void GrGLGeometryProcessor::setupColorPassThrough(GrGLGPBuilder* pb, GrGPInput inputType, const char* outputName, const GrGeometryProcessor::GrAttribute* colorAttr, UniformHandle* colorUniform) { GrGLGPFragmentBuilder* fs = pb->getFragmentShaderBuilder(); if (kUniform_GrGPInput == inputType) { SkASSERT(colorUniform); const char* stagedLocalVarName; *colorUniform = pb->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec4f_GrSLType, kDefault_GrSLPrecision, "Color", &stagedLocalVarName); fs->codeAppendf("%s = %s;", outputName, stagedLocalVarName); } else if (kAttribute_GrGPInput == inputType) { SkASSERT(colorAttr); pb->addPassThroughAttribute(colorAttr, outputName); } else if (kAllOnes_GrGPInput == inputType) { fs->codeAppendf("%s = vec4(1);", outputName); } }
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrBitmapTextGeoProc& cte = args.fGP.cast<GrBitmapTextGeoProc>(); const BitmapTextBatchTracker& local = args.fBT.cast<BitmapTextBatchTracker>(); GrGLGPBuilder* pb = args.fPB; GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(cte); GrGLVertToFrag v(kVec2f_GrSLType); pb->addVarying("TextureCoords", &v); // this is only used with text, so our texture bounds always match the glyph atlas if (cte.maskFormat() == kA8_GrMaskFormat) { vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", " GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", v.vsOut(), cte.inTextureCoords()->fName); } else { vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_RECIP_WIDTH ", " GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", v.vsOut(), cte.inTextureCoords()->fName); } // Setup pass through color this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, cte.inColor(), &fColorUniform); // Setup position this->setupPosition(pb, gpArgs, cte.inPosition()->fName, cte.viewMatrix()); // emit transforms this->emitTransforms(args.fPB, gpArgs->fPositionVar, cte.inPosition()->fName, cte.localMatrix(), args.fTransformsIn, args.fTransformsOut); GrGLGPFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder(); if (cte.maskFormat() == kARGB_GrMaskFormat) { fsBuilder->codeAppendf("%s = ", args.fOutputColor); fsBuilder->appendTextureLookupAndModulate(args.fOutputColor, args.fSamplers[0], v.fsIn(), kVec2f_GrSLType); fsBuilder->codeAppend(";"); fsBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage); } else { fsBuilder->codeAppendf("%s = ", args.fOutputCoverage); fsBuilder->appendTextureLookup(args.fSamplers[0], v.fsIn(), kVec2f_GrSLType); fsBuilder->codeAppend(";"); } }
void GrGLPathProcessor::emitCode(EmitArgs& args) { GrGLGPBuilder* pb = args.fPB; GrGLGPFragmentBuilder* fs = args.fPB->getFragmentShaderBuilder(); const PathBatchTracker& local = args.fBT.cast<PathBatchTracker>(); // emit transforms this->emitTransforms(args.fPB, args.fTransformsIn, args.fTransformsOut); // Setup uniform color if (kUniform_GrGPInput == local.fInputColorType) { const char* stagedLocalVarName; fColorUniform = pb->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec4f_GrSLType, kDefault_GrSLPrecision, "Color", &stagedLocalVarName); fs->codeAppendf("%s = %s;", args.fOutputColor, stagedLocalVarName); } // setup constant solid coverage if (kAllOnes_GrGPInput == local.fInputCoverageType) { fs->codeAppendf("%s = vec4(1);", args.fOutputCoverage); } }
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldLCDTextureEffect& dfTexEffect = args.fGP.cast<GrDistanceFieldLCDTextureEffect>(); const DistanceFieldLCDBatchTracker& local = args.fBT.cast<DistanceFieldLCDBatchTracker>(); GrGLGPBuilder* pb = args.fPB; GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(dfTexEffect); GrGLVertToFrag st(kVec2f_GrSLType); args.fPB->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision); vsBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName); GrGLVertToFrag uv(kVec2f_GrSLType); args.fPB->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision); // this is only used with text, so our texture bounds always match the glyph atlas vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", " GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName); // setup pass through color this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); // Setup position this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix()); // emit transforms this->emitTransforms(args.fPB, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, dfTexEffect.localMatrix(), args.fTransformsIn, args.fTransformsOut); GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); // create LCD offset adjusted by inverse of transform // Use highp to work around aliasing issues fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision, pb->ctxInfo().standard())); fsBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn()); fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision, pb->ctxInfo().standard())); fsBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn()); bool isUniformScale = !!(dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask); if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) { fsBuilder->codeAppend("float delta = -" GR_FONT_ATLAS_LCD_DELTA ";\n"); } else { fsBuilder->codeAppend("float delta = " GR_FONT_ATLAS_LCD_DELTA ";\n"); } if (isUniformScale) { fsBuilder->codeAppend("\tfloat dx = dFdx(st.x);\n"); fsBuilder->codeAppend("\tvec2 offset = vec2(dx*delta, 0.0);\n"); } else { fsBuilder->codeAppend("\tvec2 Jdx = dFdx(st);\n"); fsBuilder->codeAppend("\tvec2 Jdy = dFdy(st);\n"); fsBuilder->codeAppend("\tvec2 offset = delta*Jdx;\n"); } // green is distance to uv center fsBuilder->codeAppend("\tvec4 texColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tvec3 distance;\n"); fsBuilder->codeAppend("\tdistance.y = texColor.r;\n"); // red is distance to left offset fsBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n"); fsBuilder->codeAppend("\ttexColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tdistance.x = texColor.r;\n"); // blue is distance to right offset fsBuilder->codeAppend("\tuv_adjusted = uv + offset;\n"); fsBuilder->codeAppend("\ttexColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tdistance.z = texColor.r;\n"); fsBuilder->codeAppend("\tdistance = " "vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));"); // adjust width based on gamma const char* distanceAdjustUniName = NULL; fDistanceAdjustUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec3f_GrSLType, kDefault_GrSLPrecision, "DistanceAdjust", &distanceAdjustUniName); fsBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); // To be strictly correct, we should compute the anti-aliasing factor separately // for each color component. However, this is only important when using perspective // transformations, and even then using a single factor seems like a reasonable // trade-off between quality and speed. fsBuilder->codeAppend("float afwidth;"); if (isUniformScale) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dx);"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fsBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance.r), dFdy(distance.r));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fsBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fsBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fsBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fsBuilder->codeAppend("} else {"); fsBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fsBuilder->codeAppend("}"); fsBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fsBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } fsBuilder->codeAppend( "vec4 val = vec4(smoothstep(vec3(-afwidth), vec3(afwidth), distance), 1.0);"); fsBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage); }
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldTextureEffect& dfTexEffect = args.fGP.cast<GrDistanceFieldTextureEffect>(); const DistanceFieldBatchTracker& local = args.fBT.cast<DistanceFieldBatchTracker>(); GrGLGPBuilder* pb = args.fPB; GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(dfTexEffect); GrGLVertToFrag st(kVec2f_GrSLType); args.fPB->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision); vsBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName); GrGLVertToFrag uv(kVec2f_GrSLType); args.fPB->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision); // this is only used with text, so our texture bounds always match the glyph atlas vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", " GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust based on gamma const char* distanceAdjustUniName = NULL; // width, height, 1/(3*width) fDistanceAdjustUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kFloat_GrSLType, kDefault_GrSLPrecision, "DistanceAdjust", &distanceAdjustUniName); #endif // Setup pass through color this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, dfTexEffect.inColor(), &fColorUniform); // Setup position this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix()); // emit transforms this->emitTransforms(args.fPB, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, dfTexEffect.localMatrix(), args.fTransformsIn, args.fTransformsOut); // Use highp to work around aliasing issues fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision, pb->ctxInfo().standard())); fsBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn()); fsBuilder->codeAppend("\tfloat texColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(".r;\n"); fsBuilder->codeAppend("\tfloat distance = " SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");"); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust width based on gamma fsBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); #endif fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision, pb->ctxInfo().standard())); fsBuilder->codeAppendf("vec2 st = %s;", st.fsIn()); fsBuilder->codeAppend("float afwidth;"); if (dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdx(st.x));"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fsBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fsBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fsBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fsBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fsBuilder->codeAppend("} else {"); fsBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fsBuilder->codeAppend("}"); fsBuilder->codeAppend("vec2 Jdx = dFdx(st);"); fsBuilder->codeAppend("vec2 Jdy = dFdy(st);"); fsBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fsBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } fsBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);"); fsBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage); }
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>(); GrGLGPBuilder* pb = args.fPB; GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(qe); GrGLVertToFrag v(kVec4f_GrSLType); args.fPB->addVarying("QuadEdge", &v); vsBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName); const BatchTracker& local = args.fBT.cast<BatchTracker>(); // Setup pass through color this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); // Setup position this->setupPosition(pb, gpArgs, qe.inPosition()->fName, qe.viewMatrix()); // emit transforms this->emitTransforms(args.fPB, gpArgs->fPositionVar, qe.inPosition()->fName, qe.localMatrix(), args.fTransformsIn, args.fTransformsOut); GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); fsBuilder->codeAppendf("float edgeAlpha;"); // keep the derivative instructions outside the conditional fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn()); fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn()); fsBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn()); // today we know z and w are in device space. We could use derivatives fsBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(), v.fsIn()); fsBuilder->codeAppendf ("} else {"); fsBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y," " 2.0*%s.x*duvdy.x - duvdy.y);", v.fsIn(), v.fsIn()); fsBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(), v.fsIn()); fsBuilder->codeAppendf("edgeAlpha = " "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}"); fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); }