struct net_device *gether_setup_name_default(const char *netname) { struct net_device *net; struct eth_dev *dev; net = alloc_etherdev(sizeof(*dev)); if (!net) return ERR_PTR(-ENOMEM); dev = netdev_priv(net); spin_lock_init(&dev->lock); spin_lock_init(&dev->req_lock); INIT_WORK(&dev->work, eth_work); INIT_LIST_HEAD(&dev->tx_reqs); INIT_LIST_HEAD(&dev->rx_reqs); skb_queue_head_init(&dev->rx_frames); /* network device setup */ dev->net = net; dev->qmult = QMULT_DEFAULT; snprintf(net->name, sizeof(net->name), "%s%%d", netname); eth_random_addr(dev->dev_mac); pr_warn("using random %s ethernet address\n", "self"); eth_random_addr(dev->host_mac); pr_warn("using random %s ethernet address\n", "host"); net->netdev_ops = ð_netdev_ops; net->ethtool_ops = &ops; SET_NETDEV_DEVTYPE(net, &gadget_type); return net; }
void mt76_eeprom_override(struct mt76_dev *dev) { #ifdef CONFIG_OF struct device_node *np = dev->dev->of_node; const __be32 *val; const u8 *mac; int size; if (!np) return; val = of_get_property(np, "mediatek,2ghz", &size); if (val) dev->cap.has_2ghz = be32_to_cpup(val); val = of_get_property(np, "mediatek,5ghz", &size); if (val) dev->cap.has_5ghz = be32_to_cpup(val); mac = of_get_mac_address(np); if (mac) memcpy(dev->macaddr, mac, ETH_ALEN); #endif if (!is_valid_ether_addr(dev->macaddr)) { eth_random_addr(dev->macaddr); dev_printk(KERN_INFO, dev->dev, "Invalid MAC address, using random address %pM\n", dev->macaddr); } }
static void board_init_enetaddr(uchar *mac_addr) { #ifdef CONFIG_SYS_NO_FLASH # define USE_MAC_IN_FLASH 0 #else # define USE_MAC_IN_FLASH 1 #endif bool valid_mac = false; if (USE_MAC_IN_FLASH) { /* we cram the MAC in the last flash sector */ uchar *board_mac_addr = (uchar *)0x203F0096; if (is_valid_ether_addr(board_mac_addr)) { memcpy(mac_addr, board_mac_addr, 6); valid_mac = true; } } if (!valid_mac) { puts("Warning: Generating 'random' MAC address\n"); eth_random_addr(mac_addr); } eth_setenv_enetaddr("ethaddr", mac_addr); }
/* * Setup the MAC address for SoC ethernet devices. * * Before calling this function, the ethernet driver will have * initialized the addr with local-mac-address from the device * tree (if found). Allow command line to override, but not * the fused address. */ int soc_mac_addr(unsigned int index, u8 *addr) { int i, have_dt_mac = 0, have_cmdline_mac = 0, have_fuse_mac = 0; for (i = 0; i < 6; i++) { if (cmdline_mac[i]) have_cmdline_mac = 1; if (c6x_fuse_mac[i]) have_fuse_mac = 1; if (addr[i]) have_dt_mac = 1; } /* cmdline overrides all */ if (have_cmdline_mac) memcpy(addr, cmdline_mac, 6); else if (!have_dt_mac) { if (have_fuse_mac) memcpy(addr, c6x_fuse_mac, 6); else eth_random_addr(addr); } /* adjust for specific EMAC device */ addr[5] += index * c6x_num_cores; return 1; }
static void __init cpmac_get_mac(int instance, unsigned char *dev_addr) { char name[5], *mac; sprintf(name, "mac%c", 'a' + instance); mac = prom_getenv(name); if (!mac && instance) { sprintf(name, "mac%c", 'a'); mac = prom_getenv(name); } if (mac) { if (!mac_pton(mac, dev_addr)) { pr_warn("cannot parse mac address, using random address\n"); eth_random_addr(dev_addr); } } else eth_random_addr(dev_addr); }
static int xusbatm_atm_start(struct usbatm_data *usbatm, struct atm_dev *atm_dev) { atm_dbg(usbatm, "%s entered\n", __func__); /* use random MAC as we've no way to get it from the device */ eth_random_addr(atm_dev->esi); return 0; }
int i40e_pf_host_init(struct rte_eth_dev *dev) { struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct i40e_hw *hw = I40E_PF_TO_HW(pf); int ret, i; uint32_t val; PMD_INIT_FUNC_TRACE(); /** * return if SRIOV not enabled, VF number not configured or * no queue assigned. */ if(!hw->func_caps.sr_iov_1_1 || pf->vf_num == 0 || pf->vf_nb_qps == 0) return I40E_SUCCESS; /* Allocate memory to store VF structure */ pf->vfs = rte_zmalloc("i40e_pf_vf",sizeof(*pf->vfs) * pf->vf_num, 0); if(pf->vfs == NULL) return -ENOMEM; /* Disable irq0 for VFR event */ i40e_pf_disable_irq0(hw); /* Disable VF link status interrupt */ val = I40E_READ_REG(hw, I40E_PFGEN_PORTMDIO_NUM); val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; I40E_WRITE_REG(hw, I40E_PFGEN_PORTMDIO_NUM, val); I40E_WRITE_FLUSH(hw); for (i = 0; i < pf->vf_num; i++) { pf->vfs[i].pf = pf; pf->vfs[i].state = I40E_VF_INACTIVE; pf->vfs[i].vf_idx = i; ret = i40e_pf_host_vf_reset(&pf->vfs[i], 0); if (ret != I40E_SUCCESS) goto fail; eth_random_addr(pf->vfs[i].mac_addr.addr_bytes); } /* restore irq0 */ i40e_pf_enable_irq0(hw); return I40E_SUCCESS; fail: rte_free(pf->vfs); i40e_pf_enable_irq0(hw); return ret; }
static int owl_mac_set_macaddr(struct eth_device *dev) { u8 *mac = dev->enetaddr; if(!is_valid_ether_addr(mac)){ printf("Warning:Bad address,use ramdom address instead\n"); eth_random_addr(dev->enetaddr); mac = dev->enetaddr; } printf("Update MAC: %pM\n", dev->enetaddr); writel((mac[0] << 0) | (mac[1] << 8) | (mac[2] << 16) | (mac[3] << 24), MAC_CSR16); writel((mac[4] << 0) | (mac[5] << 8), MAC_CSR17); return 0; }
static void __init cpmac_get_mac(int instance, unsigned char *dev_addr) { char name[5], *mac; sprintf(name, "mac%c", 'a' + instance); mac = prom_getenv(name); if (!mac && instance) { sprintf(name, "mac%c", 'a'); mac = prom_getenv(name); } if (mac) { if (sscanf(mac, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &dev_addr[0], &dev_addr[1], &dev_addr[2], &dev_addr[3], &dev_addr[4], &dev_addr[5]) != 6) { pr_warning("cannot parse mac address, " "using random address\n"); eth_random_addr(dev_addr); } } else eth_random_addr(dev_addr); }
/** * Fetch MAC address * * @v smsc95xx SMSC95xx device * @v hw_addr Hardware address to fill in * @ret rc Return status code */ static int smsc95xx_fetch_mac ( struct smsc95xx_device *smsc95xx, uint8_t *hw_addr ) { int rc; /* Read MAC address from EEPROM, if present */ if ( ( rc = smsc95xx_fetch_mac_eeprom ( smsc95xx, hw_addr ) ) == 0 ) return 0; /* Construct MAC address for Honeywell VM3, if applicable */ if ( ( rc = smsc95xx_fetch_mac_vm3 ( smsc95xx, hw_addr ) ) == 0 ) return 0; /* Otherwise, generate a random MAC address */ eth_random_addr ( hw_addr ); DBGC ( smsc95xx, "SMSC95XX %p using random MAC %s\n", smsc95xx, eth_ntoa ( hw_addr ) ); return 0; }
static int get_ether_addr(const char *str, u8 *dev_addr) { if (str) { unsigned i; for (i = 0; i < 6; i++) { unsigned char num; if ((*str == '.') || (*str == ':')) str++; num = hex_to_bin(*str++) << 4; num |= hex_to_bin(*str++); dev_addr [i] = num; } if (is_valid_ether_addr(dev_addr)) return 0; } eth_random_addr(dev_addr); return 1; }
static int mv88e6060_setup_addr(struct dsa_switch *ds) { u8 addr[ETH_ALEN]; u16 val; eth_random_addr(addr); val = addr[0] << 8 | addr[1]; /* The multicast bit is always transmitted as a zero, so the switch uses * bit 8 for "DiffAddr", where 0 means all ports transmit the same SA. */ val &= 0xfeff; REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, val); REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]); REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]); return 0; }
static int avf_dev_init(struct rte_eth_dev *eth_dev) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); PMD_INIT_FUNC_TRACE(); /* assign ops func pointer */ eth_dev->dev_ops = &avf_eth_dev_ops; eth_dev->rx_pkt_burst = &avf_recv_pkts; eth_dev->tx_pkt_burst = &avf_xmit_pkts; eth_dev->tx_pkt_prepare = &avf_prep_pkts; /* For secondary processes, we don't initialise any further as primary * has already done this work. Only check if we need a different RX * and TX function. */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) { avf_set_rx_function(eth_dev); avf_set_tx_function(eth_dev); return 0; } rte_eth_copy_pci_info(eth_dev, pci_dev); hw->vendor_id = pci_dev->id.vendor_id; hw->device_id = pci_dev->id.device_id; hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; hw->subsystem_device_id = pci_dev->id.subsystem_device_id; hw->bus.bus_id = pci_dev->addr.bus; hw->bus.device = pci_dev->addr.devid; hw->bus.func = pci_dev->addr.function; hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private); adapter->eth_dev = eth_dev; if (avf_init_vf(eth_dev) != 0) { PMD_INIT_LOG(ERR, "Init vf failed"); return -1; } /* copy mac addr */ eth_dev->data->mac_addrs = rte_zmalloc( "avf_mac", ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX, 0); if (!eth_dev->data->mac_addrs) { PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to" " store MAC addresses", ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX); return -ENOMEM; } /* If the MAC address is not configured by host, * generate a random one. */ if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr)) eth_random_addr(hw->mac.addr); ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]); /* register callback func to eal lib */ rte_intr_callback_register(&pci_dev->intr_handle, avf_dev_interrupt_handler, (void *)eth_dev); /* enable uio intr after callback register */ rte_intr_enable(&pci_dev->intr_handle); /* configure and enable device interrupt */ avf_enable_irq0(hw); return 0; }
static void board_init_enetaddr(uchar *mac_addr) { puts("Warning: Generating 'random' MAC address\n"); eth_random_addr(mac_addr); eth_setenv_enetaddr("ethaddr", mac_addr); }
int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len) { struct p54_common *priv = dev->priv; struct eeprom_pda_wrap *wrap; struct pda_entry *entry; unsigned int data_len, entry_len; void *tmp; int err; u8 *end = (u8 *)eeprom + len; u16 synth = 0; u16 crc16 = ~0; wrap = (struct eeprom_pda_wrap *) eeprom; entry = (void *)wrap->data + le16_to_cpu(wrap->len); /* verify that at least the entry length/code fits */ while ((u8 *)entry <= end - sizeof(*entry)) { entry_len = le16_to_cpu(entry->len); data_len = ((entry_len - 1) << 1); /* abort if entry exceeds whole structure */ if ((u8 *)entry + sizeof(*entry) + data_len > end) break; switch (le16_to_cpu(entry->code)) { case PDR_MAC_ADDRESS: if (data_len != ETH_ALEN) break; SET_IEEE80211_PERM_ADDR(dev, entry->data); break; case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS: if (priv->output_limit) break; err = p54_convert_output_limits(dev, entry->data, data_len); if (err) goto err; break; case PDR_PRISM_PA_CAL_CURVE_DATA: { struct pda_pa_curve_data *curve_data = (struct pda_pa_curve_data *)entry->data; if (data_len < sizeof(*curve_data)) { err = -EINVAL; goto err; } switch (curve_data->cal_method_rev) { case 0: err = p54_convert_rev0(dev, curve_data); break; case 1: err = p54_convert_rev1(dev, curve_data); break; default: wiphy_err(dev->wiphy, "unknown curve data revision %d\n", curve_data->cal_method_rev); err = -ENODEV; break; } if (err) goto err; } break; case PDR_PRISM_ZIF_TX_IQ_CALIBRATION: priv->iq_autocal = kmemdup(entry->data, data_len, GFP_KERNEL); if (!priv->iq_autocal) { err = -ENOMEM; goto err; } priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry); break; case PDR_DEFAULT_COUNTRY: p54_parse_default_country(dev, entry->data, data_len); break; case PDR_INTERFACE_LIST: tmp = entry->data; while ((u8 *)tmp < entry->data + data_len) { struct exp_if *exp_if = tmp; if (exp_if->if_id == cpu_to_le16(IF_ID_ISL39000)) synth = le16_to_cpu(exp_if->variant); tmp += sizeof(*exp_if); } break; case PDR_HARDWARE_PLATFORM_COMPONENT_ID: if (data_len < 2) break; priv->version = *(u8 *)(entry->data + 1); break; case PDR_RSSI_LINEAR_APPROXIMATION: case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND: case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED: err = p54_parse_rssical(dev, entry->data, data_len, le16_to_cpu(entry->code)); if (err) goto err; break; case PDR_RSSI_LINEAR_APPROXIMATION_CUSTOMV2: { struct pda_custom_wrapper *pda = (void *) entry->data; __le16 *src; u16 *dst; int i; if (priv->rssi_db || data_len < sizeof(*pda)) break; priv->rssi_db = p54_convert_db(pda, data_len); if (!priv->rssi_db) break; src = (void *) priv->rssi_db->data; dst = (void *) priv->rssi_db->data; for (i = 0; i < priv->rssi_db->entries; i++) *(dst++) = (s16) le16_to_cpu(*(src++)); } break; case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS_CUSTOM: { struct pda_custom_wrapper *pda = (void *) entry->data; if (priv->output_limit || data_len < sizeof(*pda)) break; priv->output_limit = p54_convert_db(pda, data_len); } break; case PDR_PRISM_PA_CAL_CURVE_DATA_CUSTOM: { struct pda_custom_wrapper *pda = (void *) entry->data; if (priv->curve_data || data_len < sizeof(*pda)) break; priv->curve_data = p54_convert_db(pda, data_len); } break; case PDR_END: crc16 = ~crc_ccitt(crc16, (u8 *) entry, sizeof(*entry)); if (crc16 != le16_to_cpup((__le16 *)entry->data)) { wiphy_err(dev->wiphy, "eeprom failed checksum " "test!\n"); err = -ENOMSG; goto err; } else { goto good_eeprom; } break; default: break; } crc16 = crc_ccitt(crc16, (u8 *)entry, (entry_len + 1) * 2); entry = (void *)entry + (entry_len + 1) * 2; } wiphy_err(dev->wiphy, "unexpected end of eeprom data.\n"); err = -ENODATA; goto err; good_eeprom: if (!synth || !priv->iq_autocal || !priv->output_limit || !priv->curve_data) { wiphy_err(dev->wiphy, "not all required entries found in eeprom!\n"); err = -EINVAL; goto err; } priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK; err = p54_generate_channel_lists(dev); if (err) goto err; if (priv->rxhw == PDR_SYNTH_FRONTEND_XBOW) p54_init_xbow_synth(priv); if (!(synth & PDR_SYNTH_24_GHZ_DISABLED)) dev->wiphy->bands[IEEE80211_BAND_2GHZ] = priv->band_table[IEEE80211_BAND_2GHZ]; if (!(synth & PDR_SYNTH_5_GHZ_DISABLED)) dev->wiphy->bands[IEEE80211_BAND_5GHZ] = priv->band_table[IEEE80211_BAND_5GHZ]; if ((synth & PDR_SYNTH_RX_DIV_MASK) == PDR_SYNTH_RX_DIV_SUPPORTED) priv->rx_diversity_mask = 3; if ((synth & PDR_SYNTH_TX_DIV_MASK) == PDR_SYNTH_TX_DIV_SUPPORTED) priv->tx_diversity_mask = 3; if (!is_valid_ether_addr(dev->wiphy->perm_addr)) { u8 perm_addr[ETH_ALEN]; wiphy_warn(dev->wiphy, "Invalid hwaddr! Using randomly generated MAC addr\n"); eth_random_addr(perm_addr); SET_IEEE80211_PERM_ADDR(dev, perm_addr); } priv->cur_rssi = &p54_rssi_default; wiphy_info(dev->wiphy, "hwaddr %pM, MAC:isl38%02x RF:%s\n", dev->wiphy->perm_addr, priv->version, p54_rf_chips[priv->rxhw]); return 0; err: kfree(priv->iq_autocal); kfree(priv->output_limit); kfree(priv->curve_data); kfree(priv->rssi_db); kfree(priv->survey); priv->iq_autocal = NULL; priv->output_limit = NULL; priv->curve_data = NULL; priv->rssi_db = NULL; priv->survey = NULL; wiphy_err(dev->wiphy, "eeprom parse failed!\n"); return err; }
/* * drv_init() - a device potentially for us * * notes: drv_init() is called when the bus driver has located a card * for us to support. * We accept the new device by returning 0. */ static struct rtw_adapter *rtw_usb_if1_init(struct dvobj_priv *dvobj, struct usb_interface *pusb_intf, const struct usb_device_id *pdid) { struct rtw_adapter *padapter = NULL; struct net_device *pnetdev = NULL; int status = _FAIL; pnetdev = rtw_init_netdev23a(padapter); if (!pnetdev) goto free_adapter; padapter = netdev_priv(pnetdev); padapter->dvobj = dvobj; padapter->bDriverStopped = true; dvobj->if1 = padapter; dvobj->padapters[dvobj->iface_nums++] = padapter; padapter->iface_id = IFACE_ID0; rtl8723au_set_hw_type(padapter); SET_NETDEV_DEV(pnetdev, dvobj_to_dev(dvobj)); if (rtw_wdev_alloc(padapter, dvobj_to_dev(dvobj))) goto free_adapter; /* step 2. allocate HalData */ padapter->HalData = kzalloc(sizeof(struct hal_data_8723a), GFP_KERNEL); if (!padapter->HalData) goto free_wdev; /* step read_chip_version */ rtl8723a_read_chip_version(padapter); /* step usb endpoint mapping */ if (!rtl8723au_chip_configure(padapter)) goto free_hal_data; /* step read efuse/eeprom data and get mac_addr */ rtl8723a_read_adapter_info(padapter); /* step 5. */ if (rtw_init_drv_sw23a(padapter) == _FAIL) { RT_TRACE(_module_hci_intfs_c_, _drv_err_, ("Initialize driver software resource Failed!\n")); goto free_hal_data; } #ifdef CONFIG_PM if (padapter->pwrctrlpriv.bSupportRemoteWakeup) { dvobj->pusbdev->do_remote_wakeup = 1; pusb_intf->needs_remote_wakeup = 1; device_init_wakeup(&pusb_intf->dev, 1); DBG_8723A("\n padapter->pwrctrlpriv.bSupportRemoteWakeup~~~~~~\n"); DBG_8723A("\n padapter->pwrctrlpriv.bSupportRemoteWakeup~~~[%d]~~~\n", device_may_wakeup(&pusb_intf->dev)); } #endif /* 2012-07-11 Move here to prevent the 8723AS-VAU BT * auto suspend influence */ if (usb_autopm_get_interface(pusb_intf) < 0) DBG_8723A("can't get autopm:\n"); #ifdef CONFIG_8723AU_BT_COEXIST padapter->pwrctrlpriv.autopm_cnt = 1; #endif /* If the eeprom mac address is corrupted, assign a random address */ if (is_broadcast_ether_addr(padapter->eeprompriv.mac_addr) || is_zero_ether_addr(padapter->eeprompriv.mac_addr)) eth_random_addr(padapter->eeprompriv.mac_addr); DBG_8723A("bDriverStopped:%d, bSurpriseRemoved:%d, bup:%d, hw_init_completed:%d\n", padapter->bDriverStopped, padapter->bSurpriseRemoved, padapter->bup, padapter->hw_init_completed ); status = _SUCCESS; free_hal_data: if (status != _SUCCESS) kfree(padapter->HalData); free_wdev: if (status != _SUCCESS) { rtw_wdev_unregister(padapter->rtw_wdev); rtw_wdev_free(padapter->rtw_wdev); } free_adapter: if (status != _SUCCESS) { if (pnetdev) free_netdev(pnetdev); padapter = NULL; } return padapter; }
static int bgmac_fixed_phy_register(struct bgmac *bgmac) { struct fixed_phy_status fphy_status = { .link = 1, .speed = SPEED_1000, .duplex = DUPLEX_FULL, }; struct phy_device *phy_dev; int err; phy_dev = fixed_phy_register(PHY_POLL, &fphy_status, -1, NULL); if (!phy_dev || IS_ERR(phy_dev)) { bgmac_err(bgmac, "Failed to register fixed PHY device\n"); return -ENODEV; } err = phy_connect_direct(bgmac->net_dev, phy_dev, bgmac_adjust_link, PHY_INTERFACE_MODE_MII); if (err) { bgmac_err(bgmac, "Connecting PHY failed\n"); return err; } bgmac->phy_dev = phy_dev; return err; } static int bgmac_mii_register(struct bgmac *bgmac) { struct mii_bus *mii_bus; struct phy_device *phy_dev; char bus_id[MII_BUS_ID_SIZE + 3]; int err = 0; if (bgmac_is_bcm4707_family(bgmac)) return bgmac_fixed_phy_register(bgmac); mii_bus = mdiobus_alloc(); if (!mii_bus) return -ENOMEM; mii_bus->name = "bgmac mii bus"; sprintf(mii_bus->id, "%s-%d-%d", "bgmac", bgmac->core->bus->num, bgmac->core->core_unit); mii_bus->priv = bgmac; mii_bus->read = bgmac_mii_read; mii_bus->write = bgmac_mii_write; mii_bus->parent = &bgmac->core->dev; mii_bus->phy_mask = ~(1 << bgmac->phyaddr); err = mdiobus_register(mii_bus); if (err) { bgmac_err(bgmac, "Registration of mii bus failed\n"); goto err_free_bus; } bgmac->mii_bus = mii_bus; /* Connect to the PHY */ snprintf(bus_id, sizeof(bus_id), PHY_ID_FMT, mii_bus->id, bgmac->phyaddr); phy_dev = phy_connect(bgmac->net_dev, bus_id, &bgmac_adjust_link, PHY_INTERFACE_MODE_MII); if (IS_ERR(phy_dev)) { bgmac_err(bgmac, "PHY connection failed\n"); err = PTR_ERR(phy_dev); goto err_unregister_bus; } bgmac->phy_dev = phy_dev; return err; err_unregister_bus: mdiobus_unregister(mii_bus); err_free_bus: mdiobus_free(mii_bus); return err; } static void bgmac_mii_unregister(struct bgmac *bgmac) { struct mii_bus *mii_bus = bgmac->mii_bus; mdiobus_unregister(mii_bus); mdiobus_free(mii_bus); } /************************************************** * BCMA bus ops **************************************************/ /* http://bcm-v4.sipsolutions.net/mac-gbit/gmac/chipattach */ static int bgmac_probe(struct bcma_device *core) { struct net_device *net_dev; struct bgmac *bgmac; struct ssb_sprom *sprom = &core->bus->sprom; u8 *mac; int err; switch (core->core_unit) { case 0: mac = sprom->et0mac; break; case 1: mac = sprom->et1mac; break; case 2: mac = sprom->et2mac; break; default: pr_err("Unsupported core_unit %d\n", core->core_unit); return -ENOTSUPP; } if (!is_valid_ether_addr(mac)) { dev_err(&core->dev, "Invalid MAC addr: %pM\n", mac); eth_random_addr(mac); dev_warn(&core->dev, "Using random MAC: %pM\n", mac); } /* This (reset &) enable is not preset in specs or reference driver but * Broadcom does it in arch PCI code when enabling fake PCI device. */ bcma_core_enable(core, 0); /* Allocation and references */ net_dev = alloc_etherdev(sizeof(*bgmac)); if (!net_dev) return -ENOMEM; net_dev->netdev_ops = &bgmac_netdev_ops; net_dev->irq = core->irq; net_dev->ethtool_ops = &bgmac_ethtool_ops; bgmac = netdev_priv(net_dev); bgmac->net_dev = net_dev; bgmac->core = core; bcma_set_drvdata(core, bgmac); /* Defaults */ memcpy(bgmac->net_dev->dev_addr, mac, ETH_ALEN); /* On BCM4706 we need common core to access PHY */ if (core->id.id == BCMA_CORE_4706_MAC_GBIT && !core->bus->drv_gmac_cmn.core) { bgmac_err(bgmac, "GMAC CMN core not found (required for BCM4706)\n"); err = -ENODEV; goto err_netdev_free; } bgmac->cmn = core->bus->drv_gmac_cmn.core; switch (core->core_unit) { case 0: bgmac->phyaddr = sprom->et0phyaddr; break; case 1: bgmac->phyaddr = sprom->et1phyaddr; break; case 2: bgmac->phyaddr = sprom->et2phyaddr; break; } bgmac->phyaddr &= BGMAC_PHY_MASK; if (bgmac->phyaddr == BGMAC_PHY_MASK) { bgmac_err(bgmac, "No PHY found\n"); err = -ENODEV; goto err_netdev_free; } bgmac_info(bgmac, "Found PHY addr: %d%s\n", bgmac->phyaddr, bgmac->phyaddr == BGMAC_PHY_NOREGS ? " (NOREGS)" : ""); if (core->bus->hosttype == BCMA_HOSTTYPE_PCI) { bgmac_err(bgmac, "PCI setup not implemented\n"); err = -ENOTSUPP; goto err_netdev_free; } bgmac_chip_reset(bgmac); /* For Northstar, we have to take all GMAC core out of reset */ if (bgmac_is_bcm4707_family(bgmac)) { struct bcma_device *ns_core; int ns_gmac; /* Northstar has 4 GMAC cores */ for (ns_gmac = 0; ns_gmac < 4; ns_gmac++) { /* As Northstar requirement, we have to reset all GMACs * before accessing one. bgmac_chip_reset() call * bcma_core_enable() for this core. Then the other * three GMACs didn't reset. We do it here. */ ns_core = bcma_find_core_unit(core->bus, BCMA_CORE_MAC_GBIT, ns_gmac); if (ns_core && !bcma_core_is_enabled(ns_core)) bcma_core_enable(ns_core, 0); } } err = bgmac_dma_alloc(bgmac); if (err) { bgmac_err(bgmac, "Unable to alloc memory for DMA\n"); goto err_netdev_free; } bgmac->int_mask = BGMAC_IS_ERRMASK | BGMAC_IS_RX | BGMAC_IS_TX_MASK; if (bcm47xx_nvram_getenv("et0_no_txint", NULL, 0) == 0) bgmac->int_mask &= ~BGMAC_IS_TX_MASK; /* TODO: reset the external phy. Specs are needed */ bgmac_phy_reset(bgmac); bgmac->has_robosw = !!(core->bus->sprom.boardflags_lo & BGMAC_BFL_ENETROBO); if (bgmac->has_robosw) bgmac_warn(bgmac, "Support for Roboswitch not implemented\n"); if (core->bus->sprom.boardflags_lo & BGMAC_BFL_ENETADM) bgmac_warn(bgmac, "Support for ADMtek ethernet switch not implemented\n"); netif_napi_add(net_dev, &bgmac->napi, bgmac_poll, BGMAC_WEIGHT); err = bgmac_mii_register(bgmac); if (err) { bgmac_err(bgmac, "Cannot register MDIO\n"); goto err_dma_free; } net_dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; net_dev->hw_features = net_dev->features; net_dev->vlan_features = net_dev->features; err = register_netdev(bgmac->net_dev); if (err) { bgmac_err(bgmac, "Cannot register net device\n"); goto err_mii_unregister; } netif_carrier_off(net_dev); return 0; err_mii_unregister: bgmac_mii_unregister(bgmac); err_dma_free: bgmac_dma_free(bgmac); err_netdev_free: bcma_set_drvdata(core, NULL); free_netdev(net_dev); return err; } static void bgmac_remove(struct bcma_device *core) { struct bgmac *bgmac = bcma_get_drvdata(core); unregister_netdev(bgmac->net_dev); bgmac_mii_unregister(bgmac); netif_napi_del(&bgmac->napi); bgmac_dma_free(bgmac); bcma_set_drvdata(core, NULL); free_netdev(bgmac->net_dev); } static struct bcma_driver bgmac_bcma_driver = { .name = KBUILD_MODNAME, .id_table = bgmac_bcma_tbl, .probe = bgmac_probe, .remove = bgmac_remove, }; static int __init bgmac_init(void) { int err; err = bcma_driver_register(&bgmac_bcma_driver); if (err) return err; pr_info("Broadcom 47xx GBit MAC driver loaded\n"); return 0; }
/* http://bcm-v4.sipsolutions.net/mac-gbit/gmac/chipattach */ static int bgmac_probe(struct bcma_device *core) { struct net_device *net_dev; struct bgmac *bgmac; struct ssb_sprom *sprom = &core->bus->sprom; u8 *mac = core->core_unit ? sprom->et1mac : sprom->et0mac; int err; /* We don't support 2nd, 3rd, ... units, SPROM has to be adjusted */ if (core->core_unit > 1) { pr_err("Unsupported core_unit %d\n", core->core_unit); return -ENOTSUPP; } if (!is_valid_ether_addr(mac)) { dev_err(&core->dev, "Invalid MAC addr: %pM\n", mac); eth_random_addr(mac); dev_warn(&core->dev, "Using random MAC: %pM\n", mac); } /* Allocation and references */ net_dev = alloc_etherdev(sizeof(*bgmac)); if (!net_dev) return -ENOMEM; net_dev->netdev_ops = &bgmac_netdev_ops; net_dev->irq = core->irq; SET_ETHTOOL_OPS(net_dev, &bgmac_ethtool_ops); bgmac = netdev_priv(net_dev); bgmac->net_dev = net_dev; bgmac->core = core; bcma_set_drvdata(core, bgmac); /* Defaults */ memcpy(bgmac->net_dev->dev_addr, mac, ETH_ALEN); /* On BCM4706 we need common core to access PHY */ if (core->id.id == BCMA_CORE_4706_MAC_GBIT && !core->bus->drv_gmac_cmn.core) { bgmac_err(bgmac, "GMAC CMN core not found (required for BCM4706)\n"); err = -ENODEV; goto err_netdev_free; } bgmac->cmn = core->bus->drv_gmac_cmn.core; bgmac->phyaddr = core->core_unit ? sprom->et1phyaddr : sprom->et0phyaddr; bgmac->phyaddr &= BGMAC_PHY_MASK; if (bgmac->phyaddr == BGMAC_PHY_MASK) { bgmac_err(bgmac, "No PHY found\n"); err = -ENODEV; goto err_netdev_free; } bgmac_info(bgmac, "Found PHY addr: %d%s\n", bgmac->phyaddr, bgmac->phyaddr == BGMAC_PHY_NOREGS ? " (NOREGS)" : ""); if (core->bus->hosttype == BCMA_HOSTTYPE_PCI) { bgmac_err(bgmac, "PCI setup not implemented\n"); err = -ENOTSUPP; goto err_netdev_free; } bgmac_chip_reset(bgmac); /* For Northstar, we have to take all GMAC core out of reset */ if (core->id.id == BCMA_CHIP_ID_BCM4707 || core->id.id == BCMA_CHIP_ID_BCM53018) { struct bcma_device *ns_core; int ns_gmac; /* Northstar has 4 GMAC cores */ for (ns_gmac = 0; ns_gmac < 4; ns_gmac++) { /* As Northstar requirement, we have to reset all GMACs * before accessing one. bgmac_chip_reset() call * bcma_core_enable() for this core. Then the other * three GMACs didn't reset. We do it here. */ ns_core = bcma_find_core_unit(core->bus, BCMA_CORE_MAC_GBIT, ns_gmac); if (ns_core && !bcma_core_is_enabled(ns_core)) bcma_core_enable(ns_core, 0); } } err = bgmac_dma_alloc(bgmac); if (err) { bgmac_err(bgmac, "Unable to alloc memory for DMA\n"); goto err_netdev_free; } bgmac->int_mask = BGMAC_IS_ERRMASK | BGMAC_IS_RX | BGMAC_IS_TX_MASK; if (bcm47xx_nvram_getenv("et0_no_txint", NULL, 0) == 0) bgmac->int_mask &= ~BGMAC_IS_TX_MASK; /* TODO: reset the external phy. Specs are needed */ bgmac_phy_reset(bgmac); bgmac->has_robosw = !!(core->bus->sprom.boardflags_lo & BGMAC_BFL_ENETROBO); if (bgmac->has_robosw) bgmac_warn(bgmac, "Support for Roboswitch not implemented\n"); if (core->bus->sprom.boardflags_lo & BGMAC_BFL_ENETADM) bgmac_warn(bgmac, "Support for ADMtek ethernet switch not implemented\n"); err = bgmac_mii_register(bgmac); if (err) { bgmac_err(bgmac, "Cannot register MDIO\n"); goto err_dma_free; } err = register_netdev(bgmac->net_dev); if (err) { bgmac_err(bgmac, "Cannot register net device\n"); goto err_mii_unregister; } netif_carrier_off(net_dev); netif_napi_add(net_dev, &bgmac->napi, bgmac_poll, BGMAC_WEIGHT); return 0; err_mii_unregister: bgmac_mii_unregister(bgmac); err_dma_free: bgmac_dma_free(bgmac); err_netdev_free: bcma_set_drvdata(core, NULL); free_netdev(net_dev); return err; }
static int bgmac_phy_connect_direct(struct bgmac *bgmac) { struct fixed_phy_status fphy_status = { .link = 1, .speed = SPEED_1000, .duplex = DUPLEX_FULL, }; struct phy_device *phy_dev; int err; phy_dev = fixed_phy_register(PHY_POLL, &fphy_status, -1, NULL); if (!phy_dev || IS_ERR(phy_dev)) { dev_err(bgmac->dev, "Failed to register fixed PHY device\n"); return -ENODEV; } err = phy_connect_direct(bgmac->net_dev, phy_dev, bgmac_adjust_link, PHY_INTERFACE_MODE_MII); if (err) { dev_err(bgmac->dev, "Connecting PHY failed\n"); return err; } return err; } static int bgmac_phy_connect(struct bgmac *bgmac) { struct phy_device *phy_dev; char bus_id[MII_BUS_ID_SIZE + 3]; /* Connect to the PHY */ snprintf(bus_id, sizeof(bus_id), PHY_ID_FMT, bgmac->mii_bus->id, bgmac->phyaddr); phy_dev = phy_connect(bgmac->net_dev, bus_id, &bgmac_adjust_link, PHY_INTERFACE_MODE_MII); if (IS_ERR(phy_dev)) { dev_err(bgmac->dev, "PHY connection failed\n"); return PTR_ERR(phy_dev); } return 0; } int bgmac_enet_probe(struct bgmac *info) { struct net_device *net_dev; struct bgmac *bgmac; int err; /* Allocation and references */ net_dev = alloc_etherdev(sizeof(*bgmac)); if (!net_dev) return -ENOMEM; net_dev->netdev_ops = &bgmac_netdev_ops; net_dev->ethtool_ops = &bgmac_ethtool_ops; bgmac = netdev_priv(net_dev); memcpy(bgmac, info, sizeof(*bgmac)); bgmac->net_dev = net_dev; net_dev->irq = bgmac->irq; SET_NETDEV_DEV(net_dev, bgmac->dev); if (!is_valid_ether_addr(bgmac->mac_addr)) { dev_err(bgmac->dev, "Invalid MAC addr: %pM\n", bgmac->mac_addr); eth_random_addr(bgmac->mac_addr); dev_warn(bgmac->dev, "Using random MAC: %pM\n", bgmac->mac_addr); } ether_addr_copy(net_dev->dev_addr, bgmac->mac_addr); /* This (reset &) enable is not preset in specs or reference driver but * Broadcom does it in arch PCI code when enabling fake PCI device. */ bgmac_clk_enable(bgmac, 0); /* This seems to be fixing IRQ by assigning OOB #6 to the core */ if (bgmac->feature_flags & BGMAC_FEAT_IRQ_ID_OOB_6) bgmac_idm_write(bgmac, BCMA_OOB_SEL_OUT_A30, 0x86); bgmac_chip_reset(bgmac); err = bgmac_dma_alloc(bgmac); if (err) { dev_err(bgmac->dev, "Unable to alloc memory for DMA\n"); goto err_netdev_free; } bgmac->int_mask = BGMAC_IS_ERRMASK | BGMAC_IS_RX | BGMAC_IS_TX_MASK; if (bcm47xx_nvram_getenv("et0_no_txint", NULL, 0) == 0) bgmac->int_mask &= ~BGMAC_IS_TX_MASK; netif_napi_add(net_dev, &bgmac->napi, bgmac_poll, BGMAC_WEIGHT); if (!bgmac->mii_bus) err = bgmac_phy_connect_direct(bgmac); else err = bgmac_phy_connect(bgmac); if (err) { dev_err(bgmac->dev, "Cannot connect to phy\n"); goto err_dma_free; } net_dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; net_dev->hw_features = net_dev->features; net_dev->vlan_features = net_dev->features; err = register_netdev(bgmac->net_dev); if (err) { dev_err(bgmac->dev, "Cannot register net device\n"); goto err_phy_disconnect; } netif_carrier_off(net_dev); return 0; err_phy_disconnect: phy_disconnect(net_dev->phydev); err_dma_free: bgmac_dma_free(bgmac); err_netdev_free: free_netdev(net_dev); return err; } EXPORT_SYMBOL_GPL(bgmac_enet_probe); void bgmac_enet_remove(struct bgmac *bgmac) { unregister_netdev(bgmac->net_dev); phy_disconnect(bgmac->net_dev->phydev); netif_napi_del(&bgmac->napi); bgmac_dma_free(bgmac); free_netdev(bgmac->net_dev); }
int ftmac110_initialize(bd_t *bis) { int i, card_nr = 0; struct eth_device *dev; struct ftmac110_chip *chip; dev = malloc(sizeof(*dev) + sizeof(*chip)); if (dev == NULL) { panic("ftmac110: out of memory 1\n"); return -1; } chip = (struct ftmac110_chip *)(dev + 1); memset(dev, 0, sizeof(*dev) + sizeof(*chip)); sprintf(dev->name, "FTMAC110#%d", card_nr); dev->iobase = CONFIG_FTMAC110_BASE; chip->regs = (void __iomem *)dev->iobase; dev->priv = chip; dev->init = ftmac110_probe; dev->halt = ftmac110_halt; dev->send = ftmac110_send; dev->recv = ftmac110_recv; if (!eth_getenv_enetaddr_by_index("eth", card_nr, dev->enetaddr)) eth_random_addr(dev->enetaddr); /* allocate tx descriptors (it must be 16 bytes aligned) */ chip->txd = dma_alloc_coherent( sizeof(struct ftmac110_desc) * CFG_TXDES_NUM, &chip->txd_dma); if (!chip->txd) panic("ftmac110: out of memory 3\n"); memset(chip->txd, 0, sizeof(struct ftmac110_desc) * CFG_TXDES_NUM); for (i = 0; i < CFG_TXDES_NUM; ++i) { void *va = memalign(ARCH_DMA_MINALIGN, CFG_XBUF_SIZE); if (!va) panic("ftmac110: out of memory 4\n"); chip->txd[i].vbuf = va; chip->txd[i].pbuf = cpu_to_le32(virt_to_phys(va)); chip->txd[i].ctrl = 0; /* owned by SW */ } chip->txd[i - 1].ctrl |= cpu_to_le64(FTMAC110_TXD_END); chip->txd_idx = 0; /* allocate rx descriptors (it must be 16 bytes aligned) */ chip->rxd = dma_alloc_coherent( sizeof(struct ftmac110_desc) * CFG_RXDES_NUM, &chip->rxd_dma); if (!chip->rxd) panic("ftmac110: out of memory 4\n"); memset((void *)chip->rxd, 0, sizeof(struct ftmac110_desc) * CFG_RXDES_NUM); for (i = 0; i < CFG_RXDES_NUM; ++i) { void *va = memalign(ARCH_DMA_MINALIGN, CFG_XBUF_SIZE + 2); if (!va) panic("ftmac110: out of memory 5\n"); /* it needs to be exactly 2 bytes aligned */ va = ((uint8_t *)va + 2); chip->rxd[i].vbuf = va; chip->rxd[i].pbuf = cpu_to_le32(virt_to_phys(va)); chip->rxd[i].ctrl = cpu_to_le64(FTMAC110_RXD_OWNER | FTMAC110_RXD_BUFSZ(CFG_XBUF_SIZE)); } chip->rxd[i - 1].ctrl |= cpu_to_le64(FTMAC110_RXD_END); chip->rxd_idx = 0; eth_register(dev); #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) miiphy_register(dev->name, ftmac110_mdio_read, ftmac110_mdio_write); #endif card_nr++; return card_nr; }