0;		// use channel 0, MR0
	TIM0_MatchConfigStruct.IntOnMatch   = TRUE;	// Enable interrupt when MR0 matches the value in TC register
	TIM0_MatchConfigStruct.ResetOnMatch = TRUE;	//Enable reset on MR0: TIMER will reset if MR0 matches it
	TIM0_MatchConfigStruct.StopOnMatch  = FALSE;	//Stop on MR0 if MR0 matches it
	TIM0_MatchConfigStruct.ExtMatchOutputType = TIM_EXTMATCH_NOTHING;
	TIM0_MatchConfigStruct.MatchValue   = BITTIME[0];		// Set Match value, count value of 1000000 (1000000 * 1uS = 1000000us = 1s --> 1 Hz)
	TIM_Init(LPC_TIM0, TIM_TIMER_MODE,&TIM0_ConfigStruct);	// Set configuration for Tim_config and Tim_MatchConfig
	TIM_ConfigMatch(LPC_TIM0,&TIM0_MatchConfigStruct);
	NVIC_SetPriority(TIMER0_IRQn, 0);
	NVIC_EnableIRQ(TIMER0_IRQn);
//	xprintf(OK "LED TIM0_ConfigMatch");FFL_();

	// Setup LED Latch interupt
//	xprintf(INFO "LED TIM1_ConfigMatch");FFL_();
	TIM_TIMERCFG_Type TIM1_ConfigStruct;
	TIM_MATCHCFG_Type TIM1_MatchConfigStruct;
	TIM1_ConfigStruct.PrescaleOption = TIM_PRESCALE_TICKVAL;	// Initialize timer 0, prescale count time of 1us //1000000uS = 1S
	TIM1_ConfigStruct.PrescaleValue	= 1;
	TIM1_MatchConfigStruct.MatchChannel = 0;	// use channel 0, MR0
	TIM1_MatchConfigStruct.IntOnMatch   = TRUE;	// Enable interrupt when MR0 matches the value in TC register
	TIM1_MatchConfigStruct.ResetOnMatch = TRUE;	//Enable reset on MR0: TIMER will reset if MR0 matches it
	TIM1_MatchConfigStruct.StopOnMatch  = TRUE;	//Stop on MR0 if MR0 matches it
	TIM1_MatchConfigStruct.ExtMatchOutputType = TIM_EXTMATCH_NOTHING;
	TIM1_MatchConfigStruct.MatchValue   = LED_Latch_interupt_delay;		// Set Match value, count value of 1000000 (1000000 * 1uS = 1000000us = 1s --> 1 Hz)
	TIM_Init(LPC_TIM1, TIM_TIMER_MODE,&TIM1_ConfigStruct);	// Set configuration for Tim_config and Tim_MatchConfig
	TIM_ConfigMatch(LPC_TIM1,&TIM1_MatchConfigStruct);
	NVIC_SetPriority(TIMER1_IRQn, 0);
	NVIC_EnableIRQ(TIMER1_IRQn);
//	xprintf(OK "LED TIM1_ConfigMatch");FFL_();

	// Speed timer
//	xprintf(INFO "LED TIM2_ConfigMatch");FFL_();
	TIM_TIMERCFG_Type TIM2_ConfigStruct;
	TIM_MATCHCFG_Type TIM2_MatchConfigStruct;
	TIM2_ConfigStruct.PrescaleOption = TIM_PRESCALE_USVAL;	// Initialize timer 0, prescale count time of 1us //1000000uS = 1S
	TIM2_ConfigStruct.PrescaleValue	= 1000;
	TIM2_MatchConfigStruct.MatchChannel = 0;	// use channel 0, MR0
	TIM2_MatchConfigStruct.IntOnMatch   = TRUE;	// Enable interrupt when MR0 matches the value in TC register
	TIM2_MatchConfigStruct.ResetOnMatch = TRUE;	//Enable reset on MR0: TIMER will reset if MR0 matches it
	TIM2_MatchConfigStruct.StopOnMatch  = FALSE;	//Stop on MR0 if MR0 matches it
	TIM2_MatchConfigStruct.ExtMatchOutputType = TIM_EXTMATCH_NOTHING;
	TIM2_MatchConfigStruct.MatchValue   = 256;		// Set Match value, count value of 1000000 (1000000 * 1uS = 1000000us = 1s --> 1 Hz)
	TIM_Init(LPC_TIM2, TIM_TIMER_MODE,&TIM2_ConfigStruct);	// Set configuration for Tim_config and Tim_MatchConfig
	TIM_ConfigMatch(LPC_TIM2,&TIM2_MatchConfigStruct);
	NVIC_SetPriority(TIMER2_IRQn, 0);
	NVIC_EnableIRQ(TIMER2_IRQn);
//	xprintf(OK "LED TIM2_ConfigMatch");FFL_();

#ifdef DMA
//	GPDMA_Channel_CFG_Type GPDMACfg;
	NVIC_SetPriority(DMA_IRQn, 0);	// set according to main.c
	NVIC_EnableIRQ(DMA_IRQn);
	GPDMA_Init();				// Initialize GPDMA controller */
	NVIC_DisableIRQ (DMA_IRQn);	// Disable interrupt for DMA
	NVIC_SetPriority(DMA_IRQn, 0);	// set according to main.c

	GPDMACfg.ChannelNum = 0;	// DMA Channel 0
	GPDMACfg.SrcMemAddr = 0;	// Source memory - not used - will be sent in interrupt so independent bit Linker Lists can be chosen
	GPDMACfg.DstMemAddr = 0;	// Destination memory - not used - only used when destination is memory
	GPDMACfg.TransferSize = 1;	// Transfer size
	GPDMACfg.TransferWidth = GPDMA_WIDTH_HALFWORD;	// Transfer width - not used
	GPDMACfg.TransferType = GPDMA_TRANSFERTYPE_M2P;	// Transfer type
	GPDMACfg.SrcConn = 0;		// Source connection - not used
	GPDMACfg.DstConn = GPDMA_CONN_SSP0_Tx;	// Destination connection - not used
	GPDMACfg.DMALLI = (uint32_t) &LinkerList[0][0][0];	// Linker List Item - Pointer to linker list
	GPDMA_Setup(&GPDMACfg);		// Setup channel with given parameter

	// Linker list 32bit Control
	uint32_t LinkerListControl = 0;
	LinkerListControl = GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMACfg.TransferSize) \
						| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_BSIZE_1) \
						| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_BSIZE_1) \
						| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMACfg.TransferWidth) \
						| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMACfg.TransferWidth) \
						| GPDMA_DMACCxControl_SI;

	uint8_t reg, bit, linkerListNo, buf;
	for (buf=0;buf<BUFFERS;buf++){
		for (bit=0;bit<BITS;bit++){
			linkerListNo=0;
			for (reg=5; 0<reg;reg--,linkerListNo++){
//				xprintf("bit:%d reg:%d SrcAddr:0x%x DstAddr:0x%x NextLLI:0x%x linkerListNo:0x%x\n",bit,reg,(uint32_t) &LED_PRECALC[reg][bit][buf],(uint32_t) &LPC_SSP0->DR,(uint32_t) &LinkerList[linkerListNo+1][bit][buf],linkerListNo);
				LinkerList[linkerListNo][bit][buf].SrcAddr = (uint32_t) &LED_PRECALC[reg][bit][buf];	/**< Source Address */
				LinkerList[linkerListNo][bit][buf].DstAddr = (uint32_t) &LPC_SSP0->DR;			/**< Destination address */
				LinkerList[linkerListNo][bit][buf].NextLLI = (uint32_t) &LinkerList[linkerListNo+1][bit][buf];	/**< Next LLI address, otherwise set to '0' */
				LinkerList[linkerListNo][bit][buf].Control = LinkerListControl;
//				xprintf("SrcAddr:0x%x DstAddr:0x%x NextLLI:0x%x\n",(uint32_t) &LinkerList[linkerListNo][bit][buf].SrcAddr,(uint32_t) &LinkerList[linkerListNo][bit][buf].DstAddr,(uint32_t) &LinkerList[linkerListNo][bit][buf].NextLLI,(uint32_t) &LinkerList[linkerListNo][bit][buf].Control);
			}
//			if (reg==0){
//			xprintf("bit:%d reg:%d SrcAddr:0x%x DstAddr:0x%x NextLLI:0x%x linkerListNo:0x%x\n",bit,reg,(uint32_t) &LED_PRECALC[reg][bit][buf],(uint32_t) &LPC_SSP0->DR,(uint32_t) &LinkerList[linkerListNo+1][bit][buf],linkerListNo);
			LinkerList[linkerListNo][bit][buf].SrcAddr = (uint32_t) &LED_PRECALC[reg][bit][buf];	/**< Source Address */
			LinkerList[linkerListNo][bit][buf].DstAddr = (uint32_t) &LPC_SSP0->DR;			/**< Destination address */
			LinkerList[linkerListNo][bit][buf].NextLLI = (uint32_t) &LinkerList[linkerListNo+1][bit][buf];/**< Next LLI address, otherwise set to '0' */
			LinkerList[linkerListNo][bit][buf].Control = LinkerListControl;
			linkerListNo++;
//			xprintf("SrcAddr:0x%x DstAddr:0x%x NextLLI:0x%x\n",(uint32_t) &LinkerList[linkerListNo][bit][buf].SrcAddr,(uint32_t) &LinkerList[linkerListNo][bit][buf].DstAddr,(uint32_t) &LinkerList[linkerListNo][bit][buf].NextLLI,(uint32_t) &LinkerList[linkerListNo][bit][buf].Control);
//			}
			for (reg=11; reg>6;reg--,linkerListNo++){
//				xprintf("bit:%d reg:%d SrcAddr:0x%x DstAddr:0x%x NextLLI:0x%x linkerListNo:0x%x\n",bit,reg,(uint32_t) &LED_PRECALC[reg][bit][buf],(uint32_t) &LPC_SSP0->DR,(uint32_t) &LinkerList[linkerListNo+1][bit][buf],linkerListNo);
				LinkerList[linkerListNo][bit][buf].SrcAddr = (uint32_t) &LED_PRECALC[reg][bit][buf];	/**< Source Address */
				LinkerList[linkerListNo][bit][buf].DstAddr = (uint32_t) &LPC_SSP0->DR;			/**< Destination address */
				LinkerList[linkerListNo][bit][buf].NextLLI = (uint32_t) &LinkerList[linkerListNo+1][bit][buf];	/**< Next LLI address, otherwise set to '0' */
				LinkerList[linkerListNo][bit][buf].Control = LinkerListControl;
//				xprintf("SrcAddr:0x%x DstAddr:0x%x NextLLI:0x%x\n",(uint32_t) &LinkerList[linkerListNo][bit][buf].SrcAddr,(uint32_t) &LinkerList[linkerListNo][bit][buf].DstAddr,(uint32_t) &LinkerList[linkerListNo][bit][buf].NextLLI,(uint32_t) &LinkerList[linkerListNo][bit][buf].Control);
			}
//			if (reg==7){
//				xprintf("bit:%d reg:%d SrcAddr:0x%x DstAddr:0x%x NextLLI:0x%x linkerListNo:0x%x\n",bit,reg,(uint32_t) &LED_PRECALC[reg][bit][buf],(uint32_t) &LPC_SSP0->DR,(uint32_t) &LinkerList[linkerListNo+1][bit][buf],linkerListNo);
				LinkerList[linkerListNo][bit][buf].SrcAddr = (uint32_t) &LED_PRECALC[reg][bit][buf];	/**< Source Address */
				LinkerList[linkerListNo][bit][buf].DstAddr = (uint32_t) &LPC_SSP0->DR;			/**< Destination address */
				LinkerList[linkerListNo][bit][buf].NextLLI = 0;									/**< Next LLI address, otherwise set to '0' */
				LinkerList[linkerListNo][bit][buf].Control = LinkerListControl;
				linkerListNo++;
//			xprintf("SrcAddr:0x%x DstAddr:0x%x NextLLI:0x%x NextLLI_V:0x%x\n",(uint32_t) &LinkerList[linkerListNo][bit][buf].SrcAddr,(uint32_t) &LinkerList[linkerListNo][bit][buf].DstAddr,(uint32_t) &LinkerList[linkerListNo][bit][buf].NextLLI,LinkerList[linkerListNo][bit][buf].NextLLI);
//			}
		}
	}
	SSP_DMACmd (LED_SPI_CHN, SSP_DMA_TX, ENABLE);	// Enable Tx DMA on SSP0
//	GPDMA_ChannelCmd(0, ENABLE);	// Enable GPDMA channel 0
	NVIC_EnableIRQ (DMA_IRQn);		// Enable interrupt for DMA
	xprintf(OK "DMA Setup");FFL_();


	TIM_Cmd(LPC_TIM0,ENABLE);	// To start timer 0
//	TIM_Cmd(LPC_TIM1,ENABLE);	// To start timer 1 //done at DMA end
	TIM_Cmd(LPC_TIM2,ENABLE);	// To start timer 2

	xprintf(OK "TIM_Cmd(LPC_TIM0/2,ENABLE);");FFL_();

	// Start LED Pattern
	uint8_t pot = 65;
	Set_LED_Pattern(1,121,pot);
	xprintf(OK "LED Pattern Started");FFL_();

#endif
#ifdef RxDMA // SSP Rx DMA
	GPDMA_Channel_CFG_Type GPDMACfg1;
	/* Configure GPDMA channel 1 -------------------------------------------------------------*/
	GPDMACfg1.ChannelNum = 1;	// DMA Channel 0
	GPDMACfg1.SrcMemAddr = 0;	// Source memory - not used - will be sent in interrupt so independent bit Linker Lists can be chosen
	GPDMACfg1.DstMemAddr = (uint32_t) &LED_PRECALC1[0][0];	// Destination memory - not used - only used when destination is memory
	GPDMACfg1.TransferSize = 1;	// Transfer size
	GPDMACfg1.TransferWidth = GPDMA_WIDTH_HALFWORD;	// Transfer width
	GPDMACfg1.TransferType = GPDMA_TRANSFERTYPE_P2M;	// Transfer type
	GPDMACfg1.SrcConn = GPDMA_CONN_SSP0_Rx;		// Source connection - not used
	GPDMACfg1.DstConn = 0;	// Destination connection - not used
	GPDMACfg1.DMALLI = 0;	// Linker List Item - Pointer to linker list
	GPDMA_Setup(&GPDMACfg1);		// Setup channel with given parameter
	Channel1_TC = 0;			// Reset terminal counter
	Channel1_Err = 0;			// Reset Error counter
	xprintf(OK "DMA Rx Setup");FFL_();
//	SSP_DMACmd (LED_SPI_CHN, SSP_DMA_RX, ENABLE);	// Enable Tx DMA on SSP0
//	GPDMA_ChannelCmd(1, ENABLE);	// Enable GPDMA channel 0
#endif
}