int main(int argc, char** argv) { // set up our simpleConnector ArSimpleConnector simpleConnector(&argc, argv); // robot ArRobot robot; // a key handler so we can do our key handling ArKeyHandler keyHandler; ArLog::init(ArLog::StdOut,ArLog::Verbose); // if there are more arguments left then it means we didn't // understand an option if (!simpleConnector.parseArgs() || argc > 1) { simpleConnector.logOptions(); keyHandler.restore(); exit(1); } // mandatory init Aria::init(); ArLog::init(ArLog::StdOut, ArLog::Terse, NULL, true); // let the global aria stuff know about it Aria::setKeyHandler(&keyHandler); // toss it on the robot robot.attachKeyHandler(&keyHandler); // set up the robot for connecting if (!simpleConnector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::shutdown(); keyHandler.restore(); return 1; } // turn on the motors for the velocity response test robot.comInt(ArCommands::ENABLE, 1); velTime.setToNow(); // turn off the sonar robot.comInt(ArCommands::SONAR, 0); ArGlobalFunctor1<ArRobot *> userTaskCB(&userTask, &robot); robot.addUserTask("iotest", 100, &userTaskCB); robot.comInt(ArCommands::IOREQUEST, 1); requestTime.setToNow(); //start the robot running, true so that if we lose connection the run stops robot.run(true); // now exit Aria::shutdown(); return 0; }
void addKeyHandlers() { ArKeyHandler *keyHandler = Aria::getKeyHandler(); if(keyHandler == NULL) { keyHandler = new ArKeyHandler(); Aria::setKeyHandler(keyHandler); robot->attachKeyHandler(keyHandler); } //keyHandler->addKeyHandler('g', &myGoCB); //keyHandler->addKeyHandler('c', &myGoHomeCB); keyHandler->addKeyHandler('p', &myStartCB); keyHandler->addKeyHandler('s', &myStopCB); keyHandler->addKeyHandler('m', &myPrintCB); }
int main(int argc, char **argv) { Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArRobot robot; ArRobotConnector robotConnector(&parser, &robot); ArLaserConnector laserConnector(&parser, &robot, &robotConnector); if(!robotConnector.connectRobot()) { ArLog::log(ArLog::Terse, "lineFinderExample: Could not connect to the robot."); if(parser.checkHelpAndWarnUnparsed()) { // -help not given Aria::logOptions(); Aria::exit(1); } } if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); } ArLog::log(ArLog::Normal, "lineFinderExample: Connected to robot."); robot.runAsync(true); // Connect to laser(s) as defined in parameter files. // (Some flags are available as arguments to connectLasers() to control error behavior and to control which lasers are put in the list of lasers stored by ArRobot. See docs for details.) if(!laserConnector.connectLasers()) { ArLog::log(ArLog::Terse, "Could not connect to configured lasers. Exiting."); Aria::exit(3); return 3; } ArLog::log(ArLog::Normal, "lineFinderExample: Connected to laser"); ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); // Create the ArLineFinder object. Set it to log lots of information about its // processing. ArLaser *laser = robot.findLaser(1); if(!laser) { ArLog::log(ArLog::Terse, "lineFinderExample: No laser device connected, exiting."); Aria::exit(4); return 4; } ArLineFinder lineFinder(laser); lineFinder.setVerbose(true); // Add key callbacks that simply call the ArLineFinder::getLinesAndSaveThem() // function, which searches for lines in the current set of laser sensor // readings, and saves them in files with the names 'points' and 'lines'. ArFunctorC<ArLineFinder> findLineCB(&lineFinder, &ArLineFinder::getLinesAndSaveThem); keyHandler.addKeyHandler('f', &findLineCB); keyHandler.addKeyHandler('F', &findLineCB); printf("If you press the 'f' key the points and lines found will be saved\n"); printf("Into the 'points' and 'lines' file in the current working directory\n"); robot.waitForRunExit(); Aria::exit(0); return 0; }
int __cdecl _tmain (int argc, char** argv) { //------------ I N I C I O M A I N D E L P R O G R A M A D E L R O B O T-----------// //inicializaion de variables Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArSimpleConnector simpleConnector(&parser); ArRobot robot; ArSonarDevice sonar; ArAnalogGyro gyro(&robot); robot.addRangeDevice(&sonar); ActionGos go(500, 350); robot.addAction(&go, 48); ActionTurns turn(400, 110); robot.addAction(&turn, 49); ActionTurns turn2(400, 110); robot.addAction(&turn2, 49); // presionar tecla escape para salir del programa ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("Presionar ESC para salir\n"); // uso de sonares para evitar colisiones con las paredes u // obstaculos grandes, mayores a 8cm de alto ArActionLimiterForwards limiterAction("limitador velocidad cerca", 300, 600, 250); ArActionLimiterForwards limiterFarAction("limitador velocidad lejos", 300, 1100, 400); ArActionLimiterTableSensor tableLimiterAction; robot.addAction(&tableLimiterAction, 100); robot.addAction(&limiterAction, 95); robot.addAction(&limiterFarAction, 90); // Inicializon la funcion de goto ArActionGoto gotoPoseAction("goto"); robot.addAction(&gotoPoseAction, 50); // Finaliza el goto si es que no hace nada ArActionStop stopAction("stop"); robot.addAction(&stopAction, 40); // Parser del CLI if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); exit(1); } // Conexion del robot if (!simpleConnector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::exit(1); } robot.runAsync(true); // enciende motores, apaga sonidos robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); const int duration = 100000; //msec ArLog::log(ArLog::Normal, "Completados los puntos en %d segundos", duration/1000); // ============================ INICIO CONFIG COM =================================// CSerial serial; LONG lLastError = ERROR_SUCCESS; // Trata de abrir el com seleccionado lLastError = serial.Open(_T("COM3"),0,0,false); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Imposible abrir el COM")); // Inicia el puerto serial (9600,8N1) lLastError = serial.Setup(CSerial::EBaud9600,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Imposible setear la config del COM")); // Register only for the receive event lLastError = serial.SetMask(CSerial::EEventBreak | CSerial::EEventCTS | CSerial::EEventDSR | CSerial::EEventError | CSerial::EEventRing | CSerial::EEventRLSD | CSerial::EEventRecv); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to set COM-port event mask")); // Use 'non-blocking' reads, because we don't know how many bytes // will be received. This is normally the most convenient mode // (and also the default mode for reading data). lLastError = serial.SetupReadTimeouts(CSerial::EReadTimeoutNonblocking); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to set COM-port read timeout.")); // ============================ FIN CONFIG COM =================================// bool first = true; int goalNum = 0; int color = 3; ArTime start; start.setToNow(); while (Aria::getRunning()) { robot.lock(); // inicia el primer punto if (first || gotoPoseAction.haveAchievedGoal()) { first = false; goalNum++; //cambia de 0 a 1 el contador printf("El contador esta en: --> %d <---\n",goalNum); if (goalNum > 20) goalNum = 1; //comienza la secuencia de puntos if (goalNum == 1) { gotoPoseAction.setGoal(ArPose(1150, 0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); // Create the sound queue. ArSoundsQueue soundQueue; // Run the sound queue in a new thread soundQueue.runAsync(); std::vector<const char*> filenames; filenames.push_back("sound-r2a.wav"); soundQueue.play(filenames[0]); } else if (goalNum == 2) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn.myActivate = 1; turn.myDirection = 1; turn.activate(); ArUtil::sleep(1000); turn.deactivate(); turn.myActivate = 0; turn.myDirection = 0; robot.lock(); } else if (goalNum == 3) { gotoPoseAction.setGoal(ArPose(1150, 2670)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); } else if (goalNum == 4) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 1; turn2.activate(); ArUtil::sleep(1000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 5) { gotoPoseAction.setGoal(ArPose(650, 2670)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 6) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 1; turn2.activate(); ArUtil::sleep(1000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 7) { gotoPoseAction.setGoal(ArPose(650, 0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 8) { gotoPoseAction.setGoal(ArPose(1800,1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 9) { gotoPoseAction.setGoal(ArPose(2600, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 10) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 850)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 2) { gotoPoseAction.setGoal(ArPose(3500, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1550)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 11) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 613)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 2) { printf("Gira 180 grados derecha\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 2; turn2.activate(); ArUtil::sleep(2000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); goalNum = 19; } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1785)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 12) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3300, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3300, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 13) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3500, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3500, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 14) { robot.unlock(); //Valor para el while bool fContinue = true; // <<<<<<------------- 1 Parte Secuencia: BAJA BRAZO ------------->>>>>> // lLastError = serial.Write("b"); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to send data")); //-------------------------E S C U C H A C O M ----------------------------// do { // Wait for an event lLastError = serial.WaitEvent(); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to wait for a COM-port event.")); // Save event const CSerial::EEvent eEvent = serial.GetEventType(); // Handle break event if (eEvent & CSerial::EEventBreak) { printf("\n### BREAK received ###\n"); } // Handle CTS event if (eEvent & CSerial::EEventCTS) { printf("\n### Clear to send %s ###\n", serial.GetCTS()?"on":"off"); } // Handle DSR event if (eEvent & CSerial::EEventDSR) { printf("\n### Data set ready %s ###\n", serial.GetDSR()?"on":"off"); } // Handle error event if (eEvent & CSerial::EEventError) { printf("\n### ERROR: "); switch (serial.GetError()) { case CSerial::EErrorBreak: printf("Break condition"); break; case CSerial::EErrorFrame: printf("Framing error"); break; case CSerial::EErrorIOE: printf("IO device error"); break; case CSerial::EErrorMode: printf("Unsupported mode"); break; case CSerial::EErrorOverrun: printf("Buffer overrun"); break; case CSerial::EErrorRxOver: printf("Input buffer overflow"); break; case CSerial::EErrorParity: printf("Input parity error"); break; case CSerial::EErrorTxFull: printf("Output buffer full"); break; default: printf("Unknown"); break; } printf(" ###\n"); } // Handle ring event if (eEvent & CSerial::EEventRing) { printf("\n### RING ###\n"); } // Handle RLSD/CD event if (eEvent & CSerial::EEventRLSD) { printf("\n### RLSD/CD %s ###\n", serial.GetRLSD()?"on":"off"); } // Handle data receive event if (eEvent & CSerial::EEventRecv) { // Read data, until there is nothing left DWORD dwBytesRead = 0; char szBuffer[101]; do { // Lee datos del Puerto COM lLastError = serial.Read(szBuffer,sizeof(szBuffer)-1,&dwBytesRead); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to read from COM-port.")); if (dwBytesRead > 0) { //Preseteo color int color = 0; // Finaliza el dato, asi que sea una string valida szBuffer[dwBytesRead] = '\0'; // Display the data printf("%s", szBuffer); // <<<<<<----------- 2 Parte Secuencia: CIERRA GRIPPER ----------->>>>>> // if (strchr(szBuffer,76)) { lLastError = serial.Write("c"); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to send data")); } // <<<<<<------------- 3 Parte Secuencia: SUBE BRAZO ------------->>>>>> // if (strchr(szBuffer,117)) { lLastError = serial.Write("s"); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to send data")); } // <<<<<<------------- 4 Parte Secuencia: COLOR ------------->>>>>> // if (strchr(szBuffer,72)) { lLastError = serial.Write("C"); if (lLastError != ERROR_SUCCESS) return ::ShowError(serial.GetLastError(), _T("Unable to send data")); } // <<<<<<---------- 5.1 Parte Secuencia: COLOR ROJO---------->>>>>> // if (strchr(szBuffer,82)) { color = 1; //salir del bucle fContinue = false; } // <<<<<<---------- 5.2 Parte Secuencia: COLOR AZUL ---------->>>>>> // if (strchr(szBuffer,66)) { color = 2; //salir del bucle fContinue = false; } // <<<<<<---------- 5.3 Parte Secuencia: COLOR VERDE ---------->>>>>> // if (strchr(szBuffer,71)) { color = 3; //salir del bucle fContinue = false; } } } while (dwBytesRead == sizeof(szBuffer)-1); } } while (fContinue); // Close the port again serial.Close(); robot.lock(); } else if (goalNum == 15) { printf("Gira 180 grados derecha\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 2; turn2.activate(); ArUtil::sleep(2000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 16) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3300, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3300, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 17) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 603)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1795)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 18) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 860)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1540)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 19) { gotoPoseAction.setGoal(ArPose(2600, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 20) { gotoPoseAction.setGoal(ArPose(1800, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } if(start.mSecSince() >= duration) { ArLog::log(ArLog::Normal, "No puede llegar al punto, y la aplicacion saldra en %d", duration/1000); gotoPoseAction.cancelGoal(); robot.unlock(); ArUtil::sleep(3000); break; } robot.unlock(); ArUtil::sleep(10); } // Robot desconectado al terminal el sleep Aria::shutdown(); //------------ F I N M A I N D E L P R O G R A M A D E L R O B O T-----------// return 0; }
int main(int argc, char **argv) { bool done; double distToTravel = 2300; // whether to use the sim for the laser or not, if you use the sim // for hte laser, you have to use the sim for the robot too bool useSim = false; // the laser ArSick sick; // connection ArDeviceConnection *con; // Laser connection ArSerialConnection laserCon; // robot ArRobot robot; // set a default filename //std::string filename = "c:\\log\\1scans.2d"; std::string filename = "1scans.2d"; // see if we want to use a different filename //if (argc > 1) //Lfilename = argv[1]; printf("Logging to file %s\n", filename.c_str()); // start the logger with good values sick.configureShort(useSim, ArSick::BAUD38400, ArSick::DEGREES180, ArSick::INCREMENT_HALF); ArSickLogger logger(&robot, &sick, 300, 25, filename.c_str()); // mandatory init Aria::init(); // add it to the robot robot.addRangeDevice(&sick); //ArAnalogGyro gyro(&robot); // if we're not using the sim, make a serial connection and set it up if (!useSim) { ArSerialConnection *serCon; serCon = new ArSerialConnection; serCon->setPort(); //serCon->setBaud(38400); con = serCon; } // if we are using the sim, set up a tcp connection else { ArTcpConnection *tcpCon; tcpCon = new ArTcpConnection; tcpCon->setPort(); con = tcpCon; } // set the connection on the robot robot.setDeviceConnection(con); // try to connect, if we fail exit if (!robot.blockingConnect()) { printf("Could not connect to robot... exiting\n"); Aria::shutdown(); return 1; } // set up a key handler so escape exits and attach to the robot ArKeyHandler keyHandler; robot.attachKeyHandler(&keyHandler); // run the robot, true here so that the run will exit if connection lost robot.runAsync(true); // if we're not using the sim, set up the port for the laser if (!useSim) { laserCon.setPort(ArUtil::COM3); sick.setDeviceConnection(&laserCon); } // now that we're connected to the robot, connect to the laser sick.runAsync(); if (!sick.blockingConnect()) { printf("Could not connect to SICK laser... exiting\n"); robot.disconnect(); Aria::shutdown(); return 1; } #ifdef WIN32 // wait until someone pushes the motor button to go while (1) { robot.lock(); if (!robot.isRunning()) exit(0); if (robot.areMotorsEnabled()) { robot.unlock(); break; } robot.unlock(); ArUtil::sleep(100); } #endif // basically from here on down the robot just cruises around a bit robot.lock(); // enable the motors, disable amigobot sounds robot.comInt(ArCommands::ENABLE, 1); ArTime startTime; // move a couple meters robot.move(distToTravel); robot.unlock(); startTime.setToNow(); do { ArUtil::sleep(100); robot.lock(); robot.setHeading(0); done = robot.isMoveDone(60); robot.unlock(); } while (!done); /* // rotate a few times robot.lock(); robot.setVel(0); robot.setRotVel(60); robot.unlock(); ArUtil::sleep(12000); */ robot.lock(); robot.setHeading(180); robot.unlock(); do { ArUtil::sleep(100); robot.lock(); robot.setHeading(180); done = robot.isHeadingDone(); robot.unlock(); } while (!done); // move a couple meters robot.lock(); robot.move(distToTravel); robot.unlock(); startTime.setToNow(); do { ArUtil::sleep(100); robot.lock(); robot.setHeading(180); done = robot.isMoveDone(60); robot.unlock(); } while (!done); robot.lock(); robot.setHeading(0); robot.setVel(0); robot.unlock(); startTime.setToNow(); do { ArUtil::sleep(100); robot.lock(); robot.setHeading(0); done = robot.isHeadingDone(); robot.unlock(); } while (!done); sick.lockDevice(); sick.disconnect(); sick.unlockDevice(); robot.lock(); robot.disconnect(); robot.unlock(); // now exit Aria::shutdown(); return 0; }
int main(int argc, char **argv) { Aria::init(); ArArgumentParser argParser(&argc, argv); argParser.loadDefaultArguments(); ArRobot robot; ArSick laser; std::ofstream stream; // for loggin time_t timer; char buffer[120]; //for loggin ArRobotConnector robotConnector(&argParser, &robot); ArLaserConnector laserConnector(&argParser, &robot, &robotConnector); int32_t count = 0; readyLog(stream); if (!robotConnector.connectRobot()) { ArLog::log(ArLog::Terse, "Could not connect to the robot."); if (argParser.checkHelpAndWarnUnparsed()) { // -help not given, just exit. Aria::logOptions(); Aria::exit(1); return 1; } } // Trigger argument parsing if (!Aria::parseArgs() || !argParser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); return 1; } ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); puts("This program will make the robot wander around. It uses some avoidance\n" "actions if obstacles are detected, otherwise it just has a\n" "constant forward velocity.\n\nPress CTRL-C or Escape to exit."); //ArSonarDevice sonar; //robot.addRangeDevice(&sonar); robot.addRangeDevice(&laser); robot.runAsync(true); // try to connect to laser. if fail, warn but continue, using sonar only if (!laserConnector.connectLasers()) { ArLog::log(ArLog::Normal, "Warning: unable to connect to requested lasers, will wander using robot sonar only."); } double sampleAngle, dist; auto sampleRange = laser.currentReadingPolar(-20, 20, &sampleAngle); auto degreeStr = laser.getDegreesChoicesString(); std::cout << "auto sampleRange = laser.currentReadingPolar(-20, 20, &sampleAngle);" << sampleRange << std::endl; std::cout << "auto degreeStr = laser.getDegreesChoicesString(); : " << degreeStr << std::endl; // turn on the motors, turn off amigobot sounds robot.enableMotors(); //robot.getLaserMap() robot.comInt(ArCommands::SOUNDTOG, 0); // add a set of actions that combine together to effect the wander behavior ArActionStallRecover recover; ArActionBumpers bumpers; ArActionAvoidFront avoidFrontNear("Avoid Front Near", 100, 0); ArActionAvoidFront avoidFrontFar; ArActionConstantVelocity constantVelocity("Constant Velocity", 400); robot.addAction(&recover, 100); robot.addAction(&bumpers, 75); robot.addAction(&avoidFrontNear, 50); robot.addAction(&avoidFrontFar, 49); robot.addAction(&constantVelocity, 25); stream << "IMPORTANT !! == robot.getRobotRadius() : " << robot.getRobotRadius << std::endl; std::string timestamp; while (1) { // // time(&timer); strftime(buffer, 80, " - timestamp : %I:%M:%S", localtime(&timer)); timestamp = buffer; dist = robot.checkRangeDevicesCurrentPolar(-70, 70, &sampleAngle) - robot.getRobotRadius(); stream << count << timestamp << "checkRangeDevicesCurrentPolar(-70, 70, &angle) : " << dist << std::endl; Sleep(500); count++; } // wwill add processor here // wait for robot task loop to end before exiting the program robot.waitForRunExit(); Aria::exit(0); return 0; }
int main(int argc, char** argv) { // Initialize some global data Aria::init(); // If you want ArLog to print "Verbose" level messages uncomment this: //ArLog::init(ArLog::StdOut, ArLog::Verbose); // This object parses program options from the command line ArArgumentParser parser(&argc, argv); // Load some default values for command line arguments from /etc/Aria.args // (Linux) or the ARIAARGS environment variable. parser.loadDefaultArguments(); // Central object that is an interface to the robot and its integrated // devices, and which manages control of the robot by the rest of the program. ArRobot robot; // Object that connects to the robot or simulator using program options ArRobotConnector robotConnector(&parser, &robot); // If the robot has an Analog Gyro, this object will activate it, and // if the robot does not automatically use the gyro to correct heading, // this object reads data from it and corrects the pose in ArRobot ArAnalogGyro gyro(&robot); // Connect to the robot, get some initial data from it such as type and name, // and then load parameter files for this robot. if (!robotConnector.connectRobot()) { // Error connecting: // if the user gave the -help argumentp, then just print out what happened, // and continue so options can be displayed later. if (!parser.checkHelpAndWarnUnparsed()) { ArLog::log(ArLog::Terse, "Could not connect to robot, will not have parameter file so options displayed later may not include everything"); } // otherwise abort else { ArLog::log(ArLog::Terse, "Error, could not connect to robot."); Aria::logOptions(); Aria::exit(1); } } // Connector for laser rangefinders ArLaserConnector laserConnector(&parser, &robot, &robotConnector); // Connector for compasses ArCompassConnector compassConnector(&parser); // Parse the command line options. Fail and print the help message if the parsing fails // or if the help was requested with the -help option if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); exit(1); } // Used to access and process sonar range data ArSonarDevice sonarDev; // Used to perform actions when keyboard keys are pressed ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); // ArRobot contains an exit action for the Escape key. It also // stores a pointer to the keyhandler so that other parts of the program can // use the same keyhandler. robot.attachKeyHandler(&keyHandler); printf("You may press escape to exit\n"); // Attach sonarDev to the robot so it gets data from it. robot.addRangeDevice(&sonarDev); // Start the robot task loop running in a new background thread. The 'true' argument means if it loses // connection the task loop stops and the thread exits. robot.runAsync(true); // Connect to the laser(s) if lasers were configured in this robot's parameter // file or on the command line, and run laser processing thread if applicable // for that laser class. (For the purposes of this demo, add all // possible lasers to ArRobot's list rather than just the ones that were // specified with the connectLaser option (so when you enter laser mode, you // can then interactively choose which laser to use from the list which will // show both connected and unconnected lasers.) if (!laserConnector.connectLasers(false, false, true)) { printf("Could not connect to lasers... exiting\n"); Aria::exit(2); } // Create and connect to the compass if the robot has one. ArTCM2 *compass = compassConnector.create(&robot); if(compass && !compass->blockingConnect()) { compass = NULL; } // Sleep for a second so some messages from the initial responses // from robots and cameras and such can catch up ArUtil::sleep(1000); // We need to lock the robot since we'll be setting up these modes // while the robot task loop thread is already running, and they // need to access some shared data in ArRobot. robot.lock(); // now add all the modes for this demo // these classes are defined in ArModes.cpp in ARIA's source code. ArModeLaser laser(&robot, "laser", 'l', 'L'); ArModeTeleop teleop(&robot, "teleop", 't', 'T'); ArModeUnguardedTeleop unguardedTeleop(&robot, "unguarded teleop", 'u', 'U'); ArModeWander wander(&robot, "wander", 'w', 'W'); ArModeGripper gripper(&robot, "gripper", 'g', 'G'); ArModeCamera camera(&robot, "camera", 'c', 'C'); ArModeSonar sonar(&robot, "sonar", 's', 'S'); ArModeBumps bumps(&robot, "bumps", 'b', 'B'); ArModePosition position(&robot, "position", 'p', 'P', &gyro); ArModeIO io(&robot, "io", 'i', 'I'); ArModeActs actsMode(&robot, "acts", 'a', 'A'); ArModeCommand command(&robot, "command", 'd', 'D'); ArModeTCM2 tcm2(&robot, "tcm2", 'm', 'M', compass); // activate the default mode teleop.activate(); // turn on the motors robot.comInt(ArCommands::ENABLE, 1); robot.unlock(); // Block execution of the main thread here and wait for the robot's task loop // thread to exit (e.g. by robot disconnecting, escape key pressed, or OS // signal) robot.waitForRunExit(); Aria::exit(0); }
int main(int argc, char **argv) { // mandatory init Aria::init(); //ArLog::init(ArLog::StdOut, ArLog::Verbose); // set up our parser ArArgumentParser parser(&argc, argv); // load the default arguments parser.loadDefaultArguments(); // robot ArRobot robot; // set up our simple connector ArRobotConnector robotConnector(&parser, &robot); // add a gyro, it'll see if it should attach to the robot or not ArAnalogGyro gyro(&robot); // set up the robot for connecting if (!robotConnector.connectRobot()) { printf("Could not connect to robot... exiting\n"); Aria::exit(1); } ArDataLogger dataLogger(&robot, "dataLog.txt"); dataLogger.addToConfig(Aria::getConfig()); // our base server object ArServerBase server; ArLaserConnector laserConnector(&parser, &robot, &robotConnector); ArServerSimpleOpener simpleOpener(&parser); ArClientSwitchManager clientSwitchManager(&server, &parser); // parse the command line... fail and print the help if the parsing fails // or if the help was requested if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); } // Set up where we'll look for files such as user/password char fileDir[1024]; ArUtil::addDirectories(fileDir, sizeof(fileDir), Aria::getDirectory(), "ArNetworking/examples"); // first open the server up if (!simpleOpener.open(&server, fileDir, 240)) { if (simpleOpener.wasUserFileBad()) printf("Bad user/password/permissions file\n"); else printf("Could not open server port\n"); exit(1); } // Range devices: ArSonarDevice sonarDev; robot.addRangeDevice(&sonarDev); ArIRs irs; robot.addRangeDevice(&irs); ArBumpers bumpers; robot.addRangeDevice(&bumpers); // attach services to the server ArServerInfoRobot serverInfoRobot(&server, &robot); ArServerInfoSensor serverInfoSensor(&server, &robot); ArServerInfoDrawings drawings(&server); // modes for controlling robot movement ArServerModeStop modeStop(&server, &robot); ArServerModeRatioDrive modeRatioDrive(&server, &robot); ArServerModeWander modeWander(&server, &robot); modeStop.addAsDefaultMode(); modeStop.activate(); // set up the simple commands ArServerHandlerCommands commands(&server); ArServerSimpleComUC uCCommands(&commands, &robot); // send commands directly to microcontroller ArServerSimpleComMovementLogging loggingCommands(&commands, &robot); // control debug logging ArServerSimpleComGyro gyroCommands(&commands, &robot, &gyro); // configure gyro ArServerSimpleComLogRobotConfig configCommands(&commands, &robot); // control more debug logging ArServerSimpleServerCommands serverCommands(&commands, &server); // control ArNetworking debug logging ArServerSimpleLogRobotDebugPackets logRobotDebugPackets(&commands, &robot, "."); // debugging tool // ArServerModeDrive is an older drive mode. ArServerModeRatioDrive is newer and generally performs better, // but you can use this for old clients if neccesary. //ArServerModeDrive modeDrive(&server, &robot); //modeDrive.addControlCommands(&commands); // configure the drive modes (e.g. enable/disable safe drive) ArServerHandlerConfig serverHandlerConfig(&server, Aria::getConfig()); // make a config handler ArLog::addToConfig(Aria::getConfig()); // let people configure logging modeRatioDrive.addToConfig(Aria::getConfig(), "Teleop settings"); // able to configure teleop settings modeRatioDrive.addControlCommands(&commands); // Forward video if either ACTS or SAV server are running. // You can find out more about SAV and ACTS on our website // http://robots.activmedia.com. ACTS is for color tracking and is // a separate product. SAV just does software A/V transmitting and is // free to all our customers. Just run ACTS or SAV server before you // start this program and this class here will forward video from the // server to the client. ArHybridForwarderVideo videoForwarder(&server, "localhost", 7070); // Control a pan/tilt/zoom camera, if one is installed, and the video // forwarder was enabled above. ArPTZ *camera = NULL; ArServerHandlerCamera *handlerCamera = NULL; ArCameraCollection *cameraCollection = NULL; if (videoForwarder.isForwardingVideo()) { bool invertedCamera = false; camera = new ArVCC4(&robot, invertedCamera, ArVCC4::COMM_UNKNOWN, true, true); camera->init(); cameraCollection = new ArCameraCollection(); cameraCollection->addCamera("Cam1", "VCC4", "Camera", "VCC4"); handlerCamera = new ArServerHandlerCamera("Cam1", &server, &robot, camera, cameraCollection); } // You can use this class to send a set of arbitrary strings // for MobileEyes to display, this is just a small example ArServerInfoStrings stringInfo(&server); Aria::getInfoGroup()->addAddStringCallback(stringInfo.getAddStringFunctor()); Aria::getInfoGroup()->addStringInt( "Motor Packet Count", 10, new ArConstRetFunctorC<int, ArRobot>(&robot, &ArRobot::getMotorPacCount)); /* Aria::getInfoGroup()->addStringInt( "Laser Packet Count", 10, new ArRetFunctorC<int, ArSick>(&sick, &ArSick::getSickPacCount)); */ // start the robot running, true means that if we lose connection the run thread stops robot.runAsync(true); // connect the laser(s) if it was requested if (!laserConnector.connectLasers()) { printf("Could not connect to lasers... exiting\n"); Aria::exit(2); } drawings.addRobotsRangeDevices(&robot); // log whatever we wanted to before the runAsync simpleOpener.checkAndLog(); // now let it spin off in its own thread server.runAsync(); printf("Server is now running...\n"); // Add a key handler so that you can exit by pressing // escape. Note that a key handler prevents you from running // a program in the background on Linux, since it expects an // active terminal to read keys from; remove this if you want // to run it in the background. ArKeyHandler *keyHandler; if ((keyHandler = Aria::getKeyHandler()) == NULL) { keyHandler = new ArKeyHandler; Aria::setKeyHandler(keyHandler); robot.lock(); robot.attachKeyHandler(keyHandler); robot.unlock(); printf("To exit, press escape.\n"); } // Read in parameter files. std::string configFile = "serverDemoConfig.txt"; Aria::getConfig()->setBaseDirectory("./"); if (Aria::getConfig()->parseFile(configFile.c_str(), true, true)) { ArLog::log(ArLog::Normal, "Loaded config file %s", configFile.c_str()); } else { if (ArUtil::findFile(configFile.c_str())) { ArLog::log(ArLog::Normal, "Trouble loading configuration file %s, continuing", configFile.c_str()); } else { ArLog::log(ArLog::Normal, "No configuration file %s, will try to create if config used", configFile.c_str()); } } clientSwitchManager.runAsync(); robot.lock(); robot.enableMotors(); robot.unlock(); robot.waitForRunExit(); Aria::exit(0); }
int _tmain(int argc, char** argv) { //-------------- M A I N D E L P R O G R A M A D E L R O B O T------------// //----------------------------------------------------------------------------------// //inicializaion de variables Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArSimpleConnector simpleConnector(&parser); ArRobot robot; ArSonarDevice sonar; ArAnalogGyro gyro(&robot); robot.addRangeDevice(&sonar); ActionTurns turn(400, 55); robot.addAction(&turn, 49); ActionTurns turn2(400, 55); robot.addAction(&turn2, 49); turn.deactivate(); turn2.deactivate(); // presionar tecla escape para salir del programa ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("Presionar ESC para salir\n"); // uso de sonares para evitar colisiones con las paredes u // obstaculos grandes, mayores a 8cm de alto ArActionLimiterForwards limiterAction("limitador velocidad cerca", 300, 600, 250); ArActionLimiterForwards limiterFarAction("limitador velocidad lejos", 300, 1100, 400); ArActionLimiterTableSensor tableLimiterAction; robot.addAction(&tableLimiterAction, 100); robot.addAction(&limiterAction, 95); robot.addAction(&limiterFarAction, 90); // Inicializon la funcion de goto ArActionGoto gotoPoseAction("goto"); robot.addAction(&gotoPoseAction, 50); // Finaliza el goto si es que no hace nada ArActionStop stopAction("stop"); robot.addAction(&stopAction, 40); // Parser del CLI if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); exit(1); } // Conexion del robot if (!simpleConnector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::exit(1); } robot.runAsync(true); // enciende motores, apaga sonidos robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); const int duration = 100000; //msec ArLog::log(ArLog::Normal, "Completados los puntos en %d segundos", duration/1000); bool first = true; int goalNum = 0; int color = 3; ArTime start; start.setToNow(); while (Aria::getRunning()) { robot.lock(); // inicia el primer punto if (first || gotoPoseAction.haveAchievedGoal()) { first = false; goalNum++; //cambia de 0 a 1 el contador printf("El contador esta en: --> %d <---\n",goalNum); if (goalNum > 20) goalNum = 1; //comienza la secuencia de puntos if (goalNum == 1) { gotoPoseAction.setGoal(ArPose(1150, 0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); } else if (goalNum == 2) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn.myActivate = 1; turn.myDirection = 1; turn.activate(); ArUtil::sleep(1000); turn.deactivate(); turn.myActivate = 0; turn.myDirection = 0; robot.lock(); } else if (goalNum == 3) { gotoPoseAction.setGoal(ArPose(1150, 2670)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); // Imprimo algunos datos del robot como posicion velocidad y bateria robot.lock(); ArLog::log(ArLog::Normal, "Posicion=(%.2f,%.2f,%.2f), Trans. Vel=%.2f, Bateria=%.2fV", robot.getX(), robot.getY(), robot.getTh(), robot.getVel(), robot.getBatteryVoltage()); robot.unlock(); } else if (goalNum == 4) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 1; turn2.activate(); ArUtil::sleep(1000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 5) { gotoPoseAction.setGoal(ArPose(650, 2670)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 6) { printf("Gira 90 grados izquierda\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 1; turn2.activate(); ArUtil::sleep(1000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 7) { gotoPoseAction.setGoal(ArPose(650, 0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 8) { gotoPoseAction.setGoal(ArPose(1800,1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 9) { gotoPoseAction.setGoal(ArPose(2600, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 10) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 850)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 2) { gotoPoseAction.setGoal(ArPose(3500, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1550)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 11) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 613)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 2) { printf("Gira 180 grados derecha\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 2; turn2.activate(); ArUtil::sleep(2000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); goalNum = 19; } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1785)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 12) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3300, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3300, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 13) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3500, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3500, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 14) { //secuencia de drop de la figura } else if (goalNum == 15) { printf("Gira 180 grados derecha\n"); robot.unlock(); turn2.myActivate = 1; turn2.myDirection = 2; turn2.activate(); ArUtil::sleep(2000); turn2.deactivate(); turn2.myActivate = 0; turn2.myDirection = 0; robot.lock(); } else if (goalNum == 16) { if (color == 1) { gotoPoseAction.setGoal(ArPose(3300, 413)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(3300, 1985)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 17) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 603)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1795)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 18) { if (color == 1) { gotoPoseAction.setGoal(ArPose(2800, 860)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if (color == 3) { gotoPoseAction.setGoal(ArPose(2800, 1540)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } else if (goalNum == 19) { gotoPoseAction.setGoal(ArPose(2600, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } else if (goalNum == 20) { gotoPoseAction.setGoal(ArPose(1800, 1199)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } } if(start.mSecSince() >= duration) { ArLog::log(ArLog::Normal, "No puede llegar al punto, y la aplicacion saldra en %d", duration/1000); gotoPoseAction.cancelGoal(); robot.unlock(); ArUtil::sleep(3000); break; } robot.unlock(); ArUtil::sleep(10); } // Robot desconectado al terminal el sleep Aria::shutdown(); //----------------------------------------------------------------------------------// return 0; }
int main(int argc, char **argv) { Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArRobot robot; ArRobotConnector robotConnector(&parser, &robot); ArLaserConnector laserConnector(&parser, &robot, &robotConnector); ArAnalogGyro analogGyro(&robot); // Always connect to the laser, and add half-degree increment and 180 degrees as default arguments for // laser parser.addDefaultArgument("-connectLaser -laserDegrees 180 -laserIncrement half"); if(!robotConnector.connectRobot()) { ArLog::log(ArLog::Terse, "sickLagger: Could not connect to the robot."); if(parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); } } if(!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); } ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); #ifdef WIN32 printf("Pausing 5 seconds so you can disconnect VNC if you are using it.\n"); ArUtil::sleep(5000); #endif std::string filename = "1scans.2d"; if (argc > 1) filename = argv[1]; printf("Logging to file %s\n", filename.c_str()); ArActionGroupRatioDriveUnsafe group(&robot); group.activateExclusive(); robot.runAsync(true); if(!laserConnector.connectLasers(false, false, true)) { ArLog::log(ArLog::Terse, "sickLogger: Error: Could not connect to laser(s). Use -help to list options."); Aria::exit(3); } // Allow some time for first set of laser reading to arrive ArUtil::sleep(500); // enable the motors, disable amigobot sounds robot.comInt(ArCommands::SONAR, 0); robot.comInt(ArCommands::ENABLE, 1); robot.comInt(ArCommands::SOUND, 32); robot.comInt(ArCommands::SOUNDTOG, 0); // enable the joystick driving from the one connected to the microcontroller robot.comInt(ArCommands::JOYDRIVE, 1); // Create the logging object // This must be created after the robot and laser are connected so it can get // correct parameters from them. // The third argmument is how far the robot must travel before a new laser // scan is logged. // The fourth argument is how many degrees the robot must rotate before a new // laser scan is logged. The sixth boolean argument is whether to place a goal // when the g or G key is pressed (by adding a handler to the global // ArKeyHandler) or when the robots joystick button is // pressed. ArLaser *laser = robot.findLaser(1); if(!laser) { ArLog::log(ArLog::Terse, "sickLogger: Error, not connected to any lasers."); Aria::exit(2); } ArLaserLogger logger(&robot, laser, 300, 25, filename.c_str(), true); // just hang out and wait for the end robot.waitForRunExit(); Aria::exit(0); }
int main(int argc, char **argv) { Aria::init(); ArSimpleConnector connector(&argc, argv); ArRobot robot; ArSick sick; if (!Aria::parseArgs() || argc > 1) { Aria::logOptions(); Aria::exit(1); // exit program with error code 1 return 1; } ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); robot.addRangeDevice(&sick); // Create the ArLineFinder object. Set it to log lots of information about its // processing. ArLineFinder lineFinder(&sick); lineFinder.setVerbose(true); // Add key callbacks that simply call the ArLineFinder::getLinesAndSaveThem() // function, which searches for lines in the current set of laser sensor // readings, and saves them in files with the names 'points' and 'lines'. ArFunctorC<ArLineFinder> findLineCB(&lineFinder, &ArLineFinder::getLinesAndSaveThem); keyHandler.addKeyHandler('f', &findLineCB); keyHandler.addKeyHandler('F', &findLineCB); ArLog::log(ArLog::Normal, "lineFinderExample: connecting to robot..."); if (!connector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::exit(1); // exit program with error code 1 return 1; } robot.runAsync(true); // now set up the laser ArLog::log(ArLog::Normal, "lineFinderExample: connecting to SICK laser..."); connector.setupLaser(&sick); sick.runAsync(); if (!sick.blockingConnect()) { printf("Could not connect to SICK laser... exiting\n"); Aria::exit(1); return 1; } printf("If you press the 'f' key the points and lines found will be saved\n"); printf("Into the 'points' and 'lines' file in the current working directory\n"); robot.waitForRunExit(); Aria::exit(0); return 0; }
int main(int argc, char **argv) { Aria::init(); ArArgumentParser argParser(&argc, argv); argParser.loadDefaultArguments(); ArRobot robot; ArRobotConnector robotConnector(&argParser, &robot); ArLaserConnector laserConnector(&argParser, &robot, &robotConnector); if(!robotConnector.connectRobot()) { ArLog::log(ArLog::Terse, "Could not connect to the robot."); if(argParser.checkHelpAndWarnUnparsed()) { // -help not given, just exit. Aria::logOptions(); Aria::exit(1); return 1; } } // Trigger argument parsing if (!Aria::parseArgs() || !argParser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); return 1; } ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); puts("This program will make the robot wander around. It uses some avoidance\n" "actions if obstacles are detected, otherwise it just has a\n" "constant forward velocity.\n\nPress CTRL-C or Escape to exit."); ArSonarDevice sonar; robot.addRangeDevice(&sonar); robot.runAsync(true); // try to connect to laser. if fail, warn but continue, using sonar only if(!laserConnector.connectLasers()) { ArLog::log(ArLog::Normal, "Warning: unable to connect to requested lasers, will wander using robot sonar only."); } // turn on the motors, turn off amigobot sounds robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); // add a set of actions that combine together to effect the wander behavior //działa //general structure: robot.addAction (new Name_of_action (parameters), priority); //to find out more about Actions go to ~/catkin_ws/src/rosaria/local/Aria/docs/index.html // if we're stalled we want to back up and recover robot.addAction(new ArActionStallRecover("stall recover", 100,50,100,30), 100); //basic values 225, 50, 150, 45 //when_stop, cycles_to_move, speed, turn' //slow down when near obstacle robot.addAction(new ArActionLimiterForwards("speed limiter near", 200, 200, 200), 95); // basic values 300,600,250 //stop_distance, slow_distance, slow_speed // react to bumpers robot.addAction(new ArActionLimiterBackwards, 75); // turn avoid very close robot.addAction(new ArActionAvoidFront("speed limiter far", 150,450,20), 47); //basic values 450, 200,15 //when_turn, speed, turn' // turn avoid things near robot.addAction(new ArActionAvoidFront("speed limiter far", 300,450,10), 46); //basic values 450, 200,15 //when_turn, speed, turn' // turn avoid things further away robot.addAction(new ArActionAvoidFront("speed limiter far", 800,450,5), 45); //basic values 450, 200,15 //when_turn, speed, turn' //move forward robot.addAction(new ArActionConstantVelocity("Constant Velocity", 500), 25); // wait for robot task loop to end before exiting the program robot.waitForRunExit(); Aria::exit(0); return 0; }
int main( int argc, char **argv ){ // parse our args and make sure they were all accounted for ArSimpleConnector connector(&argc, argv); ArRobot robot; ArSick sick; double dist, angle = 0; // Allow for esc to release robot ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("You may press escape to exit\n"); if( !connector.parseArgs() || argc > 1 ){ connector.logOptions(); exit(1); } // add the laser to the robot robot.addRangeDevice(&sick); // try to connect, if we fail exit if( !connector.connectRobot(&robot) ){ printf("Could not connect to robot... exiting\n"); Aria::shutdown(); return 1; } // start the robot running, true so that if we lose connection the run stops robot.runAsync(true); // now set up the laser connector.setupLaser(&sick); sick.runAsync(); if( !sick.blockingConnect() ){ printf("Could not connect to SICK laser... exiting\n"); Aria::shutdown(); return 1; } robot.comInt(ArCommands::ENABLE, 1); ArPose pose(0, -1000, 0); robot.moveTo(pose); ArPose prev_pose = robot.getPose(); double total_distance = 0; printf("Connected\n"); ArUtil::sleep(1000); PathLog log("../Data/reactive.dat"); int iterations_wo_movement = 0; while( iterations_wo_movement < CONSECUTIVE_NON_MOTIONS ){ // Get updated measurement sick.lockDevice(); dist = sick.currentReadingPolar(-90, 90, &angle); sick.unlockDevice(); dist = (dist > 30000) ? 0 : dist - IDEAL_DISTANCE; trackRobot(&robot, dist, angle); ArUtil::sleep(500); pose = robot.getPose(); log.write(pose); total_distance += getDistance(prev_pose, pose); prev_pose = pose; // Determine if the robot is done tracking isRobotTracking(&iterations_wo_movement, dist, angle); } ArUtil::sleep(1000); log.close(); ofstream output; output.open("../Data/reactive_dist.dat", ios::out | ios::trunc); output << "Reactive 1 " << total_distance << endl; output.close(); Aria::exit(0); return 0; }
int main(int argc, char **argv) { Aria::init(); argc = 3; argv[0] = ""; argv[1] = "-rp"; argv[2] = "/dev/ttyUSB0"; ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArRobot robot; ArAnalogGyro gyro(&robot); ArSonarDevice sonar; ArRobotConnector robotConnector(&parser, &robot); if(!robotConnector.connectRobot()) { if(parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); } } if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); } imgdb.setRobot(&robot); int Rc; pthread_t slam_thread; Rc = pthread_create(&slam_thread, NULL, slam_event, NULL); if (Rc) { printf("Create slam thread failed!\n"); exit(-1); } ImageList* current = NULL; while (!current) current = imgdb.getEdge(); // current->person_point robot.addRangeDevice(&sonar); robot.runAsync(true); ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("You may press escape to exit\n"); robot.setAbsoluteMaxRotVel(30); ArActionStallRecover recover; ArActionBumpers bumpers; double minDistance=10000; // ArPose endPoint(point.x, point.z); // current->collect_x // current->collect_y // robot.getX() // robot.getY() // current = imgdb.getEdge(); // for (int i = 0; i < current->edge.size(); i++) { // for (int j = 0; j < current->edge[i].size() - 1; j++) { // double dis = sqrt(pow(current->edge[i][j].z,2)+(pow(current->edge[i][j].x,2))); // if(dis<minDistance){ // minDistance=dis; // } // } // } // 引入避障action,前方安全距离为500mm,侧边安全距离为340mm Avoid avoidSide("Avoid side", ArPose(0, 0), 800, 100, 1000*minDistance); robot.addAction(&recover, 100); robot.addAction(&bumpers, 95); robot.addAction(&avoidSide, 80); ArActionStop stopAction("stop"); robot.addAction(&stopAction, 50); robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); const int duration = 500000; bool first = true; int goalNum = 0; ArTime start; start.setToNow(); while (Aria::getRunning()) { current = imgdb.getEdge(); for (int i = 0; i < current->edge.size(); i++) { for (int j = 0; j < current->edge[i].size() - 1; j++) { // printf("i=%d\n",i); double dis = sqrt(pow(current->edge[i][j].z,2)+(pow(current->edge[i][j].x,2))); // printf("dis=%f,mindis=%f\n",dis,minDistance); if(dis<minDistance){ minDistance=dis; printf("min=%f\n",minDistance); } } } //引入避障action,前方安全距离为500mm,侧边安全距离为340mm // Avoid avoidSide("Avoid side", ArPose(0, 0), 800, 200, minDistance); // robot.addAction(&avoidSide,80); robot.lock(); if (first || avoidSide.haveAchievedGoal()) { first = false; goalNum++; printf("count goalNum = %d\n", goalNum); if (goalNum > 2){ goalNum = 1; // start again at goal #1 } // avoidSide.setGoal(ArPose(10000,0)); if(goalNum==1){ printf("zuobiaox=%f,zuobiaoy=%f\n",-current->person_point.z,current->person_point.x); avoidSide.setGoal(ArPose(1000*current->person_point.z, -1000*current->person_point.x)); printf("goalNum == 1\n\n"); } else if(goalNum==2){ printf("zuobiaox=%f,zuobiaoy=%f\n",-current->person_point.z,current->person_point.x); avoidSide.setGoal(ArPose(1000*current->person_point.z, -1000*current->person_point.x)); printf("goalNum == 2\n\n"); } } if(start.mSecSince() >= duration) { ArLog::log(ArLog::Normal, "%d seconds have elapsed. Cancelling current goal, waiting 3 seconds, and exiting.", duration/1000); avoidSide.cancelGoal(); robot.unlock(); ArUtil::sleep(3000); break; } robot.unlock(); ArUtil::sleep(100); } Aria::exit(0); return 0; }
int main(int argc, char **argv) { int ret; std::string str; // the serial connection (robot) ArSerialConnection serConn; // tcp connection (sim) ArTcpConnection tcpConn; // the robot ArRobot robot; // the laser ArSick sick; // the laser connection ArSerialConnection laserCon; bool useSimForLaser = false; std::string hostname = "prod.local.net"; // timeouts in minutes int wanderTime = 0; int restTime = 0; // check arguments if (argc == 3 || argc == 4) { wanderTime = atoi(argv[1]); restTime = atoi(argv[2]); if (argc == 4) hostname = argv[3]; } else { printf("\nUsage:\n\tpeoplebotTest <wanderTime> <restTime> <hostname>\n\n"); printf("Times are in minutes. Hostname is the machine to pipe the ACTS display to\n\n"); wanderTime = 15; restTime = 45; } printf("Wander time - %d minutes\nRest time - %d minutes\n", wanderTime, restTime); printf("Sending display to %s.\n\n", hostname.c_str()); // sonar, must be added to the robot ArSonarDevice sonar; // the actions we'll use to wander ArActionStallRecover recover; ArActionBumpers bumpers; ArActionAvoidFront avoidFrontNear("Avoid Front Near", 225, 0); ArActionAvoidFront avoidFrontFar; // Make a key handler, so that escape will shut down the program // cleanly ArKeyHandler keyHandler; // mandatory init Aria::init(); // Add the key handler to Aria so other things can find it Aria::setKeyHandler(&keyHandler); // Attach the key handler to a robot now, so that it actually gets // some processing time so it can work, this will also make escape // exit robot.attachKeyHandler(&keyHandler); // First we see if we can open the tcp connection, if we can we'll // assume we're connecting to the sim, and just go on... if we // can't open the tcp it means the sim isn't there, so just try the // robot // modify this next line if you're not using default tcp connection tcpConn.setPort(); // see if we can get to the simulator (true is success) if (tcpConn.openSimple()) { // we could get to the sim, so set the robots device connection to the sim printf("Connecting to simulator through tcp.\n"); robot.setDeviceConnection(&tcpConn); } else { // we couldn't get to the sim, so set the port on the serial // connection and then set the serial connection as the robots // device // modify the next line if you're not using the first serial port // to talk to your robot serConn.setPort(); printf( "Could not connect to simulator, connecting to robot through serial.\n"); robot.setDeviceConnection(&serConn); } // add the sonar to the robot robot.addRangeDevice(&sonar); // add the laser robot.addRangeDevice(&sick); // try to connect, if we fail exit if (!robot.blockingConnect()) { printf("Could not connect to robot... exiting\n"); Aria::shutdown(); return 1; } // turn on the motors, turn off amigobot sounds //robot.comInt(ArCommands::ENABLE, 1); robot.comInt(ArCommands::SOUNDTOG, 0); // turn off the sonar to start with robot.comInt(ArCommands::SONAR, 0); // add the actions robot.addAction(&recover, 100); robot.addAction(&bumpers, 75); robot.addAction(&avoidFrontNear, 50); robot.addAction(&avoidFrontFar, 49); // start the robot running, true so that if we lose connection the run stops robot.runAsync(true); if (!useSimForLaser) { sick.setDeviceConnection(&laserCon); if ((ret = laserCon.open("/dev/ttyS2")) != 0) { str = tcpConn.getOpenMessage(ret); printf("Open failed: %s\n", str.c_str()); Aria::shutdown(); return 1; } sick.configureShort(false); } else { sick.configureShort(true); } sick.runAsync(); if (!sick.blockingConnect()) { printf("Could not connect to SICK laser... exiting\n"); Aria::shutdown(); return 1; } robot.lock(); robot.comInt(ArCommands::ENABLE, 1); robot.unlock(); // add the peoplebot test PeoplebotTest pbTest(&robot, wanderTime, restTime, hostname); robot.waitForRunExit(); // now exit Aria::shutdown(); return 0; }
int main(int argc, char **argv) { Aria::init(); // parse our args and make sure they were all accounted for ArSimpleConnector connector(&argc, argv); ArRobot robot; // the laser. ArActionTriangleDriveTo will use this laser object since it is // named "laser" when added to the ArRobot. ArSick sick; if (!connector.parseArgs() || argc > 1) { connector.logOptions(); exit(1); } // a key handler so we can do our key handling ArKeyHandler keyHandler; // let the global aria stuff know about it Aria::setKeyHandler(&keyHandler); // toss it on the robot robot.attachKeyHandler(&keyHandler); // add the laser to the robot robot.addRangeDevice(&sick); ArSonarDevice sonar; robot.addRangeDevice(&sonar); ArActionTriangleDriveTo triangleDriveTo; ArFunctorC<ArActionTriangleDriveTo> lineGoCB(&triangleDriveTo, &ArActionTriangleDriveTo::activate); keyHandler.addKeyHandler('g', &lineGoCB); keyHandler.addKeyHandler('G', &lineGoCB); ArFunctorC<ArActionTriangleDriveTo> lineStopCB(&triangleDriveTo, &ArActionTriangleDriveTo::deactivate); keyHandler.addKeyHandler('s', &lineStopCB); keyHandler.addKeyHandler('S', &lineStopCB); ArActionLimiterForwards limiter("limiter", 150, 0, 0, 1.3); robot.addAction(&limiter, 70); ArActionLimiterBackwards limiterBackwards; robot.addAction(&limiterBackwards, 69); robot.addAction(&triangleDriveTo, 60); ArActionKeydrive keydrive; robot.addAction(&keydrive, 55); ArActionStop stopAction; robot.addAction(&stopAction, 50); // try to connect, if we fail exit if (!connector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::shutdown(); return 1; } robot.comInt(ArCommands::SONAR, 1); robot.comInt(ArCommands::ENABLE, 1); // start the robot running, true so that if we lose connection the run stops robot.runAsync(true); // now set up the laser connector.setupLaser(&sick); sick.runAsync(); if (!sick.blockingConnect()) { printf("Could not connect to SICK laser... exiting\n"); Aria::shutdown(); return 1; } printf("If you press the 'g' key it'll go find a triangle, if you press 's' it'll stop.\n"); robot.waitForRunExit(); return 0; }
int main(int argc, char **argv) { Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArRobot robot; ArAnalogGyro gyro(&robot); ArSonarDevice sonar; ArRobotConnector robotConnector(&parser, &robot); ArLaserConnector laserConnector(&parser, &robot, &robotConnector); // Connect to the robot, get some initial data from it such as type and name, // and then load parameter files for this robot. if(!robotConnector.connectRobot()) { ArLog::log(ArLog::Terse, "gotoActionExample: Could not connect to the robot."); if(parser.checkHelpAndWarnUnparsed()) { // -help not given Aria::logOptions(); Aria::exit(1); } } if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); } ArLog::log(ArLog::Normal, "gotoActionExample: Connected to robot."); robot.addRangeDevice(&sonar); robot.runAsync(true); // Make a key handler, so that escape will shut down the program // cleanly ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("You may press escape to exit\n"); // Collision avoidance actions at higher priority ArActionLimiterForwards limiterAction("speed limiter near", 300, 600, 250); ArActionLimiterForwards limiterFarAction("speed limiter far", 300, 1100, 400); ArActionLimiterTableSensor tableLimiterAction; robot.addAction(&tableLimiterAction, 100); robot.addAction(&limiterAction, 95); robot.addAction(&limiterFarAction, 90); // Goto action at lower priority ArActionGoto gotoPoseAction("goto"); robot.addAction(&gotoPoseAction, 50); // Stop action at lower priority, so the robot stops if it has no goal ArActionStop stopAction("stop"); robot.addAction(&stopAction, 40); // turn on the motors, turn off amigobot sounds robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); const int duration = 30000; //msec ArLog::log(ArLog::Normal, "Going to four goals in turn for %d seconds, then cancelling goal and exiting.", duration/1000); bool first = true; int goalNum = 0; ArTime start; start.setToNow(); while (Aria::getRunning()) { robot.lock(); // Choose a new goal if this is the first loop iteration, or if we // achieved the previous goal. if (first || gotoPoseAction.haveAchievedGoal()) { first = false; goalNum++; if (goalNum > 4) goalNum = 1; // start again at goal #1 // set our positions for the different goals if (goalNum == 1) gotoPoseAction.setGoal(ArPose(2500, 0)); else if (goalNum == 2) gotoPoseAction.setGoal(ArPose(2500, 2500)); else if (goalNum == 3) gotoPoseAction.setGoal(ArPose(0, 2500)); else if (goalNum == 4) gotoPoseAction.setGoal(ArPose(0, 0)); ArLog::log(ArLog::Normal, "Going to next goal at %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if(start.mSecSince() >= duration) { ArLog::log(ArLog::Normal, "%d seconds have elapsed. Cancelling current goal, waiting 3 seconds, and exiting.", duration/1000); gotoPoseAction.cancelGoal(); robot.unlock(); ArUtil::sleep(3000); break; } robot.unlock(); ArUtil::sleep(100); } // Robot disconnected or time elapsed, shut down Aria::exit(0); return 0; }
int main(int argc, char **argv) { // Initialize Aria and Arnl global information Aria::init(); Arnl::init(); // The robot object ArRobot robot; // Parse the command line arguments. ArArgumentParser parser(&argc, argv); // Set up our simpleConnector, to connect to the robot and laser //ArSimpleConnector simpleConnector(&parser); ArRobotConnector robotConnector(&parser, &robot); // Connect to the robot if (!robotConnector.connectRobot()) { ArLog::log(ArLog::Normal, "Error: Could not connect to robot... exiting"); Aria::exit(3); } // Set up where we'll look for files. Arnl::init() set Aria's default // directory to Arnl's default directory; addDirectories() appends this // "examples" directory. char fileDir[1024]; ArUtil::addDirectories(fileDir, sizeof(fileDir), Aria::getDirectory(), "examples"); // To direct log messages to a file, or to change the log level, use these calls: //ArLog::init(ArLog::File, ArLog::Normal, "log.txt", true, true); //ArLog::init(ArLog::File, ArLog::Verbose); // Add a section to the configuration to change ArLog parameters ArLog::addToConfig(Aria::getConfig()); // set up a gyro (if the robot is older and its firmware does not // automatically incorporate gyro corrections, then this object will do it) ArAnalogGyro gyro(&robot); // Our networking server ArServerBase server; // Set up our simpleOpener, used to set up the networking server ArServerSimpleOpener simpleOpener(&parser); // the laser connector ArLaserConnector laserConnector(&parser, &robot, &robotConnector); // Tell the laser connector to always connect the first laser since // this program always requires a laser. parser.addDefaultArgument("-connectLaser"); // Load default arguments for this computer (from /etc/Aria.args, environment // variables, and other places) parser.loadDefaultArguments(); // Parse arguments if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { logOptions(argv[0]); Aria::exit(1); } // This causes Aria::exit(9) to be called if the robot unexpectedly // disconnects ArGlobalFunctor1<int> shutdownFunctor(&Aria::exit, 9); robot.addDisconnectOnErrorCB(&shutdownFunctor); // Create an ArSonarDevice object (ArRangeDevice subclass) and // connect it to the robot. ArSonarDevice sonarDev; robot.addRangeDevice(&sonarDev); // This object will allow robot's movement parameters to be changed through // a Robot Configuration section in the ArConfig global configuration facility. ArRobotConfig robotConfig(&robot); // Include gyro configuration options in the robot configuration section. robotConfig.addAnalogGyro(&gyro); // Start the robot thread. robot.runAsync(true); // connect the laser(s) if it was requested, this adds them to the // robot too, and starts them running in their own threads if (!laserConnector.connectLasers()) { ArLog::log(ArLog::Normal, "Could not connect to all lasers... exiting\n"); Aria::exit(2); } // find the laser we should use for localization and/or mapping, // which will be the first laser robot.lock(); ArLaser *firstLaser = robot.findLaser(1); if (firstLaser == NULL || !firstLaser->isConnected()) { ArLog::log(ArLog::Normal, "Did not have laser 1 or it is not connected, cannot start localization and/or mapping... exiting"); Aria::exit(2); } robot.unlock(); /* Create and set up map object */ // Set up the map object, this will look for files in the examples // directory (unless the file name starts with a /, \, or . // You can take out the 'fileDir' argument to look in the program's current directory // instead. // When a configuration file is loaded into ArConfig later, if it specifies a // map file, then that file will be loaded as the map. ArMap map(fileDir); // set it up to ignore empty file names (otherwise if a configuration omits // the map file, the whole configuration change will fail) map.setIgnoreEmptyFileName(true); // ignore the case, so that if someone is using MobileEyes or // MobilePlanner from Windows and changes the case on a map name, // it will still work. map.setIgnoreCase(true); /* Create localization and path planning threads */ ArPathPlanningTask pathTask(&robot, &sonarDev, &map); ArLog::log(ArLog::Normal, "Creating laser localization task"); // Laser Monte-Carlo Localization ArLocalizationTask locTask(&robot, firstLaser, &map); // Set some options on each laser that the laser connector // connected to. std::map<int, ArLaser *>::iterator laserIt; for (laserIt = robot.getLaserMap()->begin(); laserIt != robot.getLaserMap()->end(); laserIt++) { int laserNum = (*laserIt).first; ArLaser *laser = (*laserIt).second; // Skip lasers that aren't connected if(!laser->isConnected()) continue; // add the disconnectOnError CB to shut things down if the laser // connection is lost laser->addDisconnectOnErrorCB(&shutdownFunctor); // set the number of cumulative readings the laser will take laser->setCumulativeBufferSize(200); // add the lasers to the path planning task pathTask.addRangeDevice(laser, ArPathPlanningTask::BOTH); // set the cumulative clean offset (so that they don't all fire at once) laser->setCumulativeCleanOffset(laserNum * 100); // reset the cumulative clean time (to make the new offset take effect) laser->resetLastCumulativeCleanTime(); // Add the packet count to the Aria info strings (It will be included in // MobileEyes custom details so you can monitor whether the laser data is // being received correctly) std::string laserPacketCountName; laserPacketCountName = laser->getName(); laserPacketCountName += " Packet Count"; Aria::getInfoGroup()->addStringInt( laserPacketCountName.c_str(), 10, new ArRetFunctorC<int, ArLaser>(laser, &ArLaser::getReadingCount)); } // Used for optional multirobot features (see below) (TODO move to multirobot // example?) ArClientSwitchManager clientSwitch(&server, &parser); /* Start the server */ // Open the networking server if (!simpleOpener.open(&server, fileDir, 240)) { ArLog::log(ArLog::Normal, "Error: Could not open server."); exit(2); } /* Create various services that provide network access to clients (such as * MobileEyes), as well as add various additional features to ARNL */ // ARNL can optionally get information about the positions of other robots from a // "central server" (see central server example program), if command // line options specifying the address of the central server was given. // If there is no central server, then the address of each other robot // can instead be given in the configuration, and the multirobot systems // will connect to each robot (or "peer") individually. // TODO move this to multirobot example? bool usingCentralServer = false; if(clientSwitch.getCentralServerHostName() != NULL) usingCentralServer = true; // if we're using the central server then we want to create the // multiRobot central classes if (usingCentralServer) { // Make the handler for multi robot information (this sends the // information to the central server) //ArServerHandlerMultiRobot *handlerMultiRobot = new ArServerHandlerMultiRobot(&server, &robot, &pathTask, &locTask, &map); // Normally each robot, and the central server, must all have // the same map name for the central server to share robot // information. (i.e. they are operating in the same space). // This changes the map name that ArServerHandlerMutliRobot // reports to the central server, in case you want this individual // robot to load a different map file name, but still report // the common map file to the central server. //handlerMultiRobot->overrideMapName("central.map"); // the range device that gets the multi robot information from // the central server and presents it as virtual range readings // to ARNL ArMultiRobotRangeDevice *multiRobotRangeDevice = new ArMultiRobotRangeDevice(&server); robot.addRangeDevice(multiRobotRangeDevice); pathTask.addRangeDevice(multiRobotRangeDevice, ArPathPlanningTask::BOTH); // Set up options for drawing multirobot information in MobileEyes. multiRobotRangeDevice->setCurrentDrawingData( new ArDrawingData("polyDots", ArColor(125, 125, 0), 100, 73, 1000), true); multiRobotRangeDevice->setCumulativeDrawingData( new ArDrawingData("polyDots", ArColor(125, 0, 125), 100, 72, 1000), true); // This sets up the localization to use the known poses of other robots // for its localization in cases where numerous robots crowd out the map. locTask.setMultiRobotCallback(multiRobotRangeDevice->getOtherRobotsCB()); } // if we're not using a central server then create the multirobot peer classes else { // set the path planning so it uses the explicit collision range for how far its planning pathTask.setUseCollisionRangeForPlanningFlag(true); // make our thing that gathers information from the other servers ArServerHandlerMultiRobotPeer *multiRobotPeer = NULL; ArMultiRobotPeerRangeDevice *multiRobotPeerRangeDevice = NULL; multiRobotPeerRangeDevice = new ArMultiRobotPeerRangeDevice(&map); // make our thing that sends information to the other servers multiRobotPeer = new ArServerHandlerMultiRobotPeer(&server, &robot, &pathTask, &locTask); // hook the two together so they both know what priority this robot is multiRobotPeer->setNewPrecedenceCallback( multiRobotPeerRangeDevice->getSetPrecedenceCallback()); // hook the two together so they both know what priority this // robot's fingerprint is multiRobotPeer->setNewFingerprintCallback( multiRobotPeerRangeDevice->getSetFingerprintCallback()); // hook the two together so that the range device can call on the // server handler to change its fingerprint multiRobotPeerRangeDevice->setChangeFingerprintCB( multiRobotPeer->getChangeFingerprintCB()); // then add the robot to the places it needs to be robot.addRangeDevice(multiRobotPeerRangeDevice); pathTask.addRangeDevice(multiRobotPeerRangeDevice, ArPathPlanningTask::BOTH); // Set the range device so that we can see the information its using // to avoid, you can comment these out in order to not see them multiRobotPeerRangeDevice->setCurrentDrawingData( new ArDrawingData("polyDots", ArColor(125, 125, 0), 100, 72, 1000), true); multiRobotPeerRangeDevice->setCumulativeDrawingData( new ArDrawingData("polyDots", ArColor(125, 0, 125), 100, 72, 1000), true); // This sets up the localization to use the known poses of other robots // for its localization in cases where numerous robots crowd out the map. locTask.setMultiRobotCallback( multiRobotPeerRangeDevice->getOtherRobotsCB()); } /* Add additional range devices to the robot and path planning task (so it avoids obstacles detected by these devices) */ // Add IR range device to robot and path planning task (so it avoids obstacles // detected by this device) robot.lock(); ArIRs irs; robot.addRangeDevice(&irs); pathTask.addRangeDevice(&irs, ArPathPlanningTask::CURRENT); // Add bumpers range device to robot and path planning task (so it avoids obstacles // detected by this device) ArBumpers bumpers; robot.addRangeDevice(&bumpers); pathTask.addRangeDevice(&bumpers, ArPathPlanningTask::CURRENT); // Add range device which uses forbidden regions given in the map to give virtual // range device readings to ARNL. (so it avoids obstacles // detected by this device) ArForbiddenRangeDevice forbidden(&map); robot.addRangeDevice(&forbidden); pathTask.addRangeDevice(&forbidden, ArPathPlanningTask::CURRENT); robot.unlock(); // Action to slow down robot when localization score drops but not lost. ArActionSlowDownWhenNotCertain actionSlowDown(&locTask); pathTask.getPathPlanActionGroup()->addAction(&actionSlowDown, 140); // Action to stop the robot when localization is "lost" (score too low) ArActionLost actionLostPath(&locTask, &pathTask); pathTask.getPathPlanActionGroup()->addAction(&actionLostPath, 150); // Arnl uses this object when it must replan its path because its // path is completely blocked. It will use an older history of sensor // readings to replan this new path. This should not be used with SONARNL // since sonar readings are not accurate enough and may prevent the robot // from planning through space that is actually clear. ArGlobalReplanningRangeDevice replanDev(&pathTask); // Service to provide drawings of data in the map display : ArServerInfoDrawings drawings(&server); drawings.addRobotsRangeDevices(&robot); drawings.addRangeDevice(&replanDev); /* Draw a box around the local path planning area use this (You can enable this particular drawing from custom commands which is set up down below in ArServerInfoPath) */ ArDrawingData drawingDataP("polyLine", ArColor(200,200,200), 1, 75); ArFunctor2C<ArPathPlanningTask, ArServerClient *, ArNetPacket *> drawingFunctorP(&pathTask, &ArPathPlanningTask::drawSearchRectangle); drawings.addDrawing(&drawingDataP, "Local Plan Area", &drawingFunctorP); /* Show the sample points used by MCL */ ArDrawingData drawingDataL("polyDots", ArColor(0,255,0), 100, 75); ArFunctor2C<ArLocalizationTask, ArServerClient *, ArNetPacket *> drawingFunctorL(&locTask, &ArLocalizationTask::drawRangePoints); drawings.addDrawing(&drawingDataL, "Localization Points", &drawingFunctorL); // "Custom" commands. You can add your own custom commands here, they will // be available in MobileEyes' custom commands (enable in the toolbar or // access through Robot Tools) ArServerHandlerCommands commands(&server); // These provide various kinds of information to the client: ArServerInfoRobot serverInfoRobot(&server, &robot); ArServerInfoSensor serverInfoSensor(&server, &robot); ArServerInfoPath serverInfoPath(&server, &robot, &pathTask); serverInfoPath.addSearchRectangleDrawing(&drawings); serverInfoPath.addControlCommands(&commands); // Provides localization info and allows the client (MobileEyes) to relocalize at a given // pose: ArServerInfoLocalization serverInfoLocalization(&server, &robot, &locTask); ArServerHandlerLocalization serverLocHandler(&server, &robot, &locTask); // If you're using MobileSim, ArServerHandlerLocalization sends it a command // to move the robot's true pose if you manually do a localization through // MobileEyes. To disable that behavior, use this constructor call instead: // ArServerHandlerLocalization serverLocHandler(&server, &robot, true, false); // The fifth argument determines whether to send the command to MobileSim. // Provide the map to the client (and related controls): ArServerHandlerMap serverMap(&server, &map); // These objects add some simple (custom) commands to 'commands' for testing and debugging: ArServerSimpleComUC uCCommands(&commands, &robot); // Send any command to the microcontroller ArServerSimpleComMovementLogging loggingCommands(&commands, &robot); // configure logging ArServerSimpleComLogRobotConfig configCommands(&commands, &robot); // trigger logging of the robot config parameters // ArServerSimpleServerCommands serverCommands(&commands, &server); // monitor networking behavior (track packets sent etc.) // service that allows the client to monitor the communication link status // between the robot and the client. // ArServerHandlerCommMonitor handlerCommMonitor(&server); // service that allows client to change configuration parameters in ArConfig ArServerHandlerConfig handlerConfig(&server, Aria::getConfig(), Arnl::getTypicalDefaultParamFileName(), Aria::getDirectory()); /* Set up the possible modes for remote control from a client such as * MobileEyes: */ // Mode To go to a goal or other specific point: ArServerModeGoto modeGoto(&server, &robot, &pathTask, &map, locTask.getRobotHome(), locTask.getRobotHomeCallback()); // Mode To stop and remain stopped: ArServerModeStop modeStop(&server, &robot); // Cause the sonar to turn off automatically // when the robot is stopped, and turn it back on when commands to move // are sent. (Note, if using SONARNL to localize, then don't do this // since localization may get lost) ArSonarAutoDisabler sonarAutoDisabler(&robot); // Teleoperation modes To drive by keyboard, joystick, etc: ArServerModeRatioDrive modeRatioDrive(&server, &robot); // ArServerModeDrive modeDrive(&server, &robot); // Older mode for compatability // Prevent normal teleoperation driving if localization is lost using // a high-priority action, which enables itself when the particular mode is // active. // (You have to enter unsafe drive mode to drive when lost.) ArActionLost actionLostRatioDrive(&locTask, &pathTask, &modeRatioDrive); modeRatioDrive.getActionGroup()->addAction(&actionLostRatioDrive, 110); // Add drive mode section to the configuration, and also some custom (simple) commands: modeRatioDrive.addToConfig(Aria::getConfig(), "Teleop settings"); modeRatioDrive.addControlCommands(&commands); // Wander mode (also prevent wandering if lost): ArServerModeWander modeWander(&server, &robot); ArActionLost actionLostWander(&locTask, &pathTask, &modeWander); modeWander.getActionGroup()->addAction(&actionLostWander, 110); // This provides a small table of interesting information for the client // to display to the operator. You can add your own callbacks to show any // data you want. ArServerInfoStrings stringInfo(&server); Aria::getInfoGroup()->addAddStringCallback(stringInfo.getAddStringFunctor()); // Provide a set of informational data (turn on in MobileEyes with // View->Custom Details) Aria::getInfoGroup()->addStringInt( "Motor Packet Count", 10, new ArConstRetFunctorC<int, ArRobot>(&robot, &ArRobot::getMotorPacCount)); Aria::getInfoGroup()->addStringDouble( "Laser Localization Score", 8, new ArRetFunctorC<double, ArLocalizationTask>( &locTask, &ArLocalizationTask::getLocalizationScore), "%.03f"); Aria::getInfoGroup()->addStringInt( "Laser Loc Num Samples", 8, new ArRetFunctorC<int, ArLocalizationTask>( &locTask, &ArLocalizationTask::getCurrentNumSamples), "%4d"); // Display gyro status if gyro is enabled and is being handled by the firmware (gyro types 2, 3, or 4). // (If the firmware detects an error communicating with the gyro or IMU it // returns a flag, and stops using it.) // (This gyro type parameter, and fault flag, are only in ARCOS, not Seekur firmware) if(robot.getOrigRobotConfig() && robot.getOrigRobotConfig()->getGyroType() > 1) { Aria::getInfoGroup()->addStringString( "Gyro/IMU Status", 10, new ArGlobalRetFunctor1<const char*, ArRobot*>(&getGyroStatusString, &robot) ); } // Setup the dock if there is a docking system on board. ArServerModeDock *modeDock = NULL; modeDock = ArServerModeDock::createDock(&server, &robot, &locTask, &pathTask); if (modeDock != NULL) { modeDock->checkDock(); modeDock->addAsDefaultMode(); modeDock->addToConfig(Aria::getConfig()); modeDock->addControlCommands(&commands); } // Make Stop mode the default (If current mode deactivates without entering // a new mode, then Stop Mode will be selected) modeStop.addAsDefaultMode(); // TODO move up near where stop mode is created? /* Services that allow the client to initiate scanning with the laser to create maps in Mapper3 (So not possible with SONARNL): */ ArServerHandlerMapping handlerMapping(&server, &robot, firstLaser, fileDir, "", true); // make laser localization stop while mapping handlerMapping.addMappingStartCallback( new ArFunctor1C<ArLocalizationTask, bool> (&locTask, &ArLocalizationTask::setIdleFlag, true)); // and then make it start again when we're doine handlerMapping.addMappingEndCallback( new ArFunctor1C<ArLocalizationTask, bool> (&locTask, &ArLocalizationTask::setIdleFlag, false)); // Make it so our "lost" actions don't stop us while mapping handlerMapping.addMappingStartCallback(actionLostPath.getDisableCB()); handlerMapping.addMappingStartCallback(actionLostRatioDrive.getDisableCB()); handlerMapping.addMappingStartCallback(actionLostWander.getDisableCB()); // And then let them make us stop as usual when done mapping handlerMapping.addMappingEndCallback(actionLostPath.getEnableCB()); handlerMapping.addMappingEndCallback(actionLostRatioDrive.getEnableCB()); handlerMapping.addMappingEndCallback(actionLostWander.getEnableCB()); // don't let forbidden lines show up as obstacles while mapping // (they'll just interfere with driving while mapping, and localization is off anyway) handlerMapping.addMappingStartCallback(forbidden.getDisableCB()); // let forbidden lines show up as obstacles again as usual after mapping handlerMapping.addMappingEndCallback(forbidden.getEnableCB()); /* // If we are on a simulator, move the robot back to its starting position, // and reset its odometry. // This will allow localizeRobotAtHomeBlocking() below will (probably) work (it // tries current odometry (which will be 0,0,0) and all the map // home points. // (Ignored by a real robot) //robot.com(ArCommands::SIM_RESET); */ // create a pose storage class, this will let the program keep track // of where the robot is between runs... after we try and restore // from this file it will start saving the robot's pose into the // file ArPoseStorage poseStorage(&robot); /// if we could restore the pose from then set the sim there (this /// won't do anything to the real robot)... if we couldn't restore /// the pose then just reset the position of the robot (which again /// won't do anything to the real robot) if (poseStorage.restorePose("robotPose")) serverLocHandler.setSimPose(robot.getPose()); else robot.com(ArCommands::SIM_RESET); /* File transfer services: */ #ifdef WIN32 // Not implemented for Windows yet. ArLog::log(ArLog::Normal, "Note, file upload/download services are not implemented for Windows; not enabling them."); #else // This block will allow you to set up where you get and put files // to/from, just comment them out if you don't want this to happen // /* ArServerFileLister fileLister(&server, fileDir); ArServerFileToClient fileToClient(&server, fileDir); ArServerFileFromClient fileFromClient(&server, fileDir, "/tmp"); ArServerDeleteFileOnServer deleteFileOnServer(&server, fileDir); // */ #endif /* Video image streaming, and camera controls (Requires SAVserver or ACTS) */ // Forward any video if either ACTS or SAV server are running. // You can find out more about SAV and ACTS on our website // http://robots.activmedia.com. ACTS is for color tracking and is // a seperate product. SAV just does software A/V transmitting and is // free to all our customers. Just run ACTS or SAV server before you // start this program and this class here will forward video from the // server to the client. ArHybridForwarderVideo videoForwarder(&server, "localhost", 7070); // make a camera to use in case we have video. the camera collection collects // multiple ptz cameras ArPTZ *camera = NULL; ArServerHandlerCamera *handlerCamera = NULL; ArCameraCollection *cameraCollection = NULL; // if we have video then set up a camera if (videoForwarder.isForwardingVideo()) { cameraCollection = new ArCameraCollection(); cameraCollection->addCamera("Cam1", "PTZ", "Camera", "PTZ"); videoForwarder.setCameraName("Cam1"); videoForwarder.addToCameraCollection(*cameraCollection); camera = new ArVCC4(&robot); //, invertedCamera, ArVCC4::COMM_UNKNOWN, true, true); // To use an RVision SEE camera instead: // camera = new ArRVisionPTZ(&robot); camera->init(); handlerCamera = new ArServerHandlerCamera("Cam1", &server, &robot, camera, cameraCollection); pathTask.addGoalFinishedCB( new ArFunctorC<ArServerHandlerCamera>( handlerCamera, &ArServerHandlerCamera::cameraModeLookAtGoalClearGoal)); } // After all of the cameras / videos have been created and added to the collection, // then start the collection server. // if (cameraCollection != NULL) { new ArServerHandlerCameraCollection(&server, cameraCollection); } /* Load configuration values, map, and begin! */ // When parsing the configuration file, also look at the program's command line options // from the command-line argument parser as well as the configuration file. // (So you can use any argument on the command line, namely -map.) Aria::getConfig()->useArgumentParser(&parser); puts("xxx");puts("aaa"); fflush(stdout); // Read in parameter files. ArLog::log(ArLog::Normal, "Loading config file %s into ArConfig (base directory %s)...", Arnl::getTypicalParamFileName(), Aria::getConfig()->getBaseDirectory()); if (!Aria::getConfig()->parseFile(Arnl::getTypicalParamFileName())) { ArLog::log(ArLog::Normal, "Trouble loading configuration file, exiting"); Aria::exit(5); } // Warn about unknown params. if (!simpleOpener.checkAndLog() || !parser.checkHelpAndWarnUnparsed()) { logOptions(argv[0]); Aria::exit(6); } // Warn if there is no map if (map.getFileName() == NULL || strlen(map.getFileName()) <= 0) { ArLog::log(ArLog::Normal, ""); ArLog::log(ArLog::Normal, "### No map file is set up, you can make a map with the following procedure"); ArLog::log(ArLog::Normal, " 0) You can find this information in README.txt or docs/Mapping.txt"); ArLog::log(ArLog::Normal, " 1) Connect to this server with MobileEyes"); ArLog::log(ArLog::Normal, " 2) Go to Tools->Map Creation->Start Scan"); ArLog::log(ArLog::Normal, " 3) Give the map a name and hit okay"); ArLog::log(ArLog::Normal, " 4) Drive the robot around your space (see docs/Mapping.txt"); ArLog::log(ArLog::Normal, " 5) Go to Tools->Map Creation->Stop Scan"); ArLog::log(ArLog::Normal, " 6) Start up Mapper3"); ArLog::log(ArLog::Normal, " 7) Go to File->Open on Robot"); ArLog::log(ArLog::Normal, " 8) Select the .2d you created"); ArLog::log(ArLog::Normal, " 9) Create a .map"); ArLog::log(ArLog::Normal, " 10) Go to File->Save on Robot"); ArLog::log(ArLog::Normal, " 11) In MobileEyes, go to Tools->Robot Config"); ArLog::log(ArLog::Normal, " 12) Choose the Files section"); ArLog::log(ArLog::Normal, " 13) Enter the path and name of your new .map file for the value of the Map parameter."); ArLog::log(ArLog::Normal, " 14) Press OK and your new map should become the map used"); ArLog::log(ArLog::Normal, ""); } // Print a log message notifying user of the directory for map files ArLog::log(ArLog::Normal, ""); ArLog::log(ArLog::Normal, "Directory for maps and file serving: %s", fileDir); ArLog::log(ArLog::Normal, "See the ARNL README.txt for more information"); ArLog::log(ArLog::Normal, ""); // Do an initial localization of the robot. It tries all the home points // in the map, as well as the robot's current odometric position, as possible // places the robot is likely to be at startup. If successful, it will // also save the position it found to be the best localized position as the // "Home" position, which can be obtained from the localization task (and is // used by the "Go to home" network request). locTask.localizeRobotAtHomeBlocking(); // Let the client switch manager (for multirobot) spin off into its own thread // TODO move to multirobot example? clientSwitch.runAsync(); // Start the networking server's thread server.runAsync(); // Add a key handler so that you can exit by pressing // escape. Note that this key handler, however, prevents this program from // running in the background (e.g. as a system daemon or run from // the shell with "&") -- it will lock up trying to read the keys; // remove this if you wish to be able to run this program in the background. ArKeyHandler *keyHandler; if ((keyHandler = Aria::getKeyHandler()) == NULL) { keyHandler = new ArKeyHandler; Aria::setKeyHandler(keyHandler); robot.lock(); robot.attachKeyHandler(keyHandler); robot.unlock(); puts("Server running. To exit, press escape."); } ArnlASyncTaskExample asyncTaskExample(&pathTask, &robot, &modeGoto, &parser); // Enable the motors and wait until the robot exits (disconnection, etc.) or this program is // canceled. robot.enableMotors(); robot.waitForRunExit(); Aria::exit(0); }
int main(int argc, char **argv) { Aria::init(); ArRobot robot; ArServerBase server; ArArgumentParser parser(&argc, argv); ArSimpleConnector simpleConnector(&parser); ArServerSimpleOpener simpleOpener(&parser); // parse the command line... fail and print the help if the parsing fails // or if help was requested parser.loadDefaultArguments(); if (!simpleConnector.parseArgs() || !simpleOpener.parseArgs() || !parser.checkHelpAndWarnUnparsed()) { simpleConnector.logOptions(); simpleOpener.logOptions(); exit(1); } // Set up where we'll look for files such as config file, user/password file, // etc. char fileDir[1024]; ArUtil::addDirectories(fileDir, sizeof(fileDir), Aria::getDirectory(), "ArNetworking/examples"); // first open the server up if (!simpleOpener.open(&server, fileDir, 240)) { if (simpleOpener.wasUserFileBad()) printf("Error: Bad user/password/permissions file.\n"); else printf("Error: Could not open server port. Use -help to see options.\n"); exit(1); } // Devices ArAnalogGyro gyro(&robot); ArSonarDevice sonarDev; robot.addRangeDevice(&sonarDev); ArIRs irs; robot.addRangeDevice(&irs); ArBumpers bumpers; robot.addRangeDevice(&bumpers); ArSick sick(361, 180); robot.addRangeDevice(&sick); ArServerInfoRobot serverInfoRobot(&server, &robot); ArServerInfoSensor serverInfoSensor(&server, &robot); // This is the service that provides drawing data to the client. ArServerInfoDrawings drawings(&server); // Convenience function that sets up drawings for all the robot's current // range devices (using default shape and color info) drawings.addRobotsRangeDevices(&robot); // Add our custom drawings drawings.addDrawing( // shape: color: size: layer: new ArDrawingData("polyLine", ArColor(255, 0, 0), 2, 49), "exampleDrawing_Home", new ArGlobalFunctor2<ArServerClient*, ArNetPacket*>(&exampleHomeDrawingNetCallback) ); drawings.addDrawing( new ArDrawingData("polyDots", ArColor(0, 255, 0), 250, 48), "exampleDrawing_Dots", new ArGlobalFunctor2<ArServerClient*, ArNetPacket*>(&exampleDotsDrawingNetCallback) ); drawings.addDrawing( new ArDrawingData("polySegments", ArColor(0, 0, 0), 4, 52), "exampleDrawing_XMarksTheSpot", new ArGlobalFunctor2<ArServerClient*, ArNetPacket*>(&exampleXDrawingNetCallback) ); drawings.addDrawing( new ArDrawingData("polyArrows", ArColor(255, 0, 255), 500, 100), "exampleDrawing_Arrows", new ArGlobalFunctor2<ArServerClient*, ArNetPacket*>(&exampleArrowsDrawingNetCallback) ); // modes for moving the robot ArServerModeStop modeStop(&server, &robot); ArServerModeDrive modeDrive(&server, &robot); ArServerModeRatioDrive modeRatioDrive(&server, &robot); ArServerModeWander modeWander(&server, &robot); modeStop.addAsDefaultMode(); modeStop.activate(); // Connect to the robot. if (!simpleConnector.connectRobot(&robot)) { printf("Error: Could not connect to robot... exiting\n"); Aria::shutdown(); return 1; } // set up the laser before handing it to the laser mode simpleConnector.setupLaser(&sick); robot.enableMotors(); // start the robot cycle running in a background thread robot.runAsync(true); // start the laser processing cycle in a background thread sick.runAsync(); // connect the laser if it was requested if (!simpleConnector.connectLaser(&sick)) { printf("Error: Could not connect to laser... exiting\n"); Aria::shutdown(); return 1; } // log whatever we wanted to before the runAsync simpleOpener.checkAndLog(); // run the server thread in the background server.runAsync(); printf("Server is now running...\n"); // Add a key handler mostly that windows can exit by pressing // escape, note that the key handler prevents you from running this program // in the background on Linux. ArKeyHandler *keyHandler; if ((keyHandler = Aria::getKeyHandler()) == NULL) { keyHandler = new ArKeyHandler; Aria::setKeyHandler(keyHandler); robot.lock(); robot.attachKeyHandler(keyHandler); robot.unlock(); printf("To exit, press escape.\n"); } robot.waitForRunExit(); Aria::shutdown(); exit(0); }
int main(int argc, char** argv) { Aria::init(); ArArgumentParser argParser(&argc, argv); ArSimpleConnector con(&argParser); ArRobot robot; ArSonarDevice sonar; argParser.loadDefaultArguments(); if(!Aria::parseArgs() || !argParser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); return 1; } /* - the action group for teleoperation actions: */ teleop = new ArActionGroup(&robot); // don't hit any tables (if the robot has IR table sensors) teleop->addAction(new ArActionLimiterTableSensor, 100); // limiter for close obstacles teleop->addAction(new ArActionLimiterForwards("speed limiter near", 300, 600, 250), 95); // limiter for far away obstacles teleop->addAction(new ArActionLimiterForwards("speed limiter far", 300, 1100, 400), 90); // limiter so we don't bump things backwards teleop->addAction(new ArActionLimiterBackwards, 85); // the joydrive action (drive from joystick) ArActionJoydrive joydriveAct("joydrive", 400, 15); teleop->addAction(&joydriveAct, 50); // the keydrive action (drive from keyboard) teleop->addAction(new ArActionKeydrive, 45); /* - the action group for wander actions: */ wander = new ArActionGroup(&robot); // if we're stalled we want to back up and recover wander->addAction(new ArActionStallRecover, 100); // react to bumpers wander->addAction(new ArActionBumpers, 75); // turn to avoid things closer to us wander->addAction(new ArActionAvoidFront("Avoid Front Near", 225, 0), 50); // turn avoid things further away wander->addAction(new ArActionAvoidFront, 45); // keep moving wander->addAction(new ArActionConstantVelocity("Constant Velocity", 400), 25); /* - use key commands to switch modes, and use keyboard * and joystick as inputs for teleoperation actions. */ // create key handler if Aria does not already have one ArKeyHandler *keyHandler = Aria::getKeyHandler(); if (keyHandler == NULL) { keyHandler = new ArKeyHandler; Aria::setKeyHandler(keyHandler); robot.attachKeyHandler(keyHandler); } // set the callbacks ArGlobalFunctor teleopCB(&teleopMode); ArGlobalFunctor wanderCB(&wanderMode); keyHandler->addKeyHandler('w', &wanderCB); keyHandler->addKeyHandler('W', &wanderCB); keyHandler->addKeyHandler('t', &teleopCB); keyHandler->addKeyHandler('T', &teleopCB); // if we don't have a joystick, let 'em know if (!joydriveAct.joystickInited()) printf("Note: Do not have a joystick, only the arrow keys on the keyboard will work.\n"); // set the joystick so it won't do anything if the button isn't pressed joydriveAct.setStopIfNoButtonPressed(false); /* - connect to the robot, then enter teleoperation mode. */ robot.addRangeDevice(&sonar); if(!con.connectRobot(&robot)) { ArLog::log(ArLog::Terse, "actionGroupExample: Could not connect to the robot."); Aria::shutdown(); return 1; } robot.enableMotors(); teleopMode(); robot.run(true); Aria::shutdown(); return 0; }
int main(int argc, char **argv) { int t, cnt; double laser_dist[900]; double laser_angle[900]; std::list<ArSensorReading *> *readings; std::list<ArSensorReading *>::iterator it; ArKeyHandler keyHandler; Aria::init(); // Add the key handler to Aria so other things can find it Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); // add the laser to the robot robot.addRangeDevice(&sick); // Parse all our args ArSimpleConnector connector(&argc, argv); if (!connector.parseArgs() || argc > 1) { connector.logOptions(); exit(1); } robot.addRangeDevice(&sick); // try to connect, if we fail exit if (!connector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::shutdown(); return 1; } // start the robot running, true so that if we lose connection the run stops robot.runAsync(true); // now set up the laser sick.configureShort(true,ArSick::BAUD38400,ArSick::DEGREES180,ArSick::INCREMENT_ONE); connector.setupLaser(&sick); sick.runAsync(); if (!sick.blockingConnect()) { printf("Could not connect to SICK laser... exiting\n"); Aria::shutdown(); return 1; } cnt = 1; while(cnt<10000){ readings=(list<ArSensorReading *,allocator<ArSensorReading *> > *)sick.getRawReadings();//CurrentBuffer.. while (readings == NULL){ readings = (list<ArSensorReading *, allocator<ArSensorReading *> > *)sick.getRawReadings(); } t=0; for(it=readings->begin(); it!=readings->end(); it++){ //cout << "t: " << t << endl; laser_dist[t]=(*it)->getRange(); laser_angle[t]=-90+t; //cout << "laser angle: " << laser_angle[t] << " laser dist.: " << laser_dist[t] <<" "<<"\n"; t++; } cout << "count: " << cnt << endl; //for some reason this line needs to be here cnt++; } for (t=0; t<181; t++){ cout << "laser angle: " << laser_angle[t] << " laser dist.: " << laser_dist[t] <<" "<<"\n"; } robot.waitForRunExit(); Aria::shutdown(); return 0; }
int main(int argc, char **argv) { Aria::init(); ArArgumentParser argParser(&argc, argv); argParser.loadDefaultArguments(); ArRobot robot; ArRobotConnector robotConnector(&argParser, &robot); ArLaserConnector laserConnector(&argParser, &robot, &robotConnector); // Always try to connect to the first laser: argParser.addDefaultArgument("-connectLaser"); if(!robotConnector.connectRobot()) { ArLog::log(ArLog::Terse, "Could not connect to the robot."); if(argParser.checkHelpAndWarnUnparsed()) { // -help not given, just exit. Aria::logOptions(); Aria::exit(1); } } // Trigger argument parsing if (!Aria::parseArgs() || !argParser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); Aria::exit(1); } ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); puts("This program will make the robot wander around. It uses some avoidance\n" "actions if obstacles are detected, otherwise it just has a\n" "constant forward velocity.\n\nPress CTRL-C or Escape to exit."); ArSonarDevice sonar; robot.addRangeDevice(&sonar); robot.runAsync(true); // try to connect to laser. if fail, warn but continue, using sonar only if(!laserConnector.connectLasers()) { ArLog::log(ArLog::Normal, "Warning: unable to connect to requested lasers, will wander using robot sonar only."); } // turn on the motors, turn off amigobot sounds robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); // add a set of actions that combine together to effect the wander behavior ArActionStallRecover recover; ArActionBumpers bumpers; ArActionAvoidFront avoidFrontNear("Avoid Front Near", 225, 0); ArActionAvoidFront avoidFrontFar; ArActionConstantVelocity constantVelocity("Constant Velocity", 400); robot.addAction(&recover, 100); robot.addAction(&bumpers, 75); robot.addAction(&avoidFrontNear, 50); robot.addAction(&avoidFrontFar, 49); robot.addAction(&constantVelocity, 25); // wait for robot task loop to end before exiting the program robot.waitForRunExit(); Aria::exit(0); }
int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { UNREFERENCED_PARAMETER(hPrevInstance); UNREFERENCED_PARAMETER(lpCmdLine); //-------------- M A I N D E L P R O G R A M A D E L R O B O T------------// //---------------------------------------------------------------------------------------------------------- //inicializaion de variables Aria::init(); ArArgumentParser parser(&argc, argv); parser.loadDefaultArguments(); ArSimpleConnector simpleConnector(&parser); ArRobot robot; ArSonarDevice sonar; ArAnalogGyro gyro(&robot); robot.addRangeDevice(&sonar); // presionar tecla escape para salir del programa ArKeyHandler keyHandler; Aria::setKeyHandler(&keyHandler); robot.attachKeyHandler(&keyHandler); printf("You may press escape to exit\n"); // uso de sonares para evitar colisiones con las paredes u // obstaculos grandes, mayores a 8cm de alto ArActionLimiterForwards limiterAction("speed limiter near", 300, 600, 250); ArActionLimiterForwards limiterFarAction("speed limiter far", 300, 1100, 400); ArActionLimiterTableSensor tableLimiterAction; robot.addAction(&tableLimiterAction, 100); robot.addAction(&limiterAction, 95); robot.addAction(&limiterFarAction, 90); // Inicializon la funcion de goto ArActionGoto gotoPoseAction("goto"); robot.addAction(&gotoPoseAction, 50); // Finaliza el goto si es que no hace nada ArActionStop stopAction("stop"); robot.addAction(&stopAction, 40); // Parser del CLI if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed()) { Aria::logOptions(); exit(1); } // Conexion del robot if (!simpleConnector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::exit(1); } robot.runAsync(true); // enciende motores, apaga sonidos robot.enableMotors(); robot.comInt(ArCommands::SOUNDTOG, 0); const int duration = 100000; //msec ArLog::log(ArLog::Normal, "Completados los puntos en %d segundos", duration/1000); bool first = true; int horiz = 1800; int vert = 380; int goalNum = 0; ArTime start; start.setToNow(); while (Aria::getRunning()) { robot.lock(); // inicia el primer punto if (first || gotoPoseAction.haveAchievedGoal()) { first = false; goalNum++; //cambia de 0 a 1 el contador if (goalNum > 7) goalNum = 1; //comienza la secuencia de puntos if (goalNum == 1) gotoPoseAction.setGoal(ArPose(horiz, vert*0)); else if (goalNum == 2) gotoPoseAction.setGoal(ArPose(0, vert*1)); else if (goalNum == 3) gotoPoseAction.setGoa l(ArPose(horiz, vert*2)+5); else if (goalNum == 4) gotoPoseAction.setGoal(ArPose(0, vert*3)); else if (goalNum == 5) gotoPoseAction.setGoal(ArPose(horiz, vert*4+5)); else if (goalNum == 6) gotoPoseAction.setGoal(ArPose(0, vert*5)); else if (goalNum == 7) gotoPoseAction.setGoal(ArPose(0, vert*0)); ArLog::log(ArLog::Normal, "Siguiente punto en %.0f %.0f", gotoPoseAction.getGoal().getX(), gotoPoseAction.getGoal().getY()); } if(start.mSecSince() >= duration) { ArLog::log(ArLog::Normal, "%d seconds have elapsed. Cancelling current goal, waiting 3 seconds, and exiting.", duration/1000); gotoPoseAction.cancelGoal(); robot.unlock(); ArUtil::sleep(3000); break; } robot.unlock(); ArUtil::sleep(100); } // Robot desconectado al terminal el sleep Aria::shutdown(); return 0; //---------------------------------------------------------------------------------------------------------- // TODO: Place code here. MSG msg; HACCEL hAccelTable; // Initialize global strings LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING); LoadString(hInstance, IDC_VENTANAROBOT, szWindowClass, MAX_LOADSTRING); MyRegisterClass(hInstance); // Perform application initialization: if (!InitInstance (hInstance, nCmdShow)) { return FALSE; } hAccelTable = LoadAccelerators(hInstance, MAKEINTRESOURCE(IDC_VENTANAROBOT)); // Main message loop: while (GetMessage(&msg, NULL, 0, 0)) { if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg)) { TranslateMessage(&msg); DispatchMessage(&msg); } } return (int) msg.wParam; }