/* * This doesn't necessarily belong here (because it's HAL related, not * driver related). */ void ath_sysctl_hal_attach(struct ath_softc *sc) { struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "hal", CTLFLAG_RD, NULL, "Atheros HAL parameters"); child = SYSCTL_CHILDREN(tree); sc->sc_ah->ah_config.ah_debug = 0; SYSCTL_ADD_INT(ctx, child, OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_ah->ah_config.ah_debug, 0, "Atheros HAL debugging printfs"); sc->sc_ah->ah_config.ah_ar5416_biasadj = 0; SYSCTL_ADD_INT(ctx, child, OID_AUTO, "ar5416_biasadj", CTLFLAG_RW, &sc->sc_ah->ah_config.ah_ar5416_biasadj, 0, "Enable 2GHz AR5416 direction sensitivity bias adjust"); sc->sc_ah->ah_config.ah_dma_beacon_response_time = 2; SYSCTL_ADD_INT(ctx, child, OID_AUTO, "dma_brt", CTLFLAG_RW, &sc->sc_ah->ah_config.ah_dma_beacon_response_time, 0, "Atheros HAL DMA beacon response time"); sc->sc_ah->ah_config.ah_sw_beacon_response_time = 10; SYSCTL_ADD_INT(ctx, child, OID_AUTO, "sw_brt", CTLFLAG_RW, &sc->sc_ah->ah_config.ah_sw_beacon_response_time, 0, "Atheros HAL software beacon response time"); sc->sc_ah->ah_config.ah_additional_swba_backoff = 0; SYSCTL_ADD_INT(ctx, child, OID_AUTO, "swba_backoff", CTLFLAG_RW, &sc->sc_ah->ah_config.ah_additional_swba_backoff, 0, "Atheros HAL additional SWBA backoff time"); }
static int ow_temp_attach(device_t dev) { struct ow_temp_softc *sc; sc = device_get_softc(dev); sc->dev = dev; sc->type = ow_get_family(dev); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "temperature", CTLFLAG_RD | CTLTYPE_INT, &sc->temp, 0, sysctl_handle_int, "IK3", "Current Temperature"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "badcrc", CTLFLAG_RD, &sc->bad_crc, 0, "Number of Bad CRC on reading scratchpad"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "badread", CTLFLAG_RD, &sc->bad_reads, 0, "Number of errors on reading scratchpad"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "reading_interval", CTLFLAG_RW, &sc->reading_interval, 0, "ticks between reads"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "parasite", CTLFLAG_RW, &sc->parasite, 0, "In Parasite mode"); /* * Just do this for unit 0 to avoid locking * the ow bus until that code can be put * into place. */ sc->temp = -1; sc->reading_interval = 10 * hz; mtx_init(&sc->temp_lock, "lock for doing temperature", NULL, MTX_DEF); /* Start the thread */ if (kproc_create(ow_temp_event_thread, sc, &sc->event_thread, 0, 0, "%s event thread", device_get_nameunit(dev))) { device_printf(dev, "unable to create event thread.\n"); panic("cbb_create_event_thread"); } return 0; }
static int acpi_dock_attach(device_t dev) { struct acpi_dock_softc *sc; ACPI_HANDLE h; sc = device_get_softc(dev); h = acpi_get_handle(dev); if (sc == NULL || h == NULL) return (ENXIO); sc->status = ACPI_DOCK_STATUS_UNKNOWN; AcpiEvaluateObject(h, "_INI", NULL, NULL); ACPI_SERIAL_BEGIN(dock); acpi_dock_device_check(dev); /* Get the sysctl tree */ sc->sysctl_ctx = device_get_sysctl_ctx(dev); sc->sysctl_tree = device_get_sysctl_tree(dev); SYSCTL_ADD_INT(sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "_sta", CTLFLAG_RD, &sc->_sta, 0, "Dock _STA"); SYSCTL_ADD_INT(sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "_bdn", CTLFLAG_RD, &sc->_bdn, 0, "Dock _BDN"); SYSCTL_ADD_INT(sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "_uid", CTLFLAG_RD, &sc->_uid, 0, "Dock _UID"); SYSCTL_ADD_PROC(sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "status", CTLTYPE_INT|CTLFLAG_RW, dev, 0, acpi_dock_status_sysctl, "I", "Dock/Undock operation"); ACPI_SERIAL_END(dock); AcpiInstallNotifyHandler(h, ACPI_ALL_NOTIFY, acpi_dock_notify_handler, dev); return (0); }
static void ath_rate_sysctlattach(struct ath_softc *sc, struct sample_softc *osc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); /* XXX bounds check [0..100] */ SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "smoothing_rate", CTLFLAG_RW, &osc->ath_smoothing_rate, 0, "rate control: retry threshold to credit rate raise (%%)"); /* XXX bounds check [2..100] */ SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "sample_rate", CTLFLAG_RW, &osc->ath_sample_rate,0, "rate control: # good periods before raising rate"); }
void ucom_set_pnpinfo_usb(struct ucom_super_softc *ssc, device_t dev) { char buf[64]; uint8_t iface_index; struct usb_attach_arg *uaa; snprintf(buf, sizeof(buf), "ttyname=" UCOM_TTY_PREFIX "%d ttyports=%d", ssc->sc_unit, ssc->sc_subunits); /* Store the PNP info in the first interface for the device */ uaa = device_get_ivars(dev); iface_index = uaa->info.bIfaceIndex; if (usbd_set_pnpinfo(uaa->device, iface_index, buf) != 0) device_printf(dev, "Could not set PNP info\n"); /* * The following information is also replicated in the PNP-info * string which is registered above: */ if (ssc->sc_sysctl_ttyname == NULL) { ssc->sc_sysctl_ttyname = SYSCTL_ADD_STRING(NULL, SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "ttyname", CTLFLAG_RD, ssc->sc_ttyname, 0, "TTY device basename"); } if (ssc->sc_sysctl_ttyports == NULL) { ssc->sc_sysctl_ttyports = SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "ttyports", CTLFLAG_RD, NULL, ssc->sc_subunits, "Number of ports"); } }
static int canbus_attach(device_t dev) { struct canbus_softc *sc = device_get_softc(dev); struct sysctl_oid *canbus_sysctl_tree; sc->io_delay_time = CANBE_IO_DELAY_TIME; /* I/O resource setup */ if(alloc_ioresource(dev)) return (ENXIO); /* Dynamic sysctl tree setup */ sysctl_ctx_init(&sc->canbus_sysctl_ctx); canbus_sysctl_tree = SYSCTL_ADD_NODE(&sc->canbus_sysctl_ctx, SYSCTL_STATIC_CHILDREN(/* tree top */), OID_AUTO, "canbus", CTLFLAG_RD, 0, "CanBe I/O Bus"); SYSCTL_ADD_INT(&sc->canbus_sysctl_ctx, SYSCTL_CHILDREN(canbus_sysctl_tree), OID_AUTO, "io_delay_time", CTLFLAG_RW, &sc->io_delay_time, 0, "CanBe Bus I/O delay time"); bus_generic_probe(dev); bus_generic_attach(dev); return (0); }
static void r21a_attach_private(struct rtwn_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); struct r12a_softc *rs; rs = malloc(sizeof(struct r12a_softc), M_RTWN_PRIV, M_WAITOK | M_ZERO); rs->rs_flags = R12A_RXCKSUM_EN | R12A_RXCKSUM6_EN; rs->rs_radar = 0; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radar_detection", CTLFLAG_RDTUN, &rs->rs_radar, rs->rs_radar, "Enable radar detection (untested)"); rs->rs_fix_spur = rtwn_nop_softc_chan; rs->rs_set_band_2ghz = r21a_set_band_2ghz; rs->rs_set_band_5ghz = r21a_set_band_5ghz; rs->rs_init_burstlen = r21au_init_burstlen; rs->rs_init_ampdu_fwhw = r21a_init_ampdu_fwhw; rs->rs_crystalcap_write = r21a_crystalcap_write; #ifndef RTWN_WITHOUT_UCODE rs->rs_iq_calib_fw_supported = r21a_iq_calib_fw_supported; #endif rs->rs_iq_calib_sw = r21a_iq_calib_sw; rs->ampdu_max_time = 0x5e; rs->ac_usb_dma_size = 0x01; rs->ac_usb_dma_time = 0x10; sc->sc_priv = rs; }
static void amrr_sysctlattach(struct ieee80211_amrr *amrr, struct sysctl_ctx_list *ctx, struct sysctl_oid *tree) { SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "amrr_rate_interval", CTLTYPE_INT | CTLFLAG_RW, amrr, 0, amrr_sysctl_interval, "I", "amrr operation interval (ms)"); /* XXX bounds check values */ SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "amrr_max_sucess_threshold", CTLFLAG_RW, &amrr->amrr_max_success_threshold, 0, ""); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "amrr_min_sucess_threshold", CTLFLAG_RW, &amrr->amrr_min_success_threshold, 0, ""); }
static void vmm_init(void) { sysctl_ctx_init(&vmm_sysctl_ctx); vmm_sysctl_tree = SYSCTL_ADD_NODE(&vmm_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, "vmm", CTLFLAG_RD, 0, "VMM options"); if (cpu_vendor_id == CPU_VENDOR_INTEL) { ctl = get_ctl_intel(); } else if (cpu_vendor_id == CPU_VENDOR_AMD) { ctl = get_ctl_amd(); } if (ctl->init()) { SYSCTL_ADD_INT(&vmm_sysctl_ctx, SYSCTL_CHILDREN(vmm_sysctl_tree), OID_AUTO, "enable", CTLFLAG_RD, &vmm_enabled, 0, "enable not supported"); } else { SYSCTL_ADD_STRING(&vmm_sysctl_ctx, SYSCTL_CHILDREN(vmm_sysctl_tree), OID_AUTO, "type", CTLFLAG_RD, ctl->name, 0, "Type of the VMM"); SYSCTL_ADD_PROC(&vmm_sysctl_ctx, SYSCTL_CHILDREN(vmm_sysctl_tree), OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_WR, NULL, sizeof vmm_enabled, sysctl_vmm_enable, "I", "Control the state of the VMM"); SYSCTL_ADD_INT(&vmm_sysctl_ctx, SYSCTL_CHILDREN(vmm_sysctl_tree), OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW, &vmm_debug, 0, "vmm debugging"); if (ctl->enable()) { kprintf("VMM: vmm enable() failed\n"); } else { vmm_enabled = 1; } EVENTHANDLER_REGISTER(shutdown_pre_sync, vmm_shutdown, NULL, SHUTDOWN_PRI_DEFAULT-1); } }
/* * Initialize a new timecounter and possibly use it. */ void tc_init(struct timecounter *tc) { u_int u; struct sysctl_oid *tc_root; u = tc->tc_frequency / tc->tc_counter_mask; /* XXX: We need some margin here, 10% is a guess */ u *= 11; u /= 10; if (u > hz && tc->tc_quality >= 0) { tc->tc_quality = -2000; if (bootverbose) { printf("Timecounter \"%s\" frequency %ju Hz", tc->tc_name, (uintmax_t)tc->tc_frequency); printf(" -- Insufficient hz, needs at least %u\n", u); } } else if (tc->tc_quality >= 0 || bootverbose) { printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency, tc->tc_quality); } tc->tc_next = timecounters; timecounters = tc; /* * Set up sysctl tree for this counter. */ tc_root = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, CTLFLAG_RW, 0, "timecounter description"); SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, "mask for implemented bits"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), sysctl_kern_timecounter_get, "IU", "current timecounter value"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, "quality", CTLFLAG_RD, &(tc->tc_quality), 0, "goodness of time counter"); /* * Never automatically use a timecounter with negative quality. * Even though we run on the dummy counter, switching here may be * worse since this timecounter may not be monotonous. */ if (tc->tc_quality < 0) return; if (tc->tc_quality < timecounter->tc_quality) return; if (tc->tc_quality == timecounter->tc_quality && tc->tc_frequency < timecounter->tc_frequency) return; (void)tc->tc_get_timecount(tc); (void)tc->tc_get_timecount(tc); timecounter = tc; }
static void ath_rate_sysctlattach(struct ath_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rate_interval", CTLFLAG_RW, &ath_rateinterval, 0, "rate control: operation interval (ms)"); /* XXX bounds check values */ SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rate_raise", CTLFLAG_RW, &ath_rate_raise, 0, "rate control: retry threshold to credit rate raise (%%)"); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rate_raise_threshold", CTLFLAG_RW, &ath_rate_raise_threshold,0, "rate control: # good periods before raising rate"); }
static void ath_rate_sysctlattach(struct ath_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rate_interval", CTLFLAG_RW, &ath_rateinterval, 0, "rate control: operation interval (ms)"); /* XXX bounds check values */ SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "max_sucess_threshold", CTLFLAG_RW, &ath_rate_max_success_threshold, 0, ""); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "min_sucess_threshold", CTLFLAG_RW, &ath_rate_min_success_threshold, 0, ""); }
static void iopoll_add_sysctl(struct sysctl_ctx_list *ctx, struct sysctl_oid_list *parent, struct iopoll_ctx *io_ctx, int poll_type) { if (poll_type == IFPOLL_RX) { SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "burst_max", CTLTYPE_UINT | CTLFLAG_RW, io_ctx, 0, sysctl_burstmax, "IU", "Max Polling burst size"); SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "each_burst", CTLTYPE_UINT | CTLFLAG_RW, io_ctx, 0, sysctl_eachburst, "IU", "Max size of each burst"); SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "burst", CTLFLAG_RD, &io_ctx->poll_burst, 0, "Current polling burst size"); SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "user_frac", CTLFLAG_RW, &io_ctx->user_frac, 0, "Desired user fraction of cpu time"); SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "kern_frac", CTLFLAG_RD, &io_ctx->kern_frac, 0, "Kernel fraction of cpu time"); SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "residual_burst", CTLFLAG_RD, &io_ctx->residual_burst, 0, "# of residual cycles in burst"); } SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "phase", CTLFLAG_RD, &io_ctx->phase, 0, "Polling phase"); SYSCTL_ADD_ULONG(ctx, parent, OID_AUTO, "suspect", CTLFLAG_RW, &io_ctx->suspect, "Suspected events"); SYSCTL_ADD_ULONG(ctx, parent, OID_AUTO, "stalled", CTLFLAG_RW, &io_ctx->stalled, "Potential stalls"); SYSCTL_ADD_ULONG(ctx, parent, OID_AUTO, "short_ticks", CTLFLAG_RW, &io_ctx->short_ticks, "Hardclock ticks shorter than they should be"); SYSCTL_ADD_ULONG(ctx, parent, OID_AUTO, "lost_polls", CTLFLAG_RW, &io_ctx->lost_polls, "How many times we would have lost a poll tick"); SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "pending_polls", CTLFLAG_RD, &io_ctx->pending_polls, 0, "Do we need to poll again"); SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "handlers", CTLFLAG_RD, &io_ctx->poll_handlers, 0, "Number of registered poll handlers"); }
int sfxge_mcdi_init(struct sfxge_softc *sc) { efx_nic_t *enp; struct sfxge_mcdi *mcdi; efx_mcdi_transport_t *emtp; efsys_mem_t *esmp; int max_msg_size; int rc; enp = sc->enp; mcdi = &sc->mcdi; emtp = &mcdi->transport; esmp = &mcdi->mem; max_msg_size = sizeof (uint32_t) + MCDI_CTL_SDU_LEN_MAX_V2; KASSERT(mcdi->state == SFXGE_MCDI_UNINITIALIZED, ("MCDI already initialized")); SFXGE_MCDI_LOCK_INIT(mcdi, device_get_nameunit(sc->dev)); mcdi->state = SFXGE_MCDI_INITIALIZED; if ((rc = sfxge_dma_alloc(sc, max_msg_size, esmp)) != 0) goto fail; emtp->emt_context = sc; emtp->emt_dma_mem = esmp; emtp->emt_execute = sfxge_mcdi_execute; emtp->emt_ev_cpl = sfxge_mcdi_ev_cpl; emtp->emt_exception = sfxge_mcdi_exception; #if EFSYS_OPT_MCDI_LOGGING emtp->emt_logger = sfxge_mcdi_logger; SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "mcdi_logging", CTLFLAG_RW, &sc->mcdi_logging, 0, "MCDI logging"); #endif if ((rc = efx_mcdi_init(enp, emtp)) != 0) goto fail; return (0); fail: SFXGE_MCDI_LOCK_DESTROY(mcdi); mcdi->state = SFXGE_MCDI_UNINITIALIZED; return (rc); }
static void vchi_audio_sysctl_init(struct bcm2835_audio_info *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *tree_node; struct sysctl_oid_list *tree; /* * Add system sysctl tree/handlers. */ ctx = device_get_sysctl_ctx(sc->dev); tree_node = device_get_sysctl_tree(sc->dev); tree = SYSCTL_CHILDREN(tree_node); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "dest", CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc), sysctl_bcm2835_audio_dest, "IU", "audio destination, " "0 - auto, 1 - headphones, 2 - HDMI"); SYSCTL_ADD_UQUAD(ctx, tree, OID_AUTO, "callbacks", CTLFLAG_RD, &sc->pch.callbacks, "callbacks total"); SYSCTL_ADD_UQUAD(ctx, tree, OID_AUTO, "submitted", CTLFLAG_RD, &sc->pch.submitted_samples, "last play submitted samples"); SYSCTL_ADD_UQUAD(ctx, tree, OID_AUTO, "retrieved", CTLFLAG_RD, &sc->pch.retrieved_samples, "last play retrieved samples"); SYSCTL_ADD_UQUAD(ctx, tree, OID_AUTO, "underruns", CTLFLAG_RD, &sc->pch.underruns, "callback underruns"); SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "freebuffer", CTLFLAG_RD, &sc->pch.available_space, sc->pch.available_space, "callbacks total"); SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "starved", CTLFLAG_RD, &sc->pch.starved, sc->pch.starved, "number of starved conditions"); }
static void ti_adc_sysctl_init(struct ti_adc_softc *sc) { char pinbuf[3]; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree_node, *inp_node, *inpN_node; struct sysctl_oid_list *tree, *inp_tree, *inpN_tree; int ain; /* * Add per-pin sysctl tree/handlers. */ ctx = device_get_sysctl_ctx(sc->sc_dev); tree_node = device_get_sysctl_tree(sc->sc_dev); tree = SYSCTL_CHILDREN(tree_node); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clockdiv", CTLFLAG_RW | CTLTYPE_UINT, sc, 0, ti_adc_clockdiv_proc, "IU", "ADC clock prescaler"); inp_node = SYSCTL_ADD_NODE(ctx, tree, OID_AUTO, "ain", CTLFLAG_RD, NULL, "ADC inputs"); inp_tree = SYSCTL_CHILDREN(inp_node); for (ain = 0; ain < TI_ADC_NPINS; ain++) { snprintf(pinbuf, sizeof(pinbuf), "%d", ain); inpN_node = SYSCTL_ADD_NODE(ctx, inp_tree, OID_AUTO, pinbuf, CTLFLAG_RD, NULL, "ADC input"); inpN_tree = SYSCTL_CHILDREN(inpN_node); SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "enable", CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0, ti_adc_enable_proc, "IU", "Enable ADC input"); SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "open_delay", CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0, ti_adc_open_delay_proc, "IU", "ADC open delay"); SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "samples_avg", CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0, ti_adc_samples_avg_proc, "IU", "ADC samples average"); SYSCTL_ADD_INT(ctx, inpN_tree, OID_AUTO, "input", CTLFLAG_RD, &ti_adc_inputs[ain].value, 0, "Converted raw value for the ADC input"); } }
static int zy7_devcfg_init_fclk_sysctl(struct zy7_devcfg_softc *sc) { struct sysctl_oid *fclk_node; char fclk_num[4]; int i; sysctl_ctx_init(&sc->sysctl_tree); sc->sysctl_tree_top = SYSCTL_ADD_NODE(&sc->sysctl_tree, SYSCTL_STATIC_CHILDREN(_hw_fpga), OID_AUTO, "fclk", CTLFLAG_RD, 0, ""); if (sc->sysctl_tree_top == NULL) { sysctl_ctx_free(&sc->sysctl_tree); return (-1); } for (i = 0; i < FCLK_NUM; i++) { snprintf(fclk_num, sizeof(fclk_num), "%d", i); fclk_node = SYSCTL_ADD_NODE(&sc->sysctl_tree, SYSCTL_CHILDREN(sc->sysctl_tree_top), OID_AUTO, fclk_num, CTLFLAG_RD, 0, ""); SYSCTL_ADD_INT(&sc->sysctl_tree, SYSCTL_CHILDREN(fclk_node), OID_AUTO, "actual_freq", CTLFLAG_RD, &fclk_configs[i].actual_frequency, i, "Actual frequency"); SYSCTL_ADD_PROC(&sc->sysctl_tree, SYSCTL_CHILDREN(fclk_node), OID_AUTO, "freq", CTLFLAG_RW | CTLTYPE_INT, &fclk_configs[i], i, zy7_devcfg_fclk_sysctl_freq, "I", "Configured frequency"); SYSCTL_ADD_PROC(&sc->sysctl_tree, SYSCTL_CHILDREN(fclk_node), OID_AUTO, "source", CTLFLAG_RW | CTLTYPE_STRING, &fclk_configs[i], i, zy7_devcfg_fclk_sysctl_source, "A", "Clock source"); } return (0); }
int acpi_machdep_init(device_t dev) { struct acpi_softc *sc; sc = device_get_softc(dev); acpi_apm_init(sc); if (intr_model != ACPI_INTR_PIC) acpi_SetIntrModel(intr_model); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "reset_video", CTLFLAG_RW, &acpi_reset_video, 0, "Call the VESA reset BIOS vector on the resume path"); return (0); }
int drm_add_busid_modesetting(struct drm_device *dev, struct sysctl_ctx_list *ctx, struct sysctl_oid *top) { struct sysctl_oid *oid; snprintf(dev->busid_str, sizeof(dev->busid_str), "pci:%04x:%02x:%02x.%d", dev->pci_domain, dev->pci_bus, dev->pci_slot, dev->pci_func); oid = SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "busid", CTLFLAG_RD, dev->busid_str, 0, NULL); if (oid == NULL) return (-ENOMEM); dev->modesetting = (dev->driver->driver_features & DRIVER_MODESET) != 0; oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "modesetting", CTLFLAG_RD, &dev->modesetting, 0, NULL); if (oid == NULL) return (-ENOMEM); return (0); }
static void spigen_sysctl_init(struct spigen_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *tree_node; struct sysctl_oid_list *tree; /* * Add system sysctl tree/handlers. */ ctx = device_get_sysctl_ctx(sc->sc_dev); tree_node = device_get_sysctl_tree(sc->sc_dev); tree = SYSCTL_CHILDREN(tree_node); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "command_length_max", CTLFLAG_MPSAFE | CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc), spigen_command_length_max_proc, "IU", "SPI command header portion (octets)"); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "data_length_max", CTLFLAG_MPSAFE | CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc), spigen_data_length_max_proc, "IU", "SPI data trailer portion (octets)"); SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "data", CTLFLAG_RW, &sc->sc_debug, 0, "debug flags"); }
static void rtwn_usb_sysctlattach(struct rtwn_softc *sc) { struct rtwn_usb_softc *uc = RTWN_USB_SOFTC(sc); struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); char str[64]; int ret; ret = snprintf(str, sizeof(str), "Rx buffer size, 512-byte units [%d...%d]", RTWN_USB_RXBUFSZ_MIN, RTWN_USB_RXBUFSZ_MAX); KASSERT(ret > 0, ("ret (%d) <= 0!\n", ret)); (void) ret; uc->uc_rx_buf_size = RTWN_USB_RXBUFSZ_DEF; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rx_buf_size", CTLFLAG_RDTUN, &uc->uc_rx_buf_size, uc->uc_rx_buf_size, str); if (uc->uc_rx_buf_size < RTWN_USB_RXBUFSZ_MIN) uc->uc_rx_buf_size = RTWN_USB_RXBUFSZ_MIN; if (uc->uc_rx_buf_size > RTWN_USB_RXBUFSZ_MAX) uc->uc_rx_buf_size = RTWN_USB_RXBUFSZ_MAX; }
static int uhso_attach(device_t self) { struct uhso_softc *sc = device_get_softc(self); struct usb_attach_arg *uaa = device_get_ivars(self); struct usb_interface_descriptor *id; struct sysctl_ctx_list *sctx; struct sysctl_oid *soid; struct sysctl_oid *tree = NULL, *tty_node; struct ucom_softc *ucom; struct uhso_tty *ht; int i, error, port; void *probe_f; usb_error_t uerr; char *desc; sc->sc_dev = self; sc->sc_udev = uaa->device; mtx_init(&sc->sc_mtx, "uhso", NULL, MTX_DEF); ucom_ref(&sc->sc_super_ucom); sc->sc_ucom = NULL; sc->sc_ttys = 0; sc->sc_radio = 1; id = usbd_get_interface_descriptor(uaa->iface); sc->sc_ctrl_iface_no = id->bInterfaceNumber; sc->sc_iface_no = uaa->info.bIfaceNum; sc->sc_iface_index = uaa->info.bIfaceIndex; /* Setup control pipe */ uerr = usbd_transfer_setup(uaa->device, &sc->sc_iface_index, sc->sc_ctrl_xfer, uhso_ctrl_config, UHSO_CTRL_MAX, sc, &sc->sc_mtx); if (uerr) { device_printf(self, "Failed to setup control pipe: %s\n", usbd_errstr(uerr)); goto out; } if (USB_GET_DRIVER_INFO(uaa) == UHSO_STATIC_IFACE) probe_f = uhso_probe_iface_static; else if (USB_GET_DRIVER_INFO(uaa) == UHSO_AUTO_IFACE) probe_f = uhso_probe_iface_auto; else goto out; error = uhso_probe_iface(sc, uaa->info.bIfaceNum, probe_f); if (error != 0) goto out; sctx = device_get_sysctl_ctx(sc->sc_dev); soid = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "type", CTLFLAG_RD, uhso_port[UHSO_IFACE_PORT(sc->sc_type)], 0, "Port available at this interface"); SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "radio", CTLTYPE_INT | CTLFLAG_RW, sc, 0, uhso_radio_sysctl, "I", "Enable radio"); /* * The default interface description on most Option devices isn't * very helpful. So we skip device_set_usb_desc and set the * device description manually. */ device_set_desc_copy(self, uhso_port_type[UHSO_IFACE_PORT_TYPE(sc->sc_type)]); /* Announce device */ device_printf(self, "<%s port> at <%s %s> on %s\n", uhso_port_type[UHSO_IFACE_PORT_TYPE(sc->sc_type)], usb_get_manufacturer(uaa->device), usb_get_product(uaa->device), device_get_nameunit(device_get_parent(self))); if (sc->sc_ttys > 0) { SYSCTL_ADD_INT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "ports", CTLFLAG_RD, &sc->sc_ttys, 0, "Number of attached serial ports"); tree = SYSCTL_ADD_NODE(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "port", CTLFLAG_RD, NULL, "Serial ports"); } /* * Loop through the number of found TTYs and create sysctl * nodes for them. */ for (i = 0; i < sc->sc_ttys; i++) { ht = &sc->sc_tty[i]; ucom = &sc->sc_ucom[i]; if (UHSO_IFACE_USB_TYPE(sc->sc_type) & UHSO_IF_MUX) port = uhso_mux_port_map[ht->ht_muxport]; else port = UHSO_IFACE_PORT_TYPE(sc->sc_type); desc = uhso_port_type_sysctl[port]; tty_node = SYSCTL_ADD_NODE(sctx, SYSCTL_CHILDREN(tree), OID_AUTO, desc, CTLFLAG_RD, NULL, ""); ht->ht_name[0] = 0; if (sc->sc_ttys == 1) snprintf(ht->ht_name, 32, "cuaU%d", ucom->sc_super->sc_unit); else { snprintf(ht->ht_name, 32, "cuaU%d.%d", ucom->sc_super->sc_unit, ucom->sc_subunit); } desc = uhso_port_type[port]; SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(tty_node), OID_AUTO, "tty", CTLFLAG_RD, ht->ht_name, 0, ""); SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(tty_node), OID_AUTO, "desc", CTLFLAG_RD, desc, 0, ""); if (bootverbose) device_printf(sc->sc_dev, "\"%s\" port at %s\n", desc, ht->ht_name); } return (0); out: uhso_detach(sc->sc_dev); return (ENXIO); }
static void cpufreq_initialize(struct imx6_anatop_softc *sc) { uint32_t cfg3speed; struct oppt * op; SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0, "CPU frequency"); SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), OID_AUTO, "cpu_minmhz", CTLTYPE_INT | CTLFLAG_RWTUN, sc, 0, cpufreq_sysctl_minmhz, "IU", "Minimum CPU frequency"); SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), OID_AUTO, "cpu_maxmhz", CTLTYPE_INT | CTLFLAG_RWTUN, sc, 0, cpufreq_sysctl_maxmhz, "IU", "Maximum CPU frequency"); SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), OID_AUTO, "cpu_maxmhz_hw", CTLFLAG_RD, &sc->cpu_maxmhz_hw, 0, "Maximum CPU frequency allowed by hardware"); SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), OID_AUTO, "cpu_overclock_enable", CTLFLAG_RWTUN, &sc->cpu_overclock_enable, 0, "Allow setting CPU frequency higher than cpu_maxmhz_hw"); /* * XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm * (even though in the real world it will always be 24mhz). Oh wait a * sec, I never wrote imx6_ccm. */ sc->refosc_mhz = 24; /* * Get the maximum speed this cpu can be set to. The values in the * OCOTP CFG3 register are not documented in the reference manual. * The following info was in an archived email found via web search: * - 2b'11: 1200000000Hz; * - 2b'10: 996000000Hz; * - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz. * - 2b'00: 792000000Hz; * The default hardware max speed can be overridden by a tunable. */ cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) & FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT; sc->cpu_maxmhz_hw = imx6_ocotp_mhz_tab[cfg3speed]; sc->cpu_maxmhz = sc->cpu_maxmhz_hw; TUNABLE_INT_FETCH("hw.imx6.cpu_overclock_enable", &sc->cpu_overclock_enable); TUNABLE_INT_FETCH("hw.imx6.cpu_minmhz", &sc->cpu_minmhz); op = cpufreq_nearest_oppt(sc, sc->cpu_minmhz); sc->cpu_minmhz = op->mhz; sc->cpu_minmv = op->mv; TUNABLE_INT_FETCH("hw.imx6.cpu_maxmhz", &sc->cpu_maxmhz); op = cpufreq_nearest_oppt(sc, sc->cpu_maxmhz); sc->cpu_maxmhz = op->mhz; sc->cpu_maxmv = op->mv; /* * Set the CPU to maximum speed. * * We won't have thermal throttling until interrupts are enabled, but we * want to run at full speed through all the device init stuff. This * basically assumes that a single core can't overheat before interrupts * are enabled; empirical testing shows that to be a safe assumption. */ cpufreq_set_clock(sc, op); }
void ieee80211_sysctl_vattach(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; char num[14]; /* sufficient for 32 bits */ ctx = (struct sysctl_ctx_list *) malloc(sizeof(struct sysctl_ctx_list), M_DEVBUF, M_NOWAIT | M_ZERO); if (ctx == NULL) { if_printf(ifp, "%s: cannot allocate sysctl context!\n", __func__); return; } sysctl_ctx_init(ctx); snprintf(num, sizeof(num), "%u", ifp->if_dunit); oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), OID_AUTO, num, CTLFLAG_RD, NULL, ""); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, "driver capabilities"); #ifdef IEEE80211_DEBUG vap->iv_debug = ieee80211_debug; SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "debug", CTLFLAG_RW, &vap->iv_debug, 0, "control debugging printfs"); #endif SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, "consecutive beacon misses before scanning"); /* XXX inherit from tunables */ SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I", "station inactivity timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I", "station inactivity probe timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I", "station authentication timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I", "station initial state timeout (sec)"); if (vap->iv_htcaps & IEEE80211_HTC_HT) { SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_bk", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, "BK traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_be", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, "BE traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vo", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, "VO traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vi", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, "VI traffic tx aggr threshold (pps)"); } if (vap->iv_caps & IEEE80211_C_DFS) { SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, ieee80211_sysctl_radar, "I", "simulate radar event"); } vap->iv_sysctl = ctx; vap->iv_oid = oid; }
static int acpi_tz_attach(device_t dev) { struct acpi_tz_softc *sc; struct acpi_softc *acpi_sc; int error; char oidname[8]; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = device_get_softc(dev); sc->tz_dev = dev; sc->tz_handle = acpi_get_handle(dev); sc->tz_requested = TZ_ACTIVE_NONE; sc->tz_active = TZ_ACTIVE_UNKNOWN; sc->tz_thflags = TZ_THFLAG_NONE; sc->tz_cooling_proc = NULL; sc->tz_cooling_proc_running = FALSE; sc->tz_cooling_active = FALSE; sc->tz_cooling_updated = FALSE; sc->tz_cooling_enabled = FALSE; /* * Parse the current state of the thermal zone and build control * structures. We don't need to worry about interference with the * control thread since we haven't fully attached this device yet. */ if ((error = acpi_tz_establish(sc)) != 0) return (error); /* * Register for any Notify events sent to this zone. */ AcpiInstallNotifyHandler(sc->tz_handle, ACPI_DEVICE_NOTIFY, acpi_tz_notify_handler, sc); /* * Create our sysctl nodes. * * XXX we need a mechanism for adding nodes under ACPI. */ if (device_get_unit(dev) == 0) { acpi_sc = acpi_device_get_parent_softc(dev); sysctl_ctx_init(&acpi_tz_sysctl_ctx); acpi_tz_sysctl_tree = SYSCTL_ADD_NODE(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "thermal", CTLFLAG_RD, 0, ""); SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, "min_runtime", CTLFLAG_RW, &acpi_tz_min_runtime, 0, "minimum cooling run time in sec"); SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, "polling_rate", CTLFLAG_RW, &acpi_tz_polling_rate, 0, "monitor polling interval in seconds"); SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, "user_override", CTLFLAG_RW, &acpi_tz_override, 0, "allow override of thermal settings"); } sysctl_ctx_init(&sc->tz_sysctl_ctx); sprintf(oidname, "tz%d", device_get_unit(dev)); sc->tz_sysctl_tree = SYSCTL_ADD_NODE(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, oidname, CTLFLAG_RD, 0, ""); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, &sc->tz_temperature, 0, sysctl_handle_int, "IK", "current thermal zone temperature"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "active", CTLTYPE_INT | CTLFLAG_RW, sc, 0, acpi_tz_active_sysctl, "I", "cooling is active"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "passive_cooling", CTLTYPE_INT | CTLFLAG_RW, sc, 0, acpi_tz_cooling_sysctl, "I", "enable passive (speed reduction) cooling"); SYSCTL_ADD_INT(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "thermal_flags", CTLFLAG_RD, &sc->tz_thflags, 0, "thermal zone flags"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_PSV", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.psv), acpi_tz_temp_sysctl, "IK", "passive cooling temp setpoint"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_HOT", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.hot), acpi_tz_temp_sysctl, "IK", "too hot temp setpoint (suspend now)"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_CRT", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.crt), acpi_tz_temp_sysctl, "IK", "critical temp setpoint (shutdown now)"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_ACx", CTLTYPE_INT | CTLFLAG_RD, &sc->tz_zone.ac, sizeof(sc->tz_zone.ac), sysctl_handle_opaque, "IK", ""); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_TC1", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.tc1), acpi_tz_passive_sysctl, "I", "thermal constant 1 for passive cooling"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_TC2", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.tc2), acpi_tz_passive_sysctl, "I", "thermal constant 2 for passive cooling"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_TSP", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.tsp), acpi_tz_passive_sysctl, "I", "thermal sampling period for passive cooling"); /* * Create thread to service all of the thermal zones. Register * our power profile event handler. */ sc->tz_event = EVENTHANDLER_REGISTER(power_profile_change, acpi_tz_power_profile, sc, 0); if (acpi_tz_proc == NULL) { error = kproc_create(acpi_tz_thread, NULL, &acpi_tz_proc, RFHIGHPID, 0, "acpi_thermal"); if (error != 0) { device_printf(sc->tz_dev, "could not create thread - %d", error); goto out; } } /* * Create a thread to handle passive cooling for 1st zone which * has _PSV, _TSP, _TC1 and _TC2. Users can enable it for other * zones manually for now. * * XXX We enable only one zone to avoid multiple zones conflict * with each other since cpufreq currently sets all CPUs to the * given frequency whereas it's possible for different thermal * zones to specify independent settings for multiple CPUs. */ if (acpi_tz_cooling_unit < 0 && acpi_tz_cooling_is_available(sc)) sc->tz_cooling_enabled = TRUE; if (sc->tz_cooling_enabled) { error = acpi_tz_cooling_thread_start(sc); if (error != 0) { sc->tz_cooling_enabled = FALSE; goto out; } acpi_tz_cooling_unit = device_get_unit(dev); } /* * Flag the event handler for a manual invocation by our timeout. * We defer it like this so that the rest of the subsystem has time * to come up. Don't bother evaluating/printing the temperature at * this point; on many systems it'll be bogus until the EC is running. */ sc->tz_flags |= TZ_FLAG_GETPROFILE; out: if (error != 0) { EVENTHANDLER_DEREGISTER(power_profile_change, sc->tz_event); AcpiRemoveNotifyHandler(sc->tz_handle, ACPI_DEVICE_NOTIFY, acpi_tz_notify_handler); sysctl_ctx_free(&sc->tz_sysctl_ctx); } return_VALUE (error); }
/* * The function called at load/unload. */ static int load(module_t mod, int cmd, void *arg) { int error; error = 0; switch (cmd) { case MOD_LOAD: /* Initialize the contexts */ printf("Initializing contexts and creating subtrees.\n\n"); sysctl_ctx_init(&clist); sysctl_ctx_init(&clist1); sysctl_ctx_init(&clist2); /* * Create two partially overlapping subtrees, belonging * to different contexts. */ printf("TREE ROOT NAME\n"); a_root = SYSCTL_ADD_NODE(&clist, SYSCTL_STATIC_CHILDREN(/* top of sysctl tree */), OID_AUTO, "dyn_sysctl", CTLFLAG_RW, 0, "dyn_sysctl root node"); a_root = SYSCTL_ADD_NODE(&clist1, SYSCTL_STATIC_CHILDREN(/* top of sysctl tree */), OID_AUTO, "dyn_sysctl", CTLFLAG_RW, 0, "dyn_sysctl root node"); if (a_root == NULL) { printf("SYSCTL_ADD_NODE failed!\n"); return (EINVAL); } SYSCTL_ADD_LONG(&clist, SYSCTL_CHILDREN(a_root), OID_AUTO, "long_a", CTLFLAG_RW, &a, "just to try"); SYSCTL_ADD_INT(&clist, SYSCTL_CHILDREN(a_root), OID_AUTO, "int_b", CTLFLAG_RW, &b, 0, "just to try 1"); a_root1 = SYSCTL_ADD_NODE(&clist, SYSCTL_CHILDREN(a_root), OID_AUTO, "nextlevel", CTLFLAG_RD, 0, "one level down"); SYSCTL_ADD_STRING(&clist, SYSCTL_CHILDREN(a_root1), OID_AUTO, "string_c", CTLFLAG_RD, c, 0, "just to try 2"); printf("1. (%p) / dyn_sysctl\n", &clist); /* Add a subtree under already existing category */ a_root1 = SYSCTL_ADD_NODE(&clist, SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO, "dyn_sysctl", CTLFLAG_RW, 0, "dyn_sysctl root node"); if (a_root1 == NULL) { printf("SYSCTL_ADD_NODE failed!\n"); return (EINVAL); } SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(a_root1), OID_AUTO, "procedure", CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, sysctl_dyn_sysctl_test, "A", "I can be here, too"); printf(" (%p) /kern dyn_sysctl\n", &clist); /* Overlap second tree with the first. */ b_root = SYSCTL_ADD_NODE(&clist1, SYSCTL_CHILDREN(a_root), OID_AUTO, "nextlevel", CTLFLAG_RD, 0, "one level down"); SYSCTL_ADD_STRING(&clist1, SYSCTL_CHILDREN(b_root), OID_AUTO, "string_c1", CTLFLAG_RD, c, 0, "just to try 2"); printf("2. (%p) / dyn_sysctl (overlapping #1)\n", &clist1); /* * And now do something stupid. Connect another subtree to * dynamic oid. * WARNING: this is an example of WRONG use of dynamic sysctls. */ b_root=SYSCTL_ADD_NODE(&clist2, SYSCTL_CHILDREN(a_root1), OID_AUTO, "bad", CTLFLAG_RW, 0, "dependent node"); SYSCTL_ADD_STRING(&clist2, SYSCTL_CHILDREN(b_root), OID_AUTO, "string_c", CTLFLAG_RD, c, 0, "shouldn't panic"); printf("3. (%p) /kern/dyn_sysctl bad (WRONG!)\n", &clist2); break; case MOD_UNLOAD: printf("1. Try to free ctx1 (%p): ", &clist); if (sysctl_ctx_free(&clist) != 0) printf("failed: expected. Need to remove ctx3 first.\n"); else printf("HELP! sysctl_ctx_free(%p) succeeded. EXPECT PANIC!!!\n", &clist); printf("2. Try to free ctx3 (%p): ", &clist2); if (sysctl_ctx_free(&clist2) != 0) { printf("sysctl_ctx_free(%p) failed!\n", &clist2); /* Remove subtree forcefully... */ sysctl_remove_oid(b_root, 1, 1); printf("sysctl_remove_oid(%p) succeeded\n", b_root); } else printf("Ok\n"); printf("3. Try to free ctx1 (%p) again: ", &clist); if (sysctl_ctx_free(&clist) != 0) { printf("sysctl_ctx_free(%p) failed!\n", &clist); /* Remove subtree forcefully... */ sysctl_remove_oid(a_root1, 1, 1); printf("sysctl_remove_oid(%p) succeeded\n", a_root1); } else printf("Ok\n"); printf("4. Try to free ctx2 (%p): ", &clist1); if (sysctl_ctx_free(&clist1) != 0) { printf("sysctl_ctx_free(%p) failed!\n", &clist1); /* Remove subtree forcefully... */ sysctl_remove_oid(a_root, 1, 1); } else printf("Ok\n"); break; default: error = EOPNOTSUPP; break; } return (error); }
static int acpi_tz_attach(device_t dev) { struct acpi_tz_softc *sc; struct acpi_softc *acpi_sc; int error; char oidname[8]; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = device_get_softc(dev); sc->tz_dev = dev; sc->tz_handle = acpi_get_handle(dev); sc->tz_requested = TZ_ACTIVE_NONE; sc->tz_active = TZ_ACTIVE_UNKNOWN; sc->tz_thflags = TZ_THFLAG_NONE; sc->tz_cooling_proc = NULL; sc->tz_cooling_proc_running = FALSE; sc->tz_cooling_active = FALSE; sc->tz_cooling_updated = FALSE; sc->tz_cooling_enabled = FALSE; /* * Parse the current state of the thermal zone and build control * structures. We don't need to worry about interference with the * control thread since we haven't fully attached this device yet. */ if ((error = acpi_tz_establish(sc)) != 0) return (error); /* * Register for any Notify events sent to this zone. */ AcpiInstallNotifyHandler(sc->tz_handle, ACPI_DEVICE_NOTIFY, acpi_tz_notify_handler, sc); /* * Create our sysctl nodes. * * XXX we need a mechanism for adding nodes under ACPI. */ if (device_get_unit(dev) == 0) { acpi_sc = acpi_device_get_parent_softc(dev); sysctl_ctx_init(&acpi_tz_sysctl_ctx); acpi_tz_sysctl_tree = SYSCTL_ADD_NODE(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "thermal", CTLFLAG_RD, 0, ""); SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, "min_runtime", CTLFLAG_RW, &acpi_tz_min_runtime, 0, "minimum cooling run time in sec"); SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, "polling_rate", CTLFLAG_RW, &acpi_tz_polling_rate, 0, "monitor polling interval in seconds"); SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, "user_override", CTLFLAG_RW, &acpi_tz_override, 0, "allow override of thermal settings"); } sysctl_ctx_init(&sc->tz_sysctl_ctx); sprintf(oidname, "tz%d", device_get_unit(dev)); sc->tz_sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, oidname, CTLFLAG_RD, 0, "", "thermal_zone"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, &sc->tz_temperature, 0, sysctl_handle_int, "IK", "current thermal zone temperature"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "active", CTLTYPE_INT | CTLFLAG_RW, sc, 0, acpi_tz_active_sysctl, "I", "cooling is active"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "passive_cooling", CTLTYPE_INT | CTLFLAG_RW, sc, 0, acpi_tz_cooling_sysctl, "I", "enable passive (speed reduction) cooling"); SYSCTL_ADD_INT(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "thermal_flags", CTLFLAG_RD, &sc->tz_thflags, 0, "thermal zone flags"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_PSV", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.psv), acpi_tz_temp_sysctl, "IK", "passive cooling temp setpoint"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_HOT", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.hot), acpi_tz_temp_sysctl, "IK", "too hot temp setpoint (suspend now)"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_CRT", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.crt), acpi_tz_temp_sysctl, "IK", "critical temp setpoint (shutdown now)"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_ACx", CTLTYPE_INT | CTLFLAG_RD, &sc->tz_zone.ac, sizeof(sc->tz_zone.ac), sysctl_handle_opaque, "IK", ""); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_TC1", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.tc1), acpi_tz_passive_sysctl, "I", "thermal constant 1 for passive cooling"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_TC2", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.tc2), acpi_tz_passive_sysctl, "I", "thermal constant 2 for passive cooling"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_TSP", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.tsp), acpi_tz_passive_sysctl, "I", "thermal sampling period for passive cooling"); /* * Register our power profile event handler. */ sc->tz_event = EVENTHANDLER_REGISTER(power_profile_change, acpi_tz_power_profile, sc, 0); /* * Flag the event handler for a manual invocation by our timeout. * We defer it like this so that the rest of the subsystem has time * to come up. Don't bother evaluating/printing the temperature at * this point; on many systems it'll be bogus until the EC is running. */ sc->tz_flags |= TZ_FLAG_GETPROFILE; return_VALUE (0); }
static int acpi_battery_init(void) { struct acpi_softc *sc; device_t dev; int error; ACPI_SERIAL_ASSERT(battery); error = ENXIO; dev = devclass_get_device(devclass_find("acpi"), 0); if (dev == NULL) goto out; sc = device_get_softc(dev); error = acpi_register_ioctl(ACPIIO_BATT_GET_UNITS, acpi_battery_ioctl, NULL); if (error != 0) goto out; error = acpi_register_ioctl(ACPIIO_BATT_GET_BATTINFO, acpi_battery_ioctl, NULL); if (error != 0) goto out; error = acpi_register_ioctl(ACPIIO_BATT_GET_BIF, acpi_battery_ioctl, NULL); if (error != 0) goto out; error = acpi_register_ioctl(ACPIIO_BATT_GET_BST, acpi_battery_ioctl, NULL); if (error != 0) goto out; sysctl_ctx_init(&acpi_battery_sysctl_ctx); acpi_battery_sysctl_tree = SYSCTL_ADD_NODE(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "battery", CTLFLAG_RD, 0, "battery status and info"); SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "life", CTLTYPE_INT | CTLFLAG_RD, &acpi_battery_battinfo.cap, 0, acpi_battery_sysctl, "I", "percent capacity remaining"); SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "time", CTLTYPE_INT | CTLFLAG_RD, &acpi_battery_battinfo.min, 0, acpi_battery_sysctl, "I", "remaining time in minutes"); SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "state", CTLTYPE_INT | CTLFLAG_RD, &acpi_battery_battinfo.state, 0, acpi_battery_sysctl, "I", "current status flags"); SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "units", CTLTYPE_INT | CTLFLAG_RD, NULL, 0, acpi_battery_units_sysctl, "I", "number of batteries"); SYSCTL_ADD_INT(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "info_expire", CTLFLAG_RW, &acpi_battery_info_expire, 0, "time in seconds until info is refreshed"); acpi_batteries_initted = TRUE; out: if (error != 0) { acpi_deregister_ioctl(ACPIIO_BATT_GET_UNITS, acpi_battery_ioctl); acpi_deregister_ioctl(ACPIIO_BATT_GET_BATTINFO, acpi_battery_ioctl); acpi_deregister_ioctl(ACPIIO_BATT_GET_BIF, acpi_battery_ioctl); acpi_deregister_ioctl(ACPIIO_BATT_GET_BST, acpi_battery_ioctl); } return (error); }
void oce_add_sysctls(POCE_SOFTC sc) { struct sysctl_ctx_list *ctx = &sc->sysctl_ctx; struct sysctl_oid *tree = sc->sysctl_tree; struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); struct sysctl_oid *stats_node; SYSCTL_ADD_STRING(ctx, child, OID_AUTO, "component_revision", CTLTYPE_INT | CTLFLAG_RD, &component_revision, sizeof(component_revision), "EMULEX One-Connect device driver revision"); SYSCTL_ADD_STRING(ctx, child, OID_AUTO, "firmware_version", CTLTYPE_INT | CTLFLAG_RD, &sc->fw_version, sizeof(sc->fw_version), "EMULEX One-Connect Firmware Version"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "max_rsp_handled", CTLTYPE_INT | CTLFLAG_RW, &oce_max_rsp_handled, sizeof(oce_max_rsp_handled), "Maximum receive frames handled per interrupt"); if ((sc->function_mode & FNM_FLEX10_MODE) || (sc->function_mode & FNM_UMC_MODE)) SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "speed", CTLFLAG_RD, &sc->qos_link_speed, 0,"QOS Speed"); else SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "speed", CTLFLAG_RD, &sc->speed, 0,"Link Speed"); if (sc->function_mode & FNM_UMC_MODE) SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "pvid", CTLFLAG_RD, &sc->pvid, 0,"PVID"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "loop_back", CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0, oce_sysctl_loopback, "I", "Loop Back Tests"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "fw_upgrade", CTLTYPE_STRING | CTLFLAG_RW, (void *)sc, 0, oce_sys_fwupgrade, "A", "Firmware ufi file"); /* * Dumps Transceiver data * "sysctl hw.oce0.sfp_vpd_dump=0" * "sysctl -x hw.oce0.sfp_vpd_dump_buffer" for hex dump * "sysctl -b hw.oce0.sfp_vpd_dump_buffer > sfp.bin" for binary dump */ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "sfp_vpd_dump", CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0, oce_sysctl_sfp_vpd_dump, "I", "Initiate a sfp_vpd_dump operation"); SYSCTL_ADD_OPAQUE(ctx, child, OID_AUTO, "sfp_vpd_dump_buffer", CTLFLAG_RD, sfp_vpd_dump_buffer, TRANSCEIVER_DATA_SIZE, "IU", "Access sfp_vpd_dump buffer"); stats_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "Ethernet Statistics"); if (IS_BE(sc) || IS_SH(sc)) oce_add_stats_sysctls_be3(sc, ctx, stats_node); else oce_add_stats_sysctls_xe201(sc, ctx, stats_node); }
static void ioat_setup_sysctl(device_t device) { struct sysctl_oid_list *par, *statpar, *state, *hammer; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree, *tmp; struct ioat_softc *ioat; ioat = DEVICE2SOFTC(device); ctx = device_get_sysctl_ctx(device); tree = device_get_sysctl_tree(device); par = SYSCTL_CHILDREN(tree); SYSCTL_ADD_INT(ctx, par, OID_AUTO, "version", CTLFLAG_RD, &ioat->version, 0, "HW version (0xMM form)"); SYSCTL_ADD_UINT(ctx, par, OID_AUTO, "max_xfer_size", CTLFLAG_RD, &ioat->max_xfer_size, 0, "HW maximum transfer size"); SYSCTL_ADD_INT(ctx, par, OID_AUTO, "intrdelay_supported", CTLFLAG_RD, &ioat->intrdelay_supported, 0, "Is INTRDELAY supported"); SYSCTL_ADD_U16(ctx, par, OID_AUTO, "intrdelay_max", CTLFLAG_RD, &ioat->intrdelay_max, 0, "Maximum configurable INTRDELAY on this channel (microseconds)"); tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "state", CTLFLAG_RD, NULL, "IOAT channel internal state"); state = SYSCTL_CHILDREN(tmp); SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "ring_size_order", CTLFLAG_RD, &ioat->ring_size_order, 0, "SW descriptor ring size order"); SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "head", CTLFLAG_RD, &ioat->head, 0, "SW descriptor head pointer index"); SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "tail", CTLFLAG_RD, &ioat->tail, 0, "SW descriptor tail pointer index"); SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "hw_head", CTLFLAG_RD, &ioat->hw_head, 0, "HW DMACOUNT"); SYSCTL_ADD_UQUAD(ctx, state, OID_AUTO, "last_completion", CTLFLAG_RD, ioat->comp_update, "HW addr of last completion"); SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_resize_pending", CTLFLAG_RD, &ioat->is_resize_pending, 0, "resize pending"); SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_completion_pending", CTLFLAG_RD, &ioat->is_completion_pending, 0, "completion pending"); SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_reset_pending", CTLFLAG_RD, &ioat->is_reset_pending, 0, "reset pending"); SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_channel_running", CTLFLAG_RD, &ioat->is_channel_running, 0, "channel running"); SYSCTL_ADD_PROC(ctx, state, OID_AUTO, "chansts", CTLTYPE_STRING | CTLFLAG_RD, ioat, 0, sysctl_handle_chansts, "A", "String of the channel status"); SYSCTL_ADD_U16(ctx, state, OID_AUTO, "intrdelay", CTLFLAG_RD, &ioat->cached_intrdelay, 0, "Current INTRDELAY on this channel (cached, microseconds)"); tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "hammer", CTLFLAG_RD, NULL, "Big hammers (mostly for testing)"); hammer = SYSCTL_CHILDREN(tmp); SYSCTL_ADD_PROC(ctx, hammer, OID_AUTO, "force_hw_reset", CTLTYPE_INT | CTLFLAG_RW, ioat, 0, sysctl_handle_reset, "I", "Set to non-zero to reset the hardware"); SYSCTL_ADD_PROC(ctx, hammer, OID_AUTO, "force_hw_error", CTLTYPE_INT | CTLFLAG_RW, ioat, 0, sysctl_handle_error, "I", "Set to non-zero to inject a recoverable hardware error"); tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "stats", CTLFLAG_RD, NULL, "IOAT channel statistics"); statpar = SYSCTL_CHILDREN(tmp); SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "interrupts", CTLFLAG_RW, &ioat->stats.interrupts, "Number of interrupts processed on this channel"); SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "descriptors", CTLFLAG_RW, &ioat->stats.descriptors_processed, "Number of descriptors processed on this channel"); SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "submitted", CTLFLAG_RW, &ioat->stats.descriptors_submitted, "Number of descriptors submitted to this channel"); SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "errored", CTLFLAG_RW, &ioat->stats.descriptors_error, "Number of descriptors failed by channel errors"); SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "halts", CTLFLAG_RW, &ioat->stats.channel_halts, 0, "Number of times the channel has halted"); SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "last_halt_chanerr", CTLFLAG_RW, &ioat->stats.last_halt_chanerr, 0, "The raw CHANERR when the channel was last halted"); SYSCTL_ADD_PROC(ctx, statpar, OID_AUTO, "desc_per_interrupt", CTLTYPE_STRING | CTLFLAG_RD, ioat, 0, sysctl_handle_dpi, "A", "Descriptors per interrupt"); }