/************************************************************************* * This function performs k-way refinement **************************************************************************/ void Moc_KWayFM(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace, int npasses) { int h, i, ii, iii, j, k, c; int pass, nvtxs, nedges, ncon; int nmoves, nmoved, nswaps, nzgswaps; /* int gnswaps, gnzgswaps; */ int me, firstvtx, lastvtx, yourlastvtx; int from, to = -1, oldto, oldcut, mydomain, yourdomain, imbalanced, overweight; int npes = ctrl->npes, mype = ctrl->mype, nparts = ctrl->nparts; int nlupd, nsupd, nnbrs, nchanged; idxtype *xadj, *ladjncy, *adjwgt, *vtxdist; idxtype *where, *tmp_where, *moved; floattype *lnpwgts, *gnpwgts, *ognpwgts, *pgnpwgts, *movewgts, *overfill; idxtype *update, *supdate, *rupdate, *pe_updates; idxtype *changed, *perm, *pperm, *htable; idxtype *peind, *recvptr, *sendptr; KeyValueType *swchanges, *rwchanges; RInfoType *rinfo, *myrinfo, *tmp_myrinfo, *tmp_rinfo; EdgeType *tmp_edegrees, *my_edegrees, *your_edegrees; floattype lbvec[MAXNCON], *nvwgt, *badmaxpwgt, *ubvec, *tpwgts, lbavg, ubavg; int *nupds_pe; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->KWayTmr)); /*************************/ /* set up common aliases */ /*************************/ nvtxs = graph->nvtxs; nedges = graph->nedges; ncon = graph->ncon; vtxdist = graph->vtxdist; xadj = graph->xadj; ladjncy = graph->adjncy; adjwgt = graph->adjwgt; firstvtx = vtxdist[mype]; lastvtx = vtxdist[mype+1]; where = graph->where; rinfo = graph->rinfo; lnpwgts = graph->lnpwgts; gnpwgts = graph->gnpwgts; ubvec = ctrl->ubvec; tpwgts = ctrl->tpwgts; nnbrs = graph->nnbrs; peind = graph->peind; recvptr = graph->recvptr; sendptr = graph->sendptr; changed = idxmalloc(nvtxs, "KWR: changed"); rwchanges = wspace->pairs; swchanges = rwchanges + recvptr[nnbrs]; /************************************/ /* set up important data structures */ /************************************/ perm = idxmalloc(nvtxs, "KWR: perm"); pperm = idxmalloc(nparts, "KWR: pperm"); update = idxmalloc(nvtxs, "KWR: update"); supdate = wspace->indices; rupdate = supdate + recvptr[nnbrs]; nupds_pe = imalloc(npes, "KWR: nupds_pe"); htable = idxsmalloc(nvtxs+graph->nrecv, 0, "KWR: lhtable"); badmaxpwgt = fmalloc(nparts*ncon, "badmaxpwgt"); for (i=0; i<nparts; i++) { for (h=0; h<ncon; h++) { badmaxpwgt[i*ncon+h] = ubvec[h]*tpwgts[i*ncon+h]; } } movewgts = fmalloc(nparts*ncon, "KWR: movewgts"); ognpwgts = fmalloc(nparts*ncon, "KWR: ognpwgts"); pgnpwgts = fmalloc(nparts*ncon, "KWR: pgnpwgts"); overfill = fmalloc(nparts*ncon, "KWR: overfill"); moved = idxmalloc(nvtxs, "KWR: moved"); tmp_where = idxmalloc(nvtxs+graph->nrecv, "KWR: tmp_where"); tmp_rinfo = (RInfoType *)GKmalloc(sizeof(RInfoType)*nvtxs, "KWR: tmp_rinfo"); tmp_edegrees = (EdgeType *)GKmalloc(sizeof(EdgeType)*nedges, "KWR: tmp_edegrees"); idxcopy(nvtxs+graph->nrecv, where, tmp_where); for (i=0; i<nvtxs; i++) { tmp_rinfo[i].id = rinfo[i].id; tmp_rinfo[i].ed = rinfo[i].ed; tmp_rinfo[i].ndegrees = rinfo[i].ndegrees; tmp_rinfo[i].degrees = tmp_edegrees+xadj[i]; for (j=0; j<rinfo[i].ndegrees; j++) { tmp_rinfo[i].degrees[j].edge = rinfo[i].degrees[j].edge; tmp_rinfo[i].degrees[j].ewgt = rinfo[i].degrees[j].ewgt; } } nswaps = nzgswaps = 0; /*********************************************************/ /* perform a small number of passes through the vertices */ /*********************************************************/ for (pass=0; pass<npasses; pass++) { if (mype == 0) RandomPermute(nparts, pperm, 1); MPI_Bcast((void *)pperm, nparts, IDX_DATATYPE, 0, ctrl->comm); FastRandomPermute(nvtxs, perm, 1); oldcut = graph->mincut; /* check to see if the partitioning is imbalanced */ Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec); ubavg = savg(ncon, ubvec); lbavg = savg(ncon, lbvec); imbalanced = (lbavg > ubavg) ? 1 : 0; for (c=0; c<2; c++) { scopy(ncon*nparts, gnpwgts, ognpwgts); sset(ncon*nparts, 0.0, movewgts); nmoved = 0; /**********************************************/ /* PASS ONE -- record stats for desired moves */ /**********************************************/ for (iii=0; iii<nvtxs; iii++) { i = perm[iii]; from = tmp_where[i]; nvwgt = graph->nvwgt+i*ncon; for (h=0; h<ncon; h++) if (fabs(nvwgt[h]-gnpwgts[from*ncon+h]) < SMALLFLOAT) break; if (h < ncon) { continue; } /* check for a potential improvement */ if (tmp_rinfo[i].ed >= tmp_rinfo[i].id) { my_edegrees = tmp_rinfo[i].degrees; for (k=0; k<tmp_rinfo[i].ndegrees; k++) { to = my_edegrees[k].edge; if (ProperSide(c, pperm[from], pperm[to])) { for (h=0; h<ncon; h++) if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0) break; if (h == ncon) break; } } oldto = to; /* check if a subdomain was found that fits */ if (k < tmp_rinfo[i].ndegrees) { for (j=k+1; j<tmp_rinfo[i].ndegrees; j++) { to = my_edegrees[j].edge; if (ProperSide(c, pperm[from], pperm[to])) { for (h=0; h<ncon; h++) if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0) break; if (h == ncon) { if (my_edegrees[j].ewgt > my_edegrees[k].ewgt || (my_edegrees[j].ewgt == my_edegrees[k].ewgt && IsHBalanceBetterTT(ncon,gnpwgts+oldto*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){ k = j; oldto = my_edegrees[k].edge; } } } } to = oldto; if (my_edegrees[k].ewgt > tmp_rinfo[i].id || (my_edegrees[k].ewgt == tmp_rinfo[i].id && (imbalanced || graph->level > 3 || iii % 8 == 0) && IsHBalanceBetterFT(ncon,gnpwgts+from*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){ /****************************************/ /* Update tmp arrays of the moved vertex */ /****************************************/ tmp_where[i] = to; moved[nmoved++] = i; for (h=0; h<ncon; h++) { lnpwgts[to*ncon+h] += nvwgt[h]; lnpwgts[from*ncon+h] -= nvwgt[h]; gnpwgts[to*ncon+h] += nvwgt[h]; gnpwgts[from*ncon+h] -= nvwgt[h]; movewgts[to*ncon+h] += nvwgt[h]; movewgts[from*ncon+h] -= nvwgt[h]; } tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt; SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j); if (my_edegrees[k].ewgt == 0) { tmp_rinfo[i].ndegrees--; my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge; my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt; } else { my_edegrees[k].edge = from; } /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { /* no need to bother about vertices on different pe's */ if (ladjncy[j] >= nvtxs) continue; me = ladjncy[j]; mydomain = tmp_where[me]; myrinfo = tmp_rinfo+me; your_edegrees = myrinfo->degrees; if (mydomain == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); } else { if (mydomain == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); } } /* Remove contribution from the .ed of 'from' */ if (mydomain != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (your_edegrees[k].edge == from) { if (your_edegrees[k].ewgt == adjwgt[j]) { myrinfo->ndegrees--; your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge; your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt; } else { your_edegrees[k].ewgt -= adjwgt[j]; } break; } } } /* Add contribution to the .ed of 'to' */ if (mydomain != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (your_edegrees[k].edge == to) { your_edegrees[k].ewgt += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { your_edegrees[myrinfo->ndegrees].edge = to; your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j]; } } } } } } } /******************************************/ /* Let processors know the subdomain wgts */ /* if all proposed moves commit. */ /******************************************/ MPI_Allreduce((void *)lnpwgts, (void *)pgnpwgts, nparts*ncon, MPI_DOUBLE, MPI_SUM, ctrl->comm); /**************************/ /* compute overfill array */ /**************************/ overweight = 0; for (j=0; j<nparts; j++) { for (h=0; h<ncon; h++) { if (pgnpwgts[j*ncon+h] > ognpwgts[j*ncon+h]) { overfill[j*ncon+h] = (pgnpwgts[j*ncon+h]-badmaxpwgt[j*ncon+h]) / (pgnpwgts[j*ncon+h]-ognpwgts[j*ncon+h]); } else { overfill[j*ncon+h] = 0.0; } overfill[j*ncon+h] = amax(overfill[j*ncon+h], 0.0); overfill[j*ncon+h] *= movewgts[j*ncon+h]; if (overfill[j*ncon+h] > 0.0) overweight = 1; ASSERTP(ctrl, ognpwgts[j*ncon+h] <= badmaxpwgt[j*ncon+h] || pgnpwgts[j*ncon+h] <= ognpwgts[j*ncon+h], (ctrl, "%.4f %.4f %.4f\n", ognpwgts[j*ncon+h], badmaxpwgt[j*ncon+h], pgnpwgts[j*ncon+h])); } } /****************************************************/ /* select moves to undo according to overfill array */ /****************************************************/ if (overweight == 1) { for (iii=0; iii<nmoved; iii++) { i = moved[iii]; oldto = tmp_where[i]; nvwgt = graph->nvwgt+i*ncon; my_edegrees = tmp_rinfo[i].degrees; for (k=0; k<tmp_rinfo[i].ndegrees; k++) if (my_edegrees[k].edge == where[i]) break; for (h=0; h<ncon; h++) if (nvwgt[h] > 0.0 && overfill[oldto*ncon+h] > nvwgt[h]/4.0) break; /**********************************/ /* nullify this move if necessary */ /**********************************/ if (k != tmp_rinfo[i].ndegrees && h != ncon) { moved[iii] = -1; from = oldto; to = where[i]; for (h=0; h<ncon; h++) { overfill[oldto*ncon+h] = amax(overfill[oldto*ncon+h]-nvwgt[h], 0.0); } tmp_where[i] = to; tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt; SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j); if (my_edegrees[k].ewgt == 0) { tmp_rinfo[i].ndegrees--; my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge; my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt; } else { my_edegrees[k].edge = from; } for (h=0; h<ncon; h++) { lnpwgts[to*ncon+h] += nvwgt[h]; lnpwgts[from*ncon+h] -= nvwgt[h]; } /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { /* no need to bother about vertices on different pe's */ if (ladjncy[j] >= nvtxs) continue; me = ladjncy[j]; mydomain = tmp_where[me]; myrinfo = tmp_rinfo+me; your_edegrees = myrinfo->degrees; if (mydomain == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); } else { if (mydomain == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); } } /* Remove contribution from the .ed of 'from' */ if (mydomain != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (your_edegrees[k].edge == from) { if (your_edegrees[k].ewgt == adjwgt[j]) { myrinfo->ndegrees--; your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge; your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt; } else { your_edegrees[k].ewgt -= adjwgt[j]; } break; } } } /* Add contribution to the .ed of 'to' */ if (mydomain != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (your_edegrees[k].edge == to) { your_edegrees[k].ewgt += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { your_edegrees[myrinfo->ndegrees].edge = to; your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j]; } } } } } } /*************************************************/ /* PASS TWO -- commit the remainder of the moves */ /*************************************************/ nlupd = nsupd = nmoves = nchanged = 0; for (iii=0; iii<nmoved; iii++) { i = moved[iii]; if (i == -1) continue; where[i] = tmp_where[i]; /* Make sure to update the vertex information */ if (htable[i] == 0) { /* make sure you do the update */ htable[i] = 1; update[nlupd++] = i; } /* Put the vertices adjacent to i into the update array */ for (j=xadj[i]; j<xadj[i+1]; j++) { k = ladjncy[j]; if (htable[k] == 0) { htable[k] = 1; if (k<nvtxs) update[nlupd++] = k; else supdate[nsupd++] = k; } } nmoves++; nswaps++; /* check number of zero-gain moves */ for (k=0; k<rinfo[i].ndegrees; k++) if (rinfo[i].degrees[k].edge == to) break; if (rinfo[i].id == rinfo[i].degrees[k].ewgt) nzgswaps++; if (graph->pexadj[i+1]-graph->pexadj[i] > 0) changed[nchanged++] = i; } /* Tell interested pe's the new where[] info for the interface vertices */ CommChangedInterfaceData(ctrl, graph, nchanged, changed, where, swchanges, rwchanges, wspace->pv4); IFSET(ctrl->dbglvl, DBG_RMOVEINFO, rprintf(ctrl, "\t[%d %d], [%.4f], [%d %d %d]\n", pass, c, badmaxpwgt[0], GlobalSESum(ctrl, nmoves), GlobalSESum(ctrl, nsupd), GlobalSESum(ctrl, nlupd))); /*------------------------------------------------------------- / Time to communicate with processors to send the vertices / whose degrees need to be update. /-------------------------------------------------------------*/ /* Issue the receives first */ for (i=0; i<nnbrs; i++) { MPI_Irecv((void *)(rupdate+sendptr[i]), sendptr[i+1]-sendptr[i], IDX_DATATYPE, peind[i], 1, ctrl->comm, ctrl->rreq+i); } /* Issue the sends next. This needs some preporcessing */ for (i=0; i<nsupd; i++) { htable[supdate[i]] = 0; supdate[i] = graph->imap[supdate[i]]; } iidxsort(nsupd, supdate); for (j=i=0; i<nnbrs; i++) { yourlastvtx = vtxdist[peind[i]+1]; for (k=j; k<nsupd && supdate[k] < yourlastvtx; k++); MPI_Isend((void *)(supdate+j), k-j, IDX_DATATYPE, peind[i], 1, ctrl->comm, ctrl->sreq+i); j = k; } /* OK, now get into the loop waiting for the send/recv operations to finish */ MPI_Waitall(nnbrs, ctrl->rreq, ctrl->statuses); for (i=0; i<nnbrs; i++) MPI_Get_count(ctrl->statuses+i, IDX_DATATYPE, nupds_pe+i); MPI_Waitall(nnbrs, ctrl->sreq, ctrl->statuses); /*------------------------------------------------------------- / Place the recieved to-be updated vertices into update[] /-------------------------------------------------------------*/ for (i=0; i<nnbrs; i++) { pe_updates = rupdate+sendptr[i]; for (j=0; j<nupds_pe[i]; j++) { k = pe_updates[j]; if (htable[k-firstvtx] == 0) { htable[k-firstvtx] = 1; update[nlupd++] = k-firstvtx; } } } /*------------------------------------------------------------- / Update the rinfo of the vertices in the update[] array /-------------------------------------------------------------*/ for (ii=0; ii<nlupd; ii++) { i = update[ii]; ASSERT(ctrl, htable[i] == 1); htable[i] = 0; mydomain = where[i]; myrinfo = rinfo+i; tmp_myrinfo = tmp_rinfo+i; my_edegrees = myrinfo->degrees; your_edegrees = tmp_myrinfo->degrees; graph->lmincut -= myrinfo->ed; myrinfo->ndegrees = 0; myrinfo->id = 0; myrinfo->ed = 0; for (j=xadj[i]; j<xadj[i+1]; j++) { yourdomain = where[ladjncy[j]]; if (mydomain != yourdomain) { myrinfo->ed += adjwgt[j]; for (k=0; k<myrinfo->ndegrees; k++) { if (my_edegrees[k].edge == yourdomain) { my_edegrees[k].ewgt += adjwgt[j]; your_edegrees[k].ewgt += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { my_edegrees[k].edge = yourdomain; my_edegrees[k].ewgt = adjwgt[j]; your_edegrees[k].edge = yourdomain; your_edegrees[k].ewgt = adjwgt[j]; myrinfo->ndegrees++; } ASSERT(ctrl, myrinfo->ndegrees <= xadj[i+1]-xadj[i]); ASSERT(ctrl, tmp_myrinfo->ndegrees <= xadj[i+1]-xadj[i]); } else { myrinfo->id += adjwgt[j]; } } graph->lmincut += myrinfo->ed; tmp_myrinfo->id = myrinfo->id; tmp_myrinfo->ed = myrinfo->ed; tmp_myrinfo->ndegrees = myrinfo->ndegrees; } /* finally, sum-up the partition weights */ MPI_Allreduce((void *)lnpwgts, (void *)gnpwgts, nparts*ncon, MPI_DOUBLE, MPI_SUM, ctrl->comm); } graph->mincut = GlobalSESum(ctrl, graph->lmincut)/2; if (graph->mincut == oldcut) break; } /* gnswaps = GlobalSESum(ctrl, nswaps); gnzgswaps = GlobalSESum(ctrl, nzgswaps); if (mype == 0) printf("niters: %d, nswaps: %d, nzgswaps: %d\n", pass+1, gnswaps, gnzgswaps); */ GKfree((void **)&badmaxpwgt, (void **)&update, (void **)&nupds_pe, (void **)&htable, LTERM); GKfree((void **)&changed, (void **)&pperm, (void **)&perm, (void **)&moved, LTERM); GKfree((void **)&pgnpwgts, (void **)&ognpwgts, (void **)&overfill, (void **)&movewgts, LTERM); GKfree((void **)&tmp_where, (void **)&tmp_rinfo, (void **)&tmp_edegrees, LTERM); IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->KWayTmr)); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ int BalanceMyLink(CtrlType *ctrl, GraphType *graph, idxtype *home, int me, int you, float *flows, float maxdiff, float *diff_cost, float *diff_lbavg, float avgvwgt) { int h, i, ii, j, k; int nvtxs, ncon; int nqueues, minval, maxval, higain, vtx, edge, totalv; int from, to, qnum, index, nchanges, cut, tmp; int pass, nswaps, nmoves, multiplier; idxtype *xadj, *vsize, *adjncy, *adjwgt, *where, *ed, *id; idxtype *hval, *nvpq, *inq, *map, *rmap, *ptr, *myqueue, *changes; float *nvwgt, lbvec[MAXNCON], pwgts[MAXNCON*2], tpwgts[MAXNCON*2], my_wgt[MAXNCON]; float newgain, oldgain = 0.0; float lbavg, bestflow, mycost; float ipc_factor, redist_factor, ftmp; FPQueueType *queues; int mype; MPI_Comm_rank(MPI_COMM_WORLD, &mype); nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; vsize = graph->vsize; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; ipc_factor = ctrl->ipc_factor; redist_factor = ctrl->redist_factor; hval = idxmalloc(nvtxs*7, "hval"); id = hval + nvtxs; ed = hval + nvtxs*2; map = hval + nvtxs*3; rmap = hval + nvtxs*4; myqueue = hval + nvtxs*5; changes = hval + nvtxs*6; sset(ncon*2, 0.0, pwgts); for (h=0; h<ncon; h++) { tpwgts[h] = -1.0 * flows[h]; tpwgts[ncon+h] = flows[h]; } for (i=0; i<nvtxs; i++) { if (where[i] == me) { for (h=0; h<ncon; h++) { tpwgts[h] += nvwgt[i*ncon+h]; pwgts[h] += nvwgt[i*ncon+h]; } } else { ASSERTS(where[i] == you); for (h=0; h<ncon; h++) { tpwgts[ncon+h] += nvwgt[i*ncon+h]; pwgts[ncon+h] += nvwgt[i*ncon+h]; } } } /* we don't want any tpwgts to be less than zero */ for (h=0; h<ncon; h++) { if (tpwgts[h] < 0.0) { tpwgts[ncon+h] += tpwgts[h]; tpwgts[h] = 0.0; } if (tpwgts[ncon+h] < 0.0) { tpwgts[h] += tpwgts[ncon+h]; tpwgts[ncon+h] = 0.0; } } /*******************************/ /* insert vertices into queues */ /*******************************/ minval = maxval = 0; multiplier = 1; for (i=0; i<ncon; i++) { multiplier *= (i+1); maxval += i*multiplier; minval += (ncon-1-i)*multiplier; } nqueues = maxval-minval+1; nvpq = idxsmalloc(nqueues, 0, "nvpq"); ptr = idxmalloc(nqueues+1, "ptr"); inq = idxmalloc(nqueues*2, "inq"); queues = (FPQueueType *)(GKmalloc(sizeof(FPQueueType)*nqueues*2, "queues")); for (i=0; i<nvtxs; i++) hval[i] = Moc_HashVwgts(ncon, nvwgt+i*ncon) - minval; for (i=0; i<nvtxs; i++) nvpq[hval[i]]++; ptr[0] = 0; for (i=0; i<nqueues; i++) ptr[i+1] = ptr[i] + nvpq[i]; for (i=0; i<nvtxs; i++) { map[i] = ptr[hval[i]]; rmap[ptr[hval[i]]++] = i; } for (i=nqueues-1; i>0; i--) ptr[i] = ptr[i-1]; ptr[0] = 0; /* initialize queues */ for (i=0; i<nqueues; i++) if (nvpq[i] > 0) { FPQueueInit(queues+i, nvpq[i]); FPQueueInit(queues+i+nqueues, nvpq[i]); } /* compute internal/external degrees */ idxset(nvtxs, 0, id); idxset(nvtxs, 0, ed); for (j=0; j<nvtxs; j++) for (k=xadj[j]; k<xadj[j+1]; k++) if (where[adjncy[k]] == where[j]) id[j] += adjwgt[k]; else ed[j] += adjwgt[k]; nswaps = 0; for (pass=0; pass<N_MOC_BAL_PASSES; pass++) { idxset(nvtxs, -1, myqueue); idxset(nqueues*2, 0, inq); /* insert vertices into correct queues */ for (j=0; j<nvtxs; j++) { index = (where[j] == me) ? 0 : nqueues; newgain = ipc_factor*(float)(ed[j]-id[j]); if (home[j] == me || home[j] == you) { if (where[j] == home[j]) newgain -= redist_factor*(float)vsize[j]; else newgain += redist_factor*(float)vsize[j]; } FPQueueInsert(queues+hval[j]+index, map[j]-ptr[hval[j]], newgain); myqueue[j] = (where[j] == me) ? 0 : 1; inq[hval[j]+index]++; } /* bestflow = sfavg(ncon, flows); */ for (j=0, h=0; h<ncon; h++) if (fabs(flows[h]) > fabs(flows[j])) j = h; bestflow = fabs(flows[j]); nchanges = nmoves = 0; for (ii=0; ii<nvtxs/2; ii++) { from = -1; Moc_DynamicSelectQueue(nqueues, ncon, me, you, inq, flows, &from, &qnum, minval, avgvwgt, maxdiff); /* can't find a vertex in one subdomain, try the other */ if (from != -1 && qnum == -1) { from = (from == me) ? you : me; if (from == me) { for (j=0; j<ncon; j++) if (flows[j] > avgvwgt) break; } else { for (j=0; j<ncon; j++) if (flows[j] < -1.0*avgvwgt) break; } if (j != ncon) Moc_DynamicSelectQueue(nqueues, ncon, me, you, inq, flows, &from, &qnum, minval, avgvwgt, maxdiff); } if (qnum == -1) break; to = (from == me) ? you : me; index = (from == me) ? 0 : nqueues; higain = FPQueueGetMax(queues+qnum+index); inq[qnum+index]--; ASSERTS(higain != -1); /*****************/ /* make the swap */ /*****************/ vtx = rmap[higain+ptr[qnum]]; myqueue[vtx] = -1; where[vtx] = to; nswaps++; nmoves++; /* update the flows */ for (j=0; j<ncon; j++) flows[j] += (to == me) ? nvwgt[vtx*ncon+j] : -1.0*nvwgt[vtx*ncon+j]; /* ftmp = sfavg(ncon, flows); */ for (j=0, h=0; h<ncon; h++) if (fabs(flows[h]) > fabs(flows[j])) j = h; ftmp = fabs(flows[j]); if (ftmp < bestflow) { bestflow = ftmp; nchanges = 0; } else { changes[nchanges++] = vtx; } SWAP(id[vtx], ed[vtx], tmp); for (j=xadj[vtx]; j<xadj[vtx+1]; j++) { edge = adjncy[j]; /* must compute oldgain before changing id/ed */ if (myqueue[edge] != -1) { oldgain = ipc_factor*(float)(ed[edge]-id[edge]); if (home[edge] == me || home[edge] == you) { if (where[edge] == home[edge]) oldgain -= redist_factor*(float)vsize[edge]; else oldgain += redist_factor*(float)vsize[edge]; } } tmp = (to == where[edge] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[edge], ed[edge], tmp); if (myqueue[edge] != -1) { newgain = ipc_factor*(float)(ed[edge]-id[edge]); if (home[edge] == me || home[edge] == you) { if (where[edge] == home[edge]) newgain -= redist_factor*(float)vsize[edge]; else newgain += redist_factor*(float)vsize[edge]; } FPQueueUpdate(queues+hval[edge]+(nqueues*myqueue[edge]), map[edge]-ptr[hval[edge]], oldgain, newgain); } } } /****************************/ /* now go back to best flow */ /****************************/ nswaps -= nchanges; nmoves -= nchanges; for (i=0; i<nchanges; i++) { vtx = changes[i]; from = where[vtx]; where[vtx] = to = (from == me) ? you : me; SWAP(id[vtx], ed[vtx], tmp); for (j=xadj[vtx]; j<xadj[vtx+1]; j++) { edge = adjncy[j]; tmp = (to == where[edge] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[edge], ed[edge], tmp); } } for (i=0; i<nqueues; i++) { if (nvpq[i] > 0) { FPQueueReset(queues+i); FPQueueReset(queues+i+nqueues); } } if (nmoves == 0) break; } /***************************/ /* compute 2-way imbalance */ /***************************/ sset(ncon, 0.0, my_wgt); for (i=0; i<nvtxs; i++) if (where[i] == me) for (h=0; h<ncon; h++) my_wgt[h] += nvwgt[i*ncon+h]; for (i=0; i<ncon; i++) { ftmp = (pwgts[i]+pwgts[ncon+i])/2.0; if (ftmp != 0.0) lbvec[i] = fabs(my_wgt[i]-tpwgts[i]) / ftmp; else lbvec[i] = 0.0; } lbavg = savg(ncon, lbvec); *diff_lbavg = lbavg; /****************/ /* compute cost */ /****************/ cut = totalv = 0; for (i=0; i<nvtxs; i++) { if (where[i] != home[i]) totalv += vsize[i]; for (j=xadj[i]; j<xadj[i+1]; j++) if (where[adjncy[j]] != where[i]) cut += adjwgt[j]; } cut /= 2; mycost = cut*ipc_factor + totalv*redist_factor; *diff_cost = mycost; /* free memory */ for (i=0; i<nqueues; i++) if (nvpq[i] > 0) { FPQueueFree(queues+i); FPQueueFree(queues+i+nqueues); } GKfree((void **)&hval, (void **)&nvpq, (void **)&ptr, (void **)&inq, (void **)&queues, LTERM); return nswaps; }
/************************************************************************* * This function is the driver for the adaptive refinement mode of ParMETIS **************************************************************************/ void Adaptive_Partition(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace) { int i; int tewgt, tvsize; floattype gtewgt, gtvsize; floattype ubavg, lbavg, lbvec[MAXNCON]; /************************************/ /* Set up important data structures */ /************************************/ SetUp(ctrl, graph, wspace); ubavg = savg(graph->ncon, ctrl->ubvec); tewgt = idxsum(graph->nedges, graph->adjwgt); tvsize = idxsum(graph->nvtxs, graph->vsize); gtewgt = (floattype) GlobalSESum(ctrl, tewgt) + 1.0; /* The +1 were added to remove any FPE */ gtvsize = (floattype) GlobalSESum(ctrl, tvsize) + 1.0; ctrl->redist_factor = ctrl->redist_base * ((gtewgt/gtvsize)/ ctrl->edge_size_ratio); IFSET(ctrl->dbglvl, DBG_PROGRESS, rprintf(ctrl, "[%6d %8d %5d %5d][%d]\n", graph->gnvtxs, GlobalSESum(ctrl, graph->nedges), GlobalSEMin(ctrl, graph->nvtxs), GlobalSEMax(ctrl, graph->nvtxs), ctrl->CoarsenTo)); if (graph->gnvtxs < 1.3*ctrl->CoarsenTo || (graph->finer != NULL && graph->gnvtxs > graph->finer->gnvtxs*COARSEN_FRACTION)) { /***********************************************/ /* Balance the partition on the coarsest graph */ /***********************************************/ graph->where = idxsmalloc(graph->nvtxs+graph->nrecv, -1, "graph->where"); idxcopy(graph->nvtxs, graph->home, graph->where); Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec); lbavg = savg(graph->ncon, lbvec); if (lbavg > ubavg + 0.035 && ctrl->partType != REFINE_PARTITION) Balance_Partition(ctrl, graph, wspace); if (ctrl->dbglvl&DBG_PROGRESS) { Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec); rprintf(ctrl, "nvtxs: %10d, balance: ", graph->gnvtxs); for (i=0; i<graph->ncon; i++) rprintf(ctrl, "%.3f ", lbvec[i]); rprintf(ctrl, "\n"); } /* check if no coarsening took place */ if (graph->finer == NULL) { Moc_ComputePartitionParams(ctrl, graph, wspace); Moc_KWayBalance(ctrl, graph, wspace, graph->ncon); Moc_KWayAdaptiveRefine(ctrl, graph, wspace, NGR_PASSES); } } else { /*******************************/ /* Coarsen it and partition it */ /*******************************/ switch (ctrl->ps_relation) { case COUPLED: Mc_LocalMatch_HEM(ctrl, graph, wspace); break; case DISCOUPLED: default: Moc_GlobalMatch_Balance(ctrl, graph, wspace); break; } Adaptive_Partition(ctrl, graph->coarser, wspace); /********************************/ /* project partition and refine */ /********************************/ Moc_ProjectPartition(ctrl, graph, wspace); Moc_ComputePartitionParams(ctrl, graph, wspace); if (graph->ncon > 1 && graph->level < 4) { Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec); lbavg = savg(graph->ncon, lbvec); if (lbavg > ubavg + 0.025) { Moc_KWayBalance(ctrl, graph, wspace, graph->ncon); } } Moc_KWayAdaptiveRefine(ctrl, graph, wspace, NGR_PASSES); if (ctrl->dbglvl&DBG_PROGRESS) { Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec); rprintf(ctrl, "nvtxs: %10d, cut: %8d, balance: ", graph->gnvtxs, graph->mincut); for (i=0; i<graph->ncon; i++) rprintf(ctrl, "%.3f ", lbvec[i]); rprintf(ctrl, "\n"); } } }
/************************************************************************* * This function is the driver to the multi-constraint partitioning algorithm. **************************************************************************/ void Moc_Global_Partition(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace) { int i, ncon, nparts; floattype ftmp, ubavg, lbavg, lbvec[MAXNCON]; ncon = graph->ncon; nparts = ctrl->nparts; ubavg = savg(graph->ncon, ctrl->ubvec); SetUp(ctrl, graph, wspace); if (ctrl->dbglvl&DBG_PROGRESS) { rprintf(ctrl, "[%6d %8d %5d %5d] [%d] [", graph->gnvtxs, GlobalSESum(ctrl, graph->nedges), GlobalSEMin(ctrl, graph->nvtxs), GlobalSEMax(ctrl, graph->nvtxs), ctrl->CoarsenTo); for (i=0; i<ncon; i++) rprintf(ctrl, " %.3f", GlobalSEMinFloat(ctrl,graph->nvwgt[samin_strd(graph->nvtxs, graph->nvwgt+i, ncon)*ncon+i])); rprintf(ctrl, "] ["); for (i=0; i<ncon; i++) rprintf(ctrl, " %.3f", GlobalSEMaxFloat(ctrl, graph->nvwgt[samax_strd(graph->nvtxs, graph->nvwgt+i, ncon)*ncon+i])); rprintf(ctrl, "]\n"); } if (graph->gnvtxs < 1.3*ctrl->CoarsenTo || (graph->finer != NULL && graph->gnvtxs > graph->finer->gnvtxs*COARSEN_FRACTION)) { /* Done with coarsening. Find a partition */ graph->where = idxmalloc(graph->nvtxs+graph->nrecv, "graph->where"); Moc_InitPartition_RB(ctrl, graph, wspace); if (ctrl->dbglvl&DBG_PROGRESS) { Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec); rprintf(ctrl, "nvtxs: %10d, balance: ", graph->gnvtxs); for (i=0; i<graph->ncon; i++) rprintf(ctrl, "%.3f ", lbvec[i]); rprintf(ctrl, "\n"); } /* In case no coarsening took place */ if (graph->finer == NULL) { Moc_ComputePartitionParams(ctrl, graph, wspace); Moc_KWayFM(ctrl, graph, wspace, NGR_PASSES); } } else { Moc_GlobalMatch_Balance(ctrl, graph, wspace); Moc_Global_Partition(ctrl, graph->coarser, wspace); Moc_ProjectPartition(ctrl, graph, wspace); Moc_ComputePartitionParams(ctrl, graph, wspace); if (graph->ncon > 1 && graph->level < 3) { for (i=0; i<ncon; i++) { ftmp = ssum_strd(nparts, graph->gnpwgts+i, ncon); if (ftmp != 0.0) lbvec[i] = (floattype)(nparts) * graph->gnpwgts[samax_strd(nparts, graph->gnpwgts+i, ncon)*ncon+i]/ftmp; else lbvec[i] = 1.0; } lbavg = savg(graph->ncon, lbvec); if (lbavg > ubavg + 0.035) { if (ctrl->dbglvl&DBG_PROGRESS) { Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec); rprintf(ctrl, "nvtxs: %10d, cut: %8d, balance: ", graph->gnvtxs, graph->mincut); for (i=0; i<graph->ncon; i++) rprintf(ctrl, "%.3f ", lbvec[i]); rprintf(ctrl, "\n"); } Moc_KWayBalance(ctrl, graph, wspace, graph->ncon); } } Moc_KWayFM(ctrl, graph, wspace, NGR_PASSES); if (ctrl->dbglvl&DBG_PROGRESS) { Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec); rprintf(ctrl, "nvtxs: %10d, cut: %8d, balance: ", graph->gnvtxs, graph->mincut); for (i=0; i<graph->ncon; i++) rprintf(ctrl, "%.3f ", lbvec[i]); rprintf(ctrl, "\n"); } if (graph->level != 0) GKfree((void **)&graph->lnpwgts, (void **)&graph->gnpwgts, LTERM); } return; }