Пример #1
0
void
lp_build_alpha_test(struct gallivm_state *gallivm,
                    unsigned func,
                    struct lp_type type,
                    const struct util_format_description *cbuf_format_desc,
                    struct lp_build_mask_context *mask,
                    LLVMValueRef alpha,
                    LLVMValueRef ref,
                    boolean do_branch)
{
    struct lp_build_context bld;
    LLVMValueRef test;

    lp_build_context_init(&bld, gallivm, type);

    /*
     * Alpha testing needs to be done in the color buffer precision.
     *
     * TODO: Ideally, instead of duplicating the color conversion code, we would do
     * alpha testing after converting the output colors, but that's not very
     * convenient, because it needs to be done before depth testing.  Hopefully
     * LLVM will detect and remove the duplicate expression.
     *
     * FIXME: This should be generalized to formats other than rgba8 variants.
     */
    if (type.floating &&
            util_format_is_rgba8_variant(cbuf_format_desc)) {
        const unsigned dst_width = 8;

        alpha = lp_build_clamp(&bld, alpha, bld.zero, bld.one);
        ref   = lp_build_clamp(&bld, ref,   bld.zero, bld.one);

        alpha = lp_build_clamped_float_to_unsigned_norm(gallivm, type, dst_width, alpha);
        ref   = lp_build_clamped_float_to_unsigned_norm(gallivm, type, dst_width, ref);

        type.floating = 0;
        lp_build_context_init(&bld, gallivm, type);
    }

    test = lp_build_cmp(&bld, func, alpha, ref);

    lp_build_name(test, "alpha_mask");

    lp_build_mask_update(mask, test);

    if (do_branch)
        lp_build_mask_check(mask);
}
Пример #2
0
void
lp_build_alpha_to_coverage(struct gallivm_state *gallivm,
                           struct lp_type type,
                           struct lp_build_mask_context *mask,
                           LLVMValueRef alpha,
                           boolean do_branch)
{
   struct lp_build_context bld;
   LLVMValueRef test;
   LLVMValueRef alpha_ref_value;

   lp_build_context_init(&bld, gallivm, type);

   alpha_ref_value = lp_build_const_vec(gallivm, type, 0.5);

   test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value);

   lp_build_name(test, "alpha_to_coverage");

   lp_build_mask_update(mask, test);

   if (do_branch)
      lp_build_mask_check(mask);
}
Пример #3
0
/**
 * Generate code for performing depth and/or stencil tests.
 * We operate on a vector of values (typically n 2x2 quads).
 *
 * \param depth  the depth test state
 * \param stencil  the front/back stencil state
 * \param type  the data type of the fragment depth/stencil values
 * \param format_desc  description of the depth/stencil surface
 * \param mask  the alive/dead pixel mask for the quad (vector)
 * \param stencil_refs  the front/back stencil ref values (scalar)
 * \param z_src  the incoming depth/stencil values (n 2x2 quad values, float32)
 * \param zs_dst  the depth/stencil values in framebuffer
 * \param face  contains boolean value indicating front/back facing polygon
 */
void
lp_build_depth_stencil_test(struct gallivm_state *gallivm,
                            const struct pipe_depth_state *depth,
                            const struct pipe_stencil_state stencil[2],
                            struct lp_type z_src_type,
                            const struct util_format_description *format_desc,
                            struct lp_build_mask_context *mask,
                            LLVMValueRef stencil_refs[2],
                            LLVMValueRef z_src,
                            LLVMValueRef z_fb,
                            LLVMValueRef s_fb,
                            LLVMValueRef face,
                            LLVMValueRef *z_value,
                            LLVMValueRef *s_value,
                            boolean do_branch)
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_type z_type;
   struct lp_build_context z_bld;
   struct lp_build_context s_bld;
   struct lp_type s_type;
   unsigned z_shift = 0, z_width = 0, z_mask = 0;
   LLVMValueRef z_dst = NULL;
   LLVMValueRef stencil_vals = NULL;
   LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
   LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
   LLVMValueRef orig_mask = lp_build_mask_value(mask);
   LLVMValueRef front_facing = NULL;
   boolean have_z, have_s;

   /*
    * Depths are expected to be between 0 and 1, even if they are stored in
    * floats. Setting these bits here will ensure that the lp_build_conv() call
    * below won't try to unnecessarily clamp the incoming values.
    */
   if(z_src_type.floating) {
      z_src_type.sign = FALSE;
      z_src_type.norm = TRUE;
   }
   else {
      assert(!z_src_type.sign);
      assert(z_src_type.norm);
   }

   /* Pick the type matching the depth-stencil format. */
   z_type = lp_depth_type(format_desc, z_src_type.length);

   /* Pick the intermediate type for depth operations. */
   z_type.width = z_src_type.width;
   assert(z_type.length == z_src_type.length);

   /* FIXME: for non-float depth/stencil might generate better code
    * if we'd always split it up to use 128bit operations.
    * For stencil we'd almost certainly want to pack to 8xi16 values,
    * for z just run twice.
    */

   /* Sanity checking */
   {
      const unsigned z_swizzle = format_desc->swizzle[0];
      const unsigned s_swizzle = format_desc->swizzle[1];

      assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
             s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);

      assert(depth->enabled || stencil[0].enabled);

      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
      assert(format_desc->block.width == 1);
      assert(format_desc->block.height == 1);

      if (stencil[0].enabled) {
         assert(s_swizzle < 4);
         assert(format_desc->channel[s_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED);
         assert(format_desc->channel[s_swizzle].pure_integer);
         assert(!format_desc->channel[s_swizzle].normalized);
         assert(format_desc->channel[s_swizzle].size == 8);
      }

      if (depth->enabled) {
         assert(z_swizzle < 4);
         if (z_type.floating) {
            assert(z_swizzle == 0);
            assert(format_desc->channel[z_swizzle].type ==
                   UTIL_FORMAT_TYPE_FLOAT);
            assert(format_desc->channel[z_swizzle].size == 32);
         }
         else {
            assert(format_desc->channel[z_swizzle].type ==
                   UTIL_FORMAT_TYPE_UNSIGNED);
            assert(format_desc->channel[z_swizzle].normalized);
            assert(!z_type.fixed);
         }
      }
   }


   /* Setup build context for Z vals */
   lp_build_context_init(&z_bld, gallivm, z_type);

   /* Setup build context for stencil vals */
   s_type = lp_int_type(z_type);
   lp_build_context_init(&s_bld, gallivm, s_type);

   /* Compute and apply the Z/stencil bitmasks and shifts.
    */
   {
      unsigned s_shift, s_mask;

      z_dst = z_fb;
      stencil_vals = s_fb;

      have_z = get_z_shift_and_mask(format_desc, &z_shift, &z_width, &z_mask);
      have_s = get_s_shift_and_mask(format_desc, &s_shift, &s_mask);

      if (have_z) {
         if (z_mask != 0xffffffff) {
            z_bitmask = lp_build_const_int_vec(gallivm, z_type, z_mask);
         }

         /*
          * Align the framebuffer Z 's LSB to the right.
          */
         if (z_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
            z_dst = LLVMBuildLShr(builder, z_dst, shift, "z_dst");
         } else if (z_bitmask) {
            z_dst = LLVMBuildAnd(builder, z_dst, z_bitmask, "z_dst");
         } else {
            lp_build_name(z_dst, "z_dst");
         }
      }

      if (have_s) {
         if (s_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, s_type, s_shift);
            stencil_vals = LLVMBuildLShr(builder, stencil_vals, shift, "");
            stencil_shift = shift;  /* used below */
         }

         if (s_mask != 0xffffffff) {
            LLVMValueRef mask = lp_build_const_int_vec(gallivm, s_type, s_mask);
            stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
         }

         lp_build_name(stencil_vals, "s_dst");
      }
   }

   if (stencil[0].enabled) {

      if (face) {
         LLVMValueRef zero = lp_build_const_int32(gallivm, 0);

         /* front_facing = face != 0 ? ~0 : 0 */
         front_facing = LLVMBuildICmp(builder, LLVMIntNE, face, zero, "");
         front_facing = LLVMBuildSExt(builder, front_facing,
                                      LLVMIntTypeInContext(gallivm->context,
                                             s_bld.type.length*s_bld.type.width),
                                      "");
         front_facing = LLVMBuildBitCast(builder, front_facing,
                                         s_bld.int_vec_type, "");
      }

      /* convert scalar stencil refs into vectors */
      stencil_refs[0] = lp_build_broadcast_scalar(&s_bld, stencil_refs[0]);
      stencil_refs[1] = lp_build_broadcast_scalar(&s_bld, stencil_refs[1]);

      s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
                                          stencil_refs, stencil_vals,
                                          front_facing);

      /* apply stencil-fail operator */
      {
         LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, orig_mask, s_pass_mask);
         stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
                                            stencil_refs, stencil_vals,
                                            s_fail_mask, front_facing);
      }
   }

   if (depth->enabled) {
      /*
       * Convert fragment Z to the desired type, aligning the LSB to the right.
       */

      assert(z_type.width == z_src_type.width);
      assert(z_type.length == z_src_type.length);
      assert(lp_check_value(z_src_type, z_src));
      if (z_src_type.floating) {
         /*
          * Convert from floating point values
          */

         if (!z_type.floating) {
            z_src = lp_build_clamped_float_to_unsigned_norm(gallivm,
                                                            z_src_type,
                                                            z_width,
                                                            z_src);
         }
      } else {
         /*
          * Convert from unsigned normalized values.
          */

         assert(!z_src_type.sign);
         assert(!z_src_type.fixed);
         assert(z_src_type.norm);
         assert(!z_type.floating);
         if (z_src_type.width > z_width) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_src_type,
                                                        z_src_type.width - z_width);
            z_src = LLVMBuildLShr(builder, z_src, shift, "");
         }
      }
      assert(lp_check_value(z_type, z_src));

      lp_build_name(z_src, "z_src");

      /* compare src Z to dst Z, returning 'pass' mask */
      z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);

      if (!stencil[0].enabled) {
         /* We can potentially skip all remaining operations here, but only
          * if stencil is disabled because we still need to update the stencil
          * buffer values.  Don't need to update Z buffer values.
          */
         lp_build_mask_update(mask, z_pass);

         if (do_branch) {
            lp_build_mask_check(mask);
            do_branch = FALSE;
         }
      }

      if (depth->writemask) {
         LLVMValueRef zselectmask;

         /* mask off bits that failed Z test */
         zselectmask = LLVMBuildAnd(builder, orig_mask, z_pass, "");

         /* mask off bits that failed stencil test */
         if (s_pass_mask) {
            zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
         }

         /* Mix the old and new Z buffer values.
          * z_dst[i] = zselectmask[i] ? z_src[i] : z_dst[i]
          */
         z_dst = lp_build_select(&z_bld, zselectmask, z_src, z_dst);
      }

      if (stencil[0].enabled) {
         /* update stencil buffer values according to z pass/fail result */
         LLVMValueRef z_fail_mask, z_pass_mask;

         /* apply Z-fail operator */
         z_fail_mask = lp_build_andnot(&s_bld, orig_mask, z_pass);
         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
                                            stencil_refs, stencil_vals,
                                            z_fail_mask, front_facing);

         /* apply Z-pass operator */
         z_pass_mask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
                                            stencil_refs, stencil_vals,
                                            z_pass_mask, front_facing);
      }
   }
   else {
      /* No depth test: apply Z-pass operator to stencil buffer values which
       * passed the stencil test.
       */
      s_pass_mask = LLVMBuildAnd(builder, orig_mask, s_pass_mask, "");
      stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
                                         stencil_refs, stencil_vals,
                                         s_pass_mask, front_facing);
   }

   /* Put Z and stencil bits in the right place */
   if (have_z && z_shift) {
      LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
      z_dst = LLVMBuildShl(builder, z_dst, shift, "");
   }
   if (stencil_vals && stencil_shift)
      stencil_vals = LLVMBuildShl(builder, stencil_vals,
                                  stencil_shift, "");

   /* Finally, merge the z/stencil values */
   if (format_desc->block.bits <= 32) {
      if (have_z && have_s)
         *z_value = LLVMBuildOr(builder, z_dst, stencil_vals, "");
      else if (have_z)
         *z_value = z_dst;
      else
         *z_value = stencil_vals;
      *s_value = *z_value;
   }
   else {
      *z_value = z_dst;
      *s_value = stencil_vals;
   }

   if (s_pass_mask)
      lp_build_mask_update(mask, s_pass_mask);

   if (depth->enabled && stencil[0].enabled)
      lp_build_mask_update(mask, z_pass);
}