Пример #1
0
int
mpfr_cbrt (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  mpz_t m;
  mpfr_exp_t e, r, sh;
  mpfr_prec_t n, size_m, tmp;
  int inexact, negative;
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC (
    ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
    ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y,
     inexact));

  /* special values */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (x))
        {
          MPFR_SET_INF (y);
          MPFR_SET_SAME_SIGN (y, x);
          MPFR_RET (0);
        }
      /* case 0: cbrt(+/- 0) = +/- 0 */
      else /* x is necessarily 0 */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (x));
          MPFR_SET_ZERO (y);
          MPFR_SET_SAME_SIGN (y, x);
          MPFR_RET (0);
        }
    }

  /* General case */
  MPFR_SAVE_EXPO_MARK (expo);
  mpz_init (m);

  e = mpfr_get_z_2exp (m, x);                /* x = m * 2^e */
  if ((negative = MPFR_IS_NEG(x)))
    mpz_neg (m, m);
  r = e % 3;
  if (r < 0)
    r += 3;
  /* x = (m*2^r) * 2^(e-r) = (m*2^r) * 2^(3*q) */

  MPFR_MPZ_SIZEINBASE2 (size_m, m);
  n = MPFR_PREC (y) + (rnd_mode == MPFR_RNDN);

  /* we want 3*n-2 <= size_m + 3*sh + r <= 3*n
     i.e. 3*sh + size_m + r <= 3*n */
  sh = (3 * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / 3;
  sh = 3 * sh + r;
  if (sh >= 0)
    {
      mpz_mul_2exp (m, m, sh);
      e = e - sh;
    }
  else if (r > 0)
    {
      mpz_mul_2exp (m, m, r);
      e = e - r;
    }

  /* invariant: x = m*2^e, with e divisible by 3 */

  /* we reuse the variable m to store the cube root, since it is not needed
     any more: we just need to know if the root is exact */
  inexact = mpz_root (m, m, 3) == 0;

  MPFR_MPZ_SIZEINBASE2 (tmp, m);
  sh = tmp - n;
  if (sh > 0) /* we have to flush to 0 the last sh bits from m */
    {
      inexact = inexact || ((mpfr_exp_t) mpz_scan1 (m, 0) < sh);
      mpz_fdiv_q_2exp (m, m, sh);
      e += 3 * sh;
    }

  if (inexact)
    {
      if (negative)
        rnd_mode = MPFR_INVERT_RND (rnd_mode);
      if (rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDA
          || (rnd_mode == MPFR_RNDN && mpz_tstbit (m, 0)))
        inexact = 1, mpz_add_ui (m, m, 1);
      else
        inexact = -1;
    }

  /* either inexact is not zero, and the conversion is exact, i.e. inexact
     is not changed; or inexact=0, and inexact is set only when
     rnd_mode=MPFR_RNDN and bit (n+1) from m is 1 */
  inexact += mpfr_set_z (y, m, MPFR_RNDN);
  MPFR_SET_EXP (y, MPFR_GET_EXP (y) + e / 3);

  if (negative)
    {
      MPFR_CHANGE_SIGN (y);
      inexact = -inexact;
    }

  mpz_clear (m);
  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inexact, rnd_mode);
}
Пример #2
0
/* return non zero iff x^y is exact.
   Assumes x and y are ordinary numbers,
   y is not an integer, x is not a power of 2 and x is positive

   If x^y is exact, it computes it and sets *inexact.
*/
static int
mpfr_pow_is_exact (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y,
                   mpfr_rnd_t rnd_mode, int *inexact)
{
  mpz_t a, c;
  mpfr_exp_t d, b;
  unsigned long i;
  int res;

  MPFR_ASSERTD (!MPFR_IS_SINGULAR (y));
  MPFR_ASSERTD (!MPFR_IS_SINGULAR (x));
  MPFR_ASSERTD (!mpfr_integer_p (y));
  MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_INT_SIGN (x),
                                  MPFR_GET_EXP (x) - 1) != 0);
  MPFR_ASSERTD (MPFR_IS_POS (x));

  if (MPFR_IS_NEG (y))
    return 0; /* x is not a power of two => x^-y is not exact */

  /* compute d such that y = c*2^d with c odd integer */
  mpz_init (c);
  d = mpfr_get_z_2exp (c, y);
  i = mpz_scan1 (c, 0);
  mpz_fdiv_q_2exp (c, c, i);
  d += i;
  /* now y=c*2^d with c odd */
  /* Since y is not an integer, d is necessarily < 0 */
  MPFR_ASSERTD (d < 0);

  /* Compute a,b such that x=a*2^b */
  mpz_init (a);
  b = mpfr_get_z_2exp (a, x);
  i = mpz_scan1 (a, 0);
  mpz_fdiv_q_2exp (a, a, i);
  b += i;
  /* now x=a*2^b with a is odd */

  for (res = 1 ; d != 0 ; d++)
    {
      /* a*2^b is a square iff
            (i)  a is a square when b is even
            (ii) 2*a is a square when b is odd */
      if (b % 2 != 0)
        {
          mpz_mul_2exp (a, a, 1); /* 2*a */
          b --;
        }
      MPFR_ASSERTD ((b % 2) == 0);
      if (!mpz_perfect_square_p (a))
        {
          res = 0;
          goto end;
        }
      mpz_sqrt (a, a);
      b = b / 2;
    }
  /* Now x = (a'*2^b')^(2^-d) with d < 0
     so x^y = ((a'*2^b')^(2^-d))^(c*2^d)
            = ((a'*2^b')^c with c odd integer */
  {
    mpfr_t tmp;
    mpfr_prec_t p;
    MPFR_MPZ_SIZEINBASE2 (p, a);
    mpfr_init2 (tmp, p); /* prec = 1 should not be possible */
    res = mpfr_set_z (tmp, a, MPFR_RNDN);
    MPFR_ASSERTD (res == 0);
    res = mpfr_mul_2si (tmp, tmp, b, MPFR_RNDN);
    MPFR_ASSERTD (res == 0);
    *inexact = mpfr_pow_z (z, tmp, c, rnd_mode);
    mpfr_clear (tmp);
    res = 1;
  }
 end:
  mpz_clear (a);
  mpz_clear (c);
  return res;
}
Пример #3
0
/* y <- exp(p/2^r) within 1 ulp, using 2^m terms from the series
   Assume |p/2^r| < 1.
   We use the following binary splitting formula:
   P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
   Q(a,b) = a*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
   T(a,b) = P(a,b) if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise
   Then exp(p/2^r) ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough.

   Since P(a,b) = p^(b-a), and we consider only values of b-a of the form 2^j,
   we don't need to compute P(), we only precompute p^(2^j) in the ptoj[] array
   below.

   Since Q(a,b) is divisible by 2^(r*(b-a-1)), we don't compute the power of
   two part.
*/
static void
mpfr_exp_rational (mpfr_ptr y, mpz_ptr p, long r, int m,
                   mpz_t *Q, mp_prec_t *mult)
{
  unsigned long n, i, j;
  mpz_t *S, *ptoj;
  mp_prec_t *log2_nb_terms;
  mp_exp_t diff, expo;
  mp_prec_t precy = MPFR_PREC(y), prec_i_have, prec_ptoj;
  int k, l;

  MPFR_ASSERTN ((size_t) m < sizeof (long) * CHAR_BIT - 1);

  S    = Q + (m+1);
  ptoj = Q + 2*(m+1);                     /* ptoj[i] = mantissa^(2^i) */
  log2_nb_terms = mult + (m+1);

  /* Normalize p */
  MPFR_ASSERTD (mpz_cmp_ui (p, 0) != 0);
  n = mpz_scan1 (p, 0); /* number of trailing zeros in p */
  mpz_tdiv_q_2exp (p, p, n);
  r -= n; /* since |p/2^r| < 1 and p >= 1, r >= 1 */

  /* Set initial var */
  mpz_set (ptoj[0], p);
  for (k = 1; k < m; k++)
    mpz_mul (ptoj[k], ptoj[k-1], ptoj[k-1]); /* ptoj[k] = p^(2^k) */
  mpz_set_ui (Q[0], 1);
  mpz_set_ui (S[0], 1);
  k = 0;
  mult[0] = 0; /* the multiplier P[k]/Q[k] for the remaining terms
                  satisfies P[k]/Q[k] <= 2^(-mult[k]) */
  log2_nb_terms[0] = 0; /* log2(#terms) [exact in 1st loop where 2^k] */
  prec_i_have = 0;

  /* Main Loop */
  n = 1UL << m;
  for (i = 1; (prec_i_have < precy) && (i < n); i++)
    {
      /* invariant: Q[0]*Q[1]*...*Q[k] equals i! */
      k++;
      log2_nb_terms[k] = 0; /* 1 term */
      mpz_set_ui (Q[k], i + 1);
      mpz_set_ui (S[k], i + 1);
      j = i + 1; /* we have computed j = i+1 terms so far */
      l = 0;
      while ((j & 1) == 0) /* combine and reduce */
        {
          /* invariant: S[k] corresponds to 2^l consecutive terms */
          mpz_mul (S[k], S[k], ptoj[l]);
          mpz_mul (S[k-1], S[k-1], Q[k]);
          /* Q[k] corresponds to 2^l consecutive terms too.
             Since it does not contains the factor 2^(r*2^l),
             when going from l to l+1 we need to multiply
             by 2^(r*2^(l+1))/2^(r*2^l) = 2^(r*2^l) */
          mpz_mul_2exp (S[k-1], S[k-1], r << l);
          mpz_add (S[k-1], S[k-1], S[k]);
          mpz_mul (Q[k-1], Q[k-1], Q[k]);
          log2_nb_terms[k-1] ++; /* number of terms in S[k-1]
                                    is a power of 2 by construction */
          MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[k]);
          MPFR_MPZ_SIZEINBASE2 (prec_ptoj, ptoj[l]);
          mult[k-1] += prec_i_have + (r << l) - prec_ptoj - 1;
          prec_i_have = mult[k] = mult[k-1];
          /* since mult[k] >= mult[k-1] + nbits(Q[k]),
             we have Q[0]*...*Q[k] <= 2^mult[k] = 2^prec_i_have */
          l ++;
          j >>= 1;
          k --;
        }
    }

  /* accumulate all products in S[0] and Q[0]. Warning: contrary to above,
     here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */
  l = 0; /* number of accumulated terms in the right part S[k]/Q[k] */
  while (k > 0)
    {
      j = log2_nb_terms[k-1];
      mpz_mul (S[k], S[k], ptoj[j]);
      mpz_mul (S[k-1], S[k-1], Q[k]);
      l += 1 << log2_nb_terms[k];
      mpz_mul_2exp (S[k-1], S[k-1], r * l);
      mpz_add (S[k-1], S[k-1], S[k]);
      mpz_mul (Q[k-1], Q[k-1], Q[k]);
      k--;
    }

  /* Q[0] now equals i! */
  MPFR_MPZ_SIZEINBASE2 (prec_i_have, S[0]);
  diff = (mp_exp_t) prec_i_have - 2 * (mp_exp_t) precy;
  expo = diff;
  if (diff >= 0)
    mpz_div_2exp (S[0], S[0], diff);
  else
    mpz_mul_2exp (S[0], S[0], -diff);

  MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[0]);
  diff = (mp_exp_t) prec_i_have - (mp_prec_t) precy;
  expo -= diff;
  if (diff > 0)
    mpz_div_2exp (Q[0], Q[0], diff);
  else
    mpz_mul_2exp (Q[0], Q[0], -diff);

  mpz_tdiv_q (S[0], S[0], Q[0]);
  mpfr_set_z (y, S[0], GMP_RNDD);
  MPFR_SET_EXP (y, MPFR_GET_EXP (y) + expo - r * (i - 1) );
}
Пример #4
0
/* If x = p/2^r, put in y an approximation of atan(x)/x using 2^m terms
   for the series expansion, with an error of at most 1 ulp.
   Assumes |x| < 1.

   If X=x^2, we want 1 - X/3 + X^2/5 - ... + (-1)^k*X^k/(2k+1) + ...

   Assume p is non-zero.

   When we sum terms up to x^k/(2k+1), the denominator Q[0] is
   3*5*7*...*(2k+1) ~ (2k/e)^k.
*/
static void
mpfr_atan_aux (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *tab)
{
  mpz_t *S, *Q, *ptoj;
  unsigned long n, i, k, j, l;
  mpfr_exp_t diff, expo;
  int im, done;
  mpfr_prec_t mult, *accu, *log2_nb_terms;
  mpfr_prec_t precy = MPFR_PREC(y);

  MPFR_ASSERTD(mpz_cmp_ui (p, 0) != 0);

  accu = (mpfr_prec_t*) (*__gmp_allocate_func) ((2 * m + 2) * sizeof (mpfr_prec_t));
  log2_nb_terms = accu + m + 1;

  /* Set Tables */
  S    = tab;           /* S */
  ptoj = S + 1*(m+1);   /* p^2^j Precomputed table */
  Q    = S + 2*(m+1);   /* Product of Odd integer  table  */

  /* From p to p^2, and r to 2r */
  mpz_mul (p, p, p);
  MPFR_ASSERTD (2 * r > r);
  r = 2 * r;

  /* Normalize p */
  n = mpz_scan1 (p, 0);
  mpz_tdiv_q_2exp (p, p, n); /* exact */
  MPFR_ASSERTD (r > n);
  r -= n;
  /* since |p/2^r| < 1, and p is a non-zero integer, necessarily r > 0 */

  MPFR_ASSERTD (mpz_sgn (p) > 0);
  MPFR_ASSERTD (m > 0);

  /* check if p=1 (special case) */
  l = 0;
  /*
    We compute by binary splitting, with X = x^2 = p/2^r:
    P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
    Q(a,b) = (2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
    S(a,b) = p*(2a+1) if a+1=b, Q(c,b)*S(a,c)+Q(a,c)*P(a,c)*S(c,b) otherwise
    Then atan(x)/x ~ S(0,i)/Q(0,i) for i so that (p/2^r)^i/i is small enough.
    The factor 2^(r*(b-a)) in Q(a,b) is implicit, thus we have to take it
    into account when we compute with Q.
  */
  accu[0] = 0; /* accu[k] = Mult[0] + ... + Mult[k], where Mult[j] is the
                  number of bits of the corresponding term S[j]/Q[j] */
  if (mpz_cmp_ui (p, 1) != 0)
    {
      /* p <> 1: precompute ptoj table */
      mpz_set (ptoj[0], p);
      for (im = 1 ; im <= m ; im ++)
        mpz_mul (ptoj[im], ptoj[im - 1], ptoj[im - 1]);
      /* main loop */
      n = 1UL << m;
      /* the ith term being X^i/(2i+1) with X=p/2^r, we can stop when
         p^i/2^(r*i) < 2^(-precy), i.e. r*i > precy + log2(p^i) */
      for (i = k = done = 0; (i < n) && (done == 0); i += 2, k ++)
        {
          /* initialize both S[k],Q[k] and S[k+1],Q[k+1] */
          mpz_set_ui (Q[k+1], 2 * i + 3); /* Q(i+1,i+2) */
          mpz_mul_ui (S[k+1], p, 2 * i + 1); /* S(i+1,i+2) */
          mpz_mul_2exp (S[k], Q[k+1], r);
          mpz_sub (S[k], S[k], S[k+1]); /* S(i,i+2) */
          mpz_mul_ui (Q[k], Q[k+1], 2 * i + 1); /* Q(i,i+2) */
          log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
          for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l ++, j >>= 1, k --)
            {
              /* invariant: S[k-1]/Q[k-1] and S[k]/Q[k] correspond
                 to 2^l terms each. We combine them into S[k-1]/Q[k-1] */
              MPFR_ASSERTD (k > 0);
              mpz_mul (S[k], S[k], Q[k-1]);
              mpz_mul (S[k], S[k], ptoj[l]);
              mpz_mul (S[k-1], S[k-1], Q[k]);
              mpz_mul_2exp (S[k-1], S[k-1], r << l);
              mpz_add (S[k-1], S[k-1], S[k]);
              mpz_mul (Q[k-1], Q[k-1], Q[k]);
              log2_nb_terms[k-1] = l + 1;
              /* now S[k-1]/Q[k-1] corresponds to 2^(l+1) terms */
              MPFR_MPZ_SIZEINBASE2(mult, ptoj[l+1]);
              /* FIXME: precompute bits(ptoj[l+1]) outside the loop? */
              mult = (r << (l + 1)) - mult - 1;
              accu[k-1] = (k == 1) ? mult : accu[k-2] + mult;
              if (accu[k-1] > precy)
                done = 1;
            }
        }
    }
Пример #5
0
/* compute in y an approximation of sum(x^k/k/k!, k=1..infinity),
   and return e such that the absolute error is bound by 2^e ulp(y) */
static mp_exp_t
mpfr_eint_aux (mpfr_t y, mpfr_srcptr x)
{
  mpfr_t eps; /* dynamic (absolute) error bound on t */
  mpfr_t erru, errs;
  mpz_t m, s, t, u;
  mp_exp_t e, sizeinbase;
  mp_prec_t w = MPFR_PREC(y);
  unsigned long k;
  MPFR_GROUP_DECL (group);

  /* for |x| <= 1, we have S := sum(x^k/k/k!, k=1..infinity) = x + R(x)
     where |R(x)| <= (x/2)^2/(1-x/2) <= 2*(x/2)^2
     thus |R(x)/x| <= |x|/2
     thus if |x| <= 2^(-PREC(y)) we have |S - o(x)| <= ulp(y) */

  if (MPFR_GET_EXP(x) <= - (mp_exp_t) w)
    {
      mpfr_set (y, x, GMP_RNDN);
      return 0;
    }

  mpz_init (s); /* initializes to 0 */
  mpz_init (t);
  mpz_init (u);
  mpz_init (m);
  MPFR_GROUP_INIT_3 (group, 31, eps, erru, errs);
  e = mpfr_get_z_exp (m, x); /* x = m * 2^e */
  MPFR_ASSERTD (mpz_sizeinbase (m, 2) == MPFR_PREC (x));
  if (MPFR_PREC (x) > w)
    {
      e += MPFR_PREC (x) - w;
      mpz_tdiv_q_2exp (m, m, MPFR_PREC (x) - w);
    }
  /* remove trailing zeroes from m: this will speed up much cases where
     x is a small integer divided by a power of 2 */
  k = mpz_scan1 (m, 0);
  mpz_tdiv_q_2exp (m, m, k);
  e += k;
  /* initialize t to 2^w */
  mpz_set_ui (t, 1);
  mpz_mul_2exp (t, t, w);
  mpfr_set_ui (eps, 0, GMP_RNDN); /* eps[0] = 0 */
  mpfr_set_ui (errs, 0, GMP_RNDN);
  for (k = 1;; k++)
    {
      /* let eps[k] be the absolute error on t[k]:
         since t[k] = trunc(t[k-1]*m*2^e/k), we have
         eps[k+1] <= 1 + eps[k-1]*m*2^e/k + t[k-1]*m*2^(1-w)*2^e/k
                  =  1 + (eps[k-1] + t[k-1]*2^(1-w))*m*2^e/k
                  = 1 + (eps[k-1]*2^(w-1) + t[k-1])*2^(1-w)*m*2^e/k */
      mpfr_mul_2ui (eps, eps, w - 1, GMP_RNDU);
      mpfr_add_z (eps, eps, t, GMP_RNDU);
      MPFR_MPZ_SIZEINBASE2 (sizeinbase, m);
      mpfr_mul_2si (eps, eps, sizeinbase - (w - 1) + e, GMP_RNDU);
      mpfr_div_ui (eps, eps, k, GMP_RNDU);
      mpfr_add_ui (eps, eps, 1, GMP_RNDU);
      mpz_mul (t, t, m);
      if (e < 0)
        mpz_tdiv_q_2exp (t, t, -e);
      else
        mpz_mul_2exp (t, t, e);
      mpz_tdiv_q_ui (t, t, k);
      mpz_tdiv_q_ui (u, t, k);
      mpz_add (s, s, u);
      /* the absolute error on u is <= 1 + eps[k]/k */
      mpfr_div_ui (erru, eps, k, GMP_RNDU);
      mpfr_add_ui (erru, erru, 1, GMP_RNDU);
      /* and that on s is the sum of all errors on u */
      mpfr_add (errs, errs, erru, GMP_RNDU);
      /* we are done when t is smaller than errs */
      if (mpz_sgn (t) == 0)
        sizeinbase = 0;
      else
        MPFR_MPZ_SIZEINBASE2 (sizeinbase, t);
      if (sizeinbase < MPFR_GET_EXP (errs))
        break;
    }
  /* the truncation error is bounded by (|t|+eps)/k*(|x|/k + |x|^2/k^2 + ...)
     <= (|t|+eps)/k*|x|/(k-|x|) */
  mpz_abs (t, t);
  mpfr_add_z (eps, eps, t, GMP_RNDU);
  mpfr_div_ui (eps, eps, k, GMP_RNDU);
  mpfr_abs (erru, x, GMP_RNDU); /* |x| */
  mpfr_mul (eps, eps, erru, GMP_RNDU);
  mpfr_ui_sub (erru, k, erru, GMP_RNDD);
  if (MPFR_IS_NEG (erru))
    {
      /* the truncated series does not converge, return fail */
      e = w;
    }
  else
    {
      mpfr_div (eps, eps, erru, GMP_RNDU);
      mpfr_add (errs, errs, eps, GMP_RNDU);
      mpfr_set_z (y, s, GMP_RNDN);
      mpfr_div_2ui (y, y, w, GMP_RNDN);
      /* errs was an absolute error bound on s. We must convert it to an error
         in terms of ulp(y). Since ulp(y) = 2^(EXP(y)-PREC(y)), we must
         divide the error by 2^(EXP(y)-PREC(y)), but since we divided also
         y by 2^w = 2^PREC(y), we must simply divide by 2^EXP(y). */
      e = MPFR_GET_EXP (errs) - MPFR_GET_EXP (y);
    }
  MPFR_GROUP_CLEAR (group);
  mpz_clear (s);
  mpz_clear (t);
  mpz_clear (u);
  mpz_clear (m);
  return e;
}