void BasicThread::thread_proc() { int state = 0; pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &state); if( RET_SUCCESS != on_enter_thread() ) m_state = THR_ERROR; else on_running(); on_exit_thread(); pthread_setcancelstate(state, 0); }
int32 CommandThread::_Thread(void* data) { on_exit_thread(CommandThread::_ThreadExit, data); CommandThread* commandThread = static_cast<CommandThread*>(data); if (commandThread == NULL) return B_ERROR; // TODO acquire autolock BCommandPipe pipe; BObjectList<BString>* args = commandThread->Arguments(); for (int32 x = 0; x < args->CountItems(); x++) pipe << *args->ItemAt(x); FILE* stdOutAndErrPipe = NULL; thread_id pipeThread = pipe.PipeInto(&stdOutAndErrPipe); if (pipeThread < B_OK) return B_ERROR; BPrivate::BCommandPipe::LineReader* reader = new CommandReader(commandThread->Invoker()); if (pipe.ReadLines(stdOutAndErrPipe, reader) != B_OK) { kill_thread(pipeThread); status_t exitval; wait_for_thread(pipeThread, &exitval); return B_ERROR; } return B_OK; }
static int32 worker_thread(void * dummy) { proc_info * ti = dummy; int child_slot = ti->slot; apr_pool_t *tpool = ti->tpool; apr_allocator_t *allocator; apr_socket_t *csd = NULL; apr_pool_t *ptrans; /* Pool for per-transaction stuff */ apr_bucket_alloc_t *bucket_alloc; apr_socket_t *sd = NULL; apr_status_t rv = APR_EINIT; int srv , n; int curr_pollfd = 0, last_pollfd = 0; sigset_t sig_mask; int requests_this_child = ap_max_requests_per_thread; apr_pollfd_t *pollset; /* each worker thread is in control of its own destiny...*/ int this_worker_should_exit = 0; free(ti); mpm_state = AP_MPMQ_STARTING; on_exit_thread(check_restart, (void*)child_slot); /* block the signals for this thread */ sigfillset(&sig_mask); sigprocmask(SIG_BLOCK, &sig_mask, NULL); apr_allocator_create(&allocator); apr_allocator_max_free_set(allocator, ap_max_mem_free); apr_pool_create_ex(&ptrans, tpool, NULL, allocator); apr_allocator_owner_set(allocator, ptrans); apr_pool_tag(ptrans, "transaction"); bucket_alloc = apr_bucket_alloc_create_ex(allocator); apr_thread_mutex_lock(worker_thread_count_mutex); worker_thread_count++; apr_thread_mutex_unlock(worker_thread_count_mutex); (void) ap_update_child_status_from_indexes(0, child_slot, SERVER_STARTING, (request_rec*)NULL); apr_poll_setup(&pollset, num_listening_sockets + 1, tpool); for(n=0 ; n <= num_listening_sockets ; n++) apr_poll_socket_add(pollset, listening_sockets[n], APR_POLLIN); mpm_state = AP_MPMQ_RUNNING; while (1) { /* If we're here, then chances are (unless we're the first thread created) * we're going to be held up in the accept mutex, so doing this here * shouldn't hurt performance. */ this_worker_should_exit |= (ap_max_requests_per_thread != 0) && (requests_this_child <= 0); if (this_worker_should_exit) break; (void) ap_update_child_status_from_indexes(0, child_slot, SERVER_READY, (request_rec*)NULL); apr_thread_mutex_lock(accept_mutex); while (!this_worker_should_exit) { apr_int16_t event; apr_status_t ret; ret = apr_poll(pollset, num_listening_sockets + 1, &srv, -1); if (ret != APR_SUCCESS) { if (APR_STATUS_IS_EINTR(ret)) { continue; } /* poll() will only return errors in catastrophic * circumstances. Let's try exiting gracefully, for now. */ ap_log_error(APLOG_MARK, APLOG_ERR, ret, (const server_rec *) ap_server_conf, "apr_poll: (listen)"); this_worker_should_exit = 1; } else { /* if we've bailed in apr_poll what's the point of trying to use the data? */ apr_poll_revents_get(&event, listening_sockets[0], pollset); if (event & APR_POLLIN){ apr_sockaddr_t *rec_sa; apr_size_t len = 5; char *tmpbuf = apr_palloc(ptrans, sizeof(char) * 5); apr_sockaddr_info_get(&rec_sa, "127.0.0.1", APR_UNSPEC, 7772, 0, ptrans); if ((ret = apr_recvfrom(rec_sa, listening_sockets[0], 0, tmpbuf, &len)) != APR_SUCCESS){ ap_log_error(APLOG_MARK, APLOG_ERR, ret, NULL, "error getting data from UDP!!"); }else { /* add checking??? */ } this_worker_should_exit = 1; } } if (this_worker_should_exit) break; if (num_listening_sockets == 1) { sd = ap_listeners->sd; goto got_fd; } else { /* find a listener */ curr_pollfd = last_pollfd; do { curr_pollfd++; if (curr_pollfd > num_listening_sockets) curr_pollfd = 1; /* Get the revent... */ apr_poll_revents_get(&event, listening_sockets[curr_pollfd], pollset); if (event & APR_POLLIN) { last_pollfd = curr_pollfd; sd = listening_sockets[curr_pollfd]; goto got_fd; } } while (curr_pollfd != last_pollfd); } } got_fd: if (!this_worker_should_exit) { rv = apr_accept(&csd, sd, ptrans); apr_thread_mutex_unlock(accept_mutex); if (rv != APR_SUCCESS) { ap_log_error(APLOG_MARK, APLOG_ERR, rv, ap_server_conf, "apr_accept"); } else { process_socket(ptrans, csd, child_slot, bucket_alloc); requests_this_child--; } } else { apr_thread_mutex_unlock(accept_mutex); break; } apr_pool_clear(ptrans); } ap_update_child_status_from_indexes(0, child_slot, SERVER_DEAD, (request_rec*)NULL); apr_bucket_alloc_destroy(bucket_alloc); ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, NULL, "worker_thread %ld exiting", find_thread(NULL)); apr_thread_mutex_lock(worker_thread_count_mutex); worker_thread_count--; apr_thread_mutex_unlock(worker_thread_count_mutex); return (0); }
/* This is the thread that actually does all the work. */ static int32 worker_thread(void *dummy) { int worker_slot = (int)dummy; apr_allocator_t *allocator; apr_bucket_alloc_t *bucket_alloc; apr_status_t rv = APR_EINIT; int last_poll_idx = 0; sigset_t sig_mask; int requests_this_child = 0; apr_pollset_t *pollset = NULL; ap_listen_rec *lr = NULL; ap_sb_handle_t *sbh = NULL; int i; /* each worker thread is in control of its own destiny...*/ int this_worker_should_exit = 0; /* We have 2 pools that we create/use throughout the lifetime of this * worker. The first and longest lived is the pworker pool. From * this we create the ptrans pool, the lifetime of which is the same * as each connection and is reset prior to each attempt to * process a connection. */ apr_pool_t *ptrans = NULL; apr_pool_t *pworker = NULL; mpm_state = AP_MPMQ_STARTING; /* for benefit of any hooks that run as this * child initializes */ on_exit_thread(check_restart, (void*)worker_slot); /* block the signals for this thread only if we're not running as a * single process. */ if (!one_process) { sigfillset(&sig_mask); sigprocmask(SIG_BLOCK, &sig_mask, NULL); } /* Each worker thread is fully in control of it's destinay and so * to allow each thread to handle the lifetime of it's own resources * we create and use a subcontext for every thread. * The subcontext is a child of the pconf pool. */ apr_allocator_create(&allocator); apr_allocator_max_free_set(allocator, ap_max_mem_free); apr_pool_create_ex(&pworker, pconf, NULL, allocator); apr_allocator_owner_set(allocator, pworker); apr_pool_create(&ptrans, pworker); apr_pool_tag(ptrans, "transaction"); ap_create_sb_handle(&sbh, pworker, 0, worker_slot); (void) ap_update_child_status(sbh, SERVER_READY, (request_rec *) NULL); /* We add an extra socket here as we add the udp_sock we use for signalling * death. This gets added after the others. */ apr_pollset_create(&pollset, num_listening_sockets + 1, pworker, 0); for (lr = ap_listeners, i = num_listening_sockets; i--; lr = lr->next) { apr_pollfd_t pfd = {0}; pfd.desc_type = APR_POLL_SOCKET; pfd.desc.s = lr->sd; pfd.reqevents = APR_POLLIN; pfd.client_data = lr; apr_pollset_add(pollset, &pfd); } { apr_pollfd_t pfd = {0}; pfd.desc_type = APR_POLL_SOCKET; pfd.desc.s = udp_sock; pfd.reqevents = APR_POLLIN; apr_pollset_add(pollset, &pfd); } bucket_alloc = apr_bucket_alloc_create(pworker); mpm_state = AP_MPMQ_RUNNING; while (!this_worker_should_exit) { conn_rec *current_conn; void *csd; /* (Re)initialize this child to a pre-connection state. */ apr_pool_clear(ptrans); if ((ap_max_requests_per_thread > 0 && requests_this_child++ >= ap_max_requests_per_thread)) clean_child_exit(0, worker_slot); (void) ap_update_child_status(sbh, SERVER_READY, (request_rec *) NULL); apr_thread_mutex_lock(accept_mutex); /* We always (presently) have at least 2 sockets we listen on, so * we don't have the ability for a fast path for a single socket * as some MPM's allow :( */ for (;;) { apr_int32_t numdesc = 0; const apr_pollfd_t *pdesc = NULL; rv = apr_pollset_poll(pollset, -1, &numdesc, &pdesc); if (rv != APR_SUCCESS) { if (APR_STATUS_IS_EINTR(rv)) { if (one_process && shutdown_pending) return; continue; } ap_log_error(APLOG_MARK, APLOG_ERR, rv, ap_server_conf, "apr_pollset_poll: (listen)"); clean_child_exit(1, worker_slot); } /* We can always use pdesc[0], but sockets at position N * could end up completely starved of attention in a very * busy server. Therefore, we round-robin across the * returned set of descriptors. While it is possible that * the returned set of descriptors might flip around and * continue to starve some sockets, we happen to know the * internal pollset implementation retains ordering * stability of the sockets. Thus, the round-robin should * ensure that a socket will eventually be serviced. */ if (last_poll_idx >= numdesc) last_poll_idx = 0; /* Grab a listener record from the client_data of the poll * descriptor, and advance our saved index to round-robin * the next fetch. * * ### hmm... this descriptor might have POLLERR rather * ### than POLLIN */ lr = pdesc[last_poll_idx++].client_data; /* The only socket we add without client_data is the first, the UDP socket * we listen on for restart signals. If we've therefore gotten a hit on that * listener lr will be NULL here and we know we've been told to die. * Before we jump to the end of the while loop with this_worker_should_exit * set to 1 (causing us to exit normally we hope) we release the accept_mutex * as we want every thread to go through this same routine :) * Bit of a hack, but compared to what I had before... */ if (lr == NULL) { this_worker_should_exit = 1; apr_thread_mutex_unlock(accept_mutex); goto got_a_black_spot; } goto got_fd; } got_fd: /* Run beos_accept to accept the connection and set things up to * allow us to process it. We always release the accept_lock here, * even if we failt o accept as otherwise we'll starve other workers * which would be bad. */ rv = beos_accept(&csd, lr, ptrans); apr_thread_mutex_unlock(accept_mutex); if (rv == APR_EGENERAL) { /* resource shortage or should-not-occur occured */ clean_child_exit(1, worker_slot); } else if (rv != APR_SUCCESS) continue; current_conn = ap_run_create_connection(ptrans, ap_server_conf, csd, worker_slot, sbh, bucket_alloc); if (current_conn) { ap_process_connection(current_conn, csd); ap_lingering_close(current_conn); } if (ap_my_generation != ap_scoreboard_image->global->running_generation) { /* restart? */ /* yeah, this could be non-graceful restart, in which case the * parent will kill us soon enough, but why bother checking? */ this_worker_should_exit = 1; } got_a_black_spot: } apr_pool_destroy(ptrans); apr_pool_destroy(pworker); clean_child_exit(0, worker_slot); } static int make_worker(int slot) { thread_id tid; if (slot + 1 > ap_max_child_assigned) ap_max_child_assigned = slot + 1; (void) ap_update_child_status_from_indexes(0, slot, SERVER_STARTING, (request_rec*)NULL); if (one_process) { set_signals(); ap_scoreboard_image->parent[0].pid = getpid(); ap_scoreboard_image->servers[0][slot].tid = find_thread(NULL); return 0; } tid = spawn_thread(worker_thread, "apache_worker", B_NORMAL_PRIORITY, (void *)slot); if (tid < B_NO_ERROR) { ap_log_error(APLOG_MARK, APLOG_ERR, errno, NULL, "spawn_thread: Unable to start a new thread"); /* In case system resources are maxed out, we don't want * Apache running away with the CPU trying to fork over and * over and over again. */ (void) ap_update_child_status_from_indexes(0, slot, SERVER_DEAD, (request_rec*)NULL); sleep(10); return -1; } resume_thread(tid); ap_scoreboard_image->servers[0][slot].tid = tid; return 0; }
status_t GenericThread::SetExitCallback(void (*callback)(void*), void* data) { return on_exit_thread(callback, data); }