void VM_DeoptimizeAll::doit() { DeoptimizationMarker dm; // deoptimize all java threads in the system if (DeoptimizeALot) { for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) { if (thread->has_last_Java_frame()) { thread->deoptimize(); } } } else if (DeoptimizeRandom) { // Deoptimize some selected threads and frames int tnum = os::random() & 0x3; int fnum = os::random() & 0x3; int tcount = 0; for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) { if (thread->has_last_Java_frame()) { if (tcount++ == tnum) { tcount = 0; int fcount = 0; // Deoptimize some selected frames. // Biased llocking wants a updated register map for(StackFrameStream fst(thread, UseBiasedLocking); !fst.is_done(); fst.next()) { if (fst.current()->can_be_deoptimized()) { if (fcount++ == fnum) { fcount = 0; Deoptimization::deoptimize(thread, *fst.current(), fst.register_map()); } } } } } } } }
void ThreadLocalAllocBuffer::accumulate_statistics_before_gc() { global_stats()->initialize(); #ifdef COLORED_TLABS if(UseColoredSpaces) { for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { //tty->print("early: %p\n", thread); thread->tlab(HC_RED).accumulate_statistics(); thread->tlab(HC_RED).initialize_statistics(); thread->tlab(HC_BLUE).accumulate_statistics(); thread->tlab(HC_BLUE).initialize_statistics(); } } else { for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { //tty->print("early: %p\n", thread); thread->tlab().accumulate_statistics(); thread->tlab().initialize_statistics(); } } #else for (JavaThread *thread = Threads::first(); thread != NULL; thread = thread->next()) { thread->tlab().accumulate_statistics(); thread->tlab().initialize_statistics(); } #endif // Publish new stats if some allocation occurred. if (global_stats()->allocation() != 0) { global_stats()->publish(); if (PrintTLAB) { global_stats()->print(); } } }
void ThreadLocalAllocBuffer::resize_all_tlabs() { if (ResizeTLAB) { if (UseColoredSpaces) { for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { thread->tlab(HC_RED).resize(); thread->tlab(HC_BLUE).resize(); } } else { for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { thread->tlab().resize(); } } } }
void ThreadLocalAllocBuffer::resize_all_tlabs() { if (ResizeTLAB) { for (JavaThread *thread = Threads::first(); thread != NULL; thread = thread->next()) { thread->tlab().resize(); } } }
void DirtyCardQueueSet::concatenate_logs() { // Iterate over all the threads, if we find a partial log add it to // the global list of logs. Temporarily turn off the limit on the number // of outstanding buffers. int save_max_completed_queue = _max_completed_queue; _max_completed_queue = max_jint; assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); for (JavaThread* t = Threads::first(); t; t = t->next()) { DirtyCardQueue& dcq = t->dirty_card_queue(); if (dcq.size() != 0) { void **buf = t->dirty_card_queue().get_buf(); // We must NULL out the unused entries, then enqueue. for (size_t i = 0; i < t->dirty_card_queue().get_index(); i += oopSize) { buf[PtrQueue::byte_index_to_index((int)i)] = NULL; } enqueue_complete_buffer(dcq.get_buf(), dcq.get_index()); dcq.reinitialize(); } } if (_shared_dirty_card_queue.size() != 0) { enqueue_complete_buffer(_shared_dirty_card_queue.get_buf(), _shared_dirty_card_queue.get_index()); _shared_dirty_card_queue.reinitialize(); } // Restore the completed buffer queue limit. _max_completed_queue = save_max_completed_queue; }
void MemProfiler::do_trace() { // Calculate thread local sizes size_t handles_memory_usage = VMThread::vm_thread()->handle_area()->size_in_bytes(); size_t resource_memory_usage = VMThread::vm_thread()->resource_area()->size_in_bytes(); JavaThread *cur = Threads::first(); while (cur != NULL) { handles_memory_usage += cur->handle_area()->size_in_bytes(); resource_memory_usage += cur->resource_area()->size_in_bytes(); cur = cur->next(); } // Print trace line in log fprintf(_log_fp, "%6.1f,%5d,%5d," UINTX_FORMAT_W(6) "," UINTX_FORMAT_W(6) ",", os::elapsedTime(), Threads::number_of_threads(), SystemDictionary::number_of_classes(), Universe::heap()->used() / K, Universe::heap()->capacity() / K); fprintf(_log_fp, UINTX_FORMAT_W(6) ",", CodeCache::capacity() / K); fprintf(_log_fp, UINTX_FORMAT_W(6) "," UINTX_FORMAT_W(6) ",%6ld\n", handles_memory_usage / K, resource_memory_usage / K, OopMapCache::memory_usage() / K); fflush(_log_fp); }
void DirtyCardQueueSet::abandon_logs() { assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); clear(); // Since abandon is done only at safepoints, we can safely manipulate // these queues. for (JavaThread* t = Threads::first(); t; t = t->next()) { t->dirty_card_queue().reset(); } shared_dirty_card_queue()->reset(); }
void VM_ThreadDump::doit() { ResourceMark rm; ConcurrentLocksDump concurrent_locks(true); if (_with_locked_synchronizers) { concurrent_locks.dump_at_safepoint(); } if (_num_threads == 0) { // Snapshot all live threads for (JavaThread* jt = Threads::first(); jt != NULL; jt = jt->next()) { if (jt->is_exiting() || jt->is_hidden_from_external_view()) { // skip terminating threads and hidden threads continue; } ThreadConcurrentLocks* tcl = NULL; if (_with_locked_synchronizers) { tcl = concurrent_locks.thread_concurrent_locks(jt); } ThreadSnapshot* ts = snapshot_thread(jt, tcl); _result->add_thread_snapshot(ts); } } else { // Snapshot threads in the given _threads array // A dummy snapshot is created if a thread doesn't exist for (int i = 0; i < _num_threads; i++) { instanceHandle th = _threads->at(i); if (th() == NULL) { // skip if the thread doesn't exist // Add a dummy snapshot _result->add_thread_snapshot(new ThreadSnapshot()); continue; } // Dump thread stack only if the thread is alive and not exiting // and not VM internal thread. JavaThread* jt = java_lang_Thread::thread(th()); if (jt == NULL || /* thread not alive */ jt->is_exiting() || jt->is_hidden_from_external_view()) { // add a NULL snapshot if skipped _result->add_thread_snapshot(new ThreadSnapshot()); continue; } ThreadConcurrentLocks* tcl = NULL; if (_with_locked_synchronizers) { tcl = concurrent_locks.thread_concurrent_locks(jt); } ThreadSnapshot* ts = snapshot_thread(jt, tcl); _result->add_thread_snapshot(ts); } } }
void DirtyCardQueueSet::iterate_closure_all_threads(bool consume, size_t worker_i) { assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); for(JavaThread* t = Threads::first(); t; t = t->next()) { bool b = t->dirty_card_queue().apply_closure(_closure, consume); guarantee(b, "Should not be interrupted."); } bool b = shared_dirty_card_queue()->apply_closure(_closure, consume, worker_i); guarantee(b, "Should not be interrupted."); }
void IdealGraphPrinter::clean_up() { JavaThread *p; for (p = Threads::first(); p; p = p->next()) { if (p->is_Compiler_thread()) { CompilerThread *c = (CompilerThread *)p; IdealGraphPrinter *printer = c->ideal_graph_printer(); if (printer) { delete printer; } c->set_ideal_graph_printer(NULL); } } }
int VM_Exit::wait_for_threads_in_native_to_block() { // VM exits at safepoint. This function must be called at the final safepoint // to wait for threads in _thread_in_native state to be quiescent. assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already"); Thread * thr_cur = Thread::current(); Monitor timer(Mutex::leaf, "VM_Exit timer", true, Monitor::_safepoint_check_never); // Compiler threads need longer wait because they can access VM data directly // while in native. If they are active and some structures being used are // deleted by the shutdown sequence, they will crash. On the other hand, user // threads must go through native=>Java/VM transitions first to access VM // data, and they will be stopped during state transition. In theory, we // don't have to wait for user threads to be quiescent, but it's always // better to terminate VM when current thread is the only active thread, so // wait for user threads too. Numbers are in 10 milliseconds. int max_wait_user_thread = 30; // at least 300 milliseconds int max_wait_compiler_thread = 1000; // at least 10 seconds int max_wait = max_wait_compiler_thread; int attempts = 0; while (true) { int num_active = 0; int num_active_compiler_thread = 0; for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next()) { if (thr!=thr_cur && thr->thread_state() == _thread_in_native) { num_active++; if (thr->is_Compiler_thread()) { num_active_compiler_thread++; } } } if (num_active == 0) { return 0; } else if (attempts > max_wait) { return num_active; } else if (num_active_compiler_thread == 0 && attempts > max_wait_user_thread) { return num_active; } attempts++; MutexLockerEx ml(&timer, Mutex::_no_safepoint_check_flag); timer.wait(Mutex::_no_safepoint_check_flag, 10); } }
void DirtyCardQueueSet::concatenate_logs() { // Iterate over all the threads, if we find a partial log add it to // the global list of logs. Temporarily turn off the limit on the number // of outstanding buffers. int save_max_completed_queue = _max_completed_queue; _max_completed_queue = max_jint; assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); for (JavaThread* t = Threads::first(); t; t = t->next()) { concatenate_log(t->dirty_card_queue()); } concatenate_log(_shared_dirty_card_queue); // Restore the completed buffer queue limit. _max_completed_queue = save_max_completed_queue; }
// Check if the NUMA topology has changed. Add and remove spaces if needed. // The update can be forced by setting the force parameter equal to true. bool MutableNUMASpace::update_layout(bool force) { // Check if the topology had changed. bool changed = os::numa_topology_changed(); if (force || changed) { // Compute lgrp intersection. Add/remove spaces. int lgrp_limit = (int)os::numa_get_groups_num(); int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtGC); int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit); assert(lgrp_num > 0, "There should be at least one locality group"); // Add new spaces for the new nodes for (int i = 0; i < lgrp_num; i++) { bool found = false; for (int j = 0; j < lgrp_spaces()->length(); j++) { if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) { found = true; break; } } if (!found) { lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i], alignment())); } } // Remove spaces for the removed nodes. for (int i = 0; i < lgrp_spaces()->length();) { bool found = false; for (int j = 0; j < lgrp_num; j++) { if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) { found = true; break; } } if (!found) { delete lgrp_spaces()->at(i); lgrp_spaces()->remove_at(i); } else { i++; } } FREE_C_HEAP_ARRAY(int, lgrp_ids); if (changed) { for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) { thread->set_lgrp_id(-1); } } return true; }
void BiasedLocking::preserve_marks() { if (!UseBiasedLocking) return; assert(SafepointSynchronize::is_at_safepoint(), "must only be called while at safepoint"); assert(_preserved_oop_stack == NULL, "double initialization"); assert(_preserved_mark_stack == NULL, "double initialization"); // In order to reduce the number of mark words preserved during GC // due to the presence of biased locking, we reinitialize most mark // words to the class's prototype during GC -- even those which have // a currently valid bias owner. One important situation where we // must not clobber a bias is when a biased object is currently // locked. To handle this case we iterate over the currently-locked // monitors in a prepass and, if they are biased, preserve their // mark words here. This should be a relatively small set of objects // especially compared to the number of objects in the heap. _preserved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markOop>(10, true); _preserved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<Handle>(10, true); ResourceMark rm; Thread* cur = Thread::current(); for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) { if (thread->has_last_Java_frame()) { RegisterMap rm(thread); for (javaVFrame* vf = thread->last_java_vframe(&rm); vf != NULL; vf = vf->java_sender()) { GrowableArray<MonitorInfo*> *monitors = vf->monitors(); if (monitors != NULL) { int len = monitors->length(); // Walk monitors youngest to oldest for (int i = len - 1; i >= 0; i--) { MonitorInfo* mon_info = monitors->at(i); if (mon_info->owner_is_scalar_replaced()) continue; oop owner = mon_info->owner(); if (owner != NULL) { markOop mark = owner->mark(); if (mark->has_bias_pattern()) { _preserved_oop_stack->push(Handle(cur, owner)); _preserved_mark_stack->push(mark); } } } } } } } }
void ThreadLocalAllocBuffer::accumulate_statistics_before_gc() { global_stats()->initialize(); for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { thread->tlab().accumulate_statistics(); thread->tlab().initialize_statistics(); } // Publish new stats if some allocation occurred. if (global_stats()->allocation() != 0) { global_stats()->publish(); if (PrintTLAB) { global_stats()->print(); } } }
int VM_Exit::set_vm_exited() { Thread * thr_cur = ThreadLocalStorage::get_thread_slow(); assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already"); int num_active = 0; _shutdown_thread = thr_cur; _vm_exited = true; // global flag for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next()) if (thr!=thr_cur && thr->thread_state() == _thread_in_native) { ++num_active; thr->set_terminated(JavaThread::_vm_exited); // per-thread flag } return num_active; }
void FlatProfiler::record_thread_ticks() { int maxthreads, suspendedthreadcount; JavaThread** threadsList; bool interval_expired = false; if (ProfileIntervals && (FlatProfiler::received_ticks >= interval_ticks_previous + ProfileIntervalsTicks)) { interval_expired = true; interval_ticks_previous = FlatProfiler::received_ticks; } // Try not to wait for the Threads_lock if (Threads_lock->try_lock()) { { // Threads_lock scope maxthreads = Threads::number_of_threads(); threadsList = NEW_C_HEAP_ARRAY(JavaThread *, maxthreads, mtInternal); suspendedthreadcount = 0; for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) { if (tp->is_Compiler_thread()) { // Only record ticks for active compiler threads CompilerThread* cthread = (CompilerThread*)tp; if (cthread->task() != NULL) { // The compiler is active. If we need to access any of the fields // of the compiler task we should suspend the CompilerThread first. FlatProfiler::compiler_ticks += 1; continue; } } // First externally suspend all threads by marking each for // external suspension - so it will stop at its next transition // Then do a safepoint ThreadProfiler* pp = tp->get_thread_profiler(); if (pp != NULL && pp->engaged) { MutexLockerEx ml(tp->SR_lock(), Mutex::_no_safepoint_check_flag); if (!tp->is_external_suspend() && !tp->is_exiting()) { tp->set_external_suspend(); threadsList[suspendedthreadcount++] = tp; } } } Threads_lock->unlock(); }
int VM_Exit::set_vm_exited() { CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::LastStep); Thread * thr_cur = Thread::current(); assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already"); int num_active = 0; _shutdown_thread = thr_cur; _vm_exited = true; // global flag for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next()) if (thr!=thr_cur && thr->thread_state() == _thread_in_native) { ++num_active; thr->set_terminated(JavaThread::_vm_exited); // per-thread flag } return num_active; }
void print_statistics() { if (CITime) { CompileBroker::_c1.print_times(); CompileBroker::_c2.print_times(); } if( ProfileMMU ) { MutexLockerAllowGC mu(Threads_lock, JavaThread::current()); for( JavaThread* X = Threads::first(); X; X = X->next() ) if( X->mmu() ) X->mmu()->fold_into_global(); MMU::print(NULL); } if (PrintLockContentionAtExit) { MutexLocker::print_lock_contention(NULL); AzLock::print_lock_hold_times(NULL); } }
ThreadsListEnumerator::ThreadsListEnumerator(Thread* cur_thread, bool include_jvmti_agent_threads, bool include_jni_attaching_threads) { assert(cur_thread == Thread::current(), "Check current thread"); int init_size = ThreadService::get_live_thread_count(); _threads_array = new GrowableArray<instanceHandle>(init_size); MutexLockerEx ml(Threads_lock); for (JavaThread* jt = Threads::first(); jt != NULL; jt = jt->next()) { // skips JavaThreads in the process of exiting // and also skips VM internal JavaThreads // Threads in _thread_new or _thread_new_trans state are included. // i.e. threads have been started but not yet running. if (jt->threadObj() == NULL || jt->is_exiting() || !java_lang_Thread::is_alive(jt->threadObj()) || jt->is_hidden_from_external_view()) { continue; } // skip agent threads if (!include_jvmti_agent_threads && jt->is_jvmti_agent_thread()) { continue; } // skip jni threads in the process of attaching if (!include_jni_attaching_threads && jt->is_attaching_via_jni()) { continue; } instanceHandle h(cur_thread, (instanceOop) jt->threadObj()); _threads_array->append(h); } }
void print_statistics() { #ifdef ASSERT if (CountJNICalls) { extern Histogram *JNIHistogram; JNIHistogram->print(tty); } if (CountJVMCalls) { extern Histogram *JVMHistogram; JVMHistogram->print(tty); } #endif Statistics::stats_print(); if (MemProfiling) { MemProfiler::disengage(); } if (CITime) { CompileBroker::_c1.print_times(); CompileBroker::_c2.print_times(); } if( PrintStatistics ) { SharedRuntime::print_statistics(); CompiledIC::print_statistics(); Deoptimization::print_statistics(); if (UseC1) Runtime1::print_statistics(); if (UseC2) { Parse::print_statistics(); PhaseCCP::print_statistics(); PhaseRegAlloc::print_statistics(); PhasePeephole::print_statistics(); PhaseIdealLoop::print_statistics(); if (TimeLivenessAnalysis) MethodLiveness::print_times(); if (TimeCompiler) Compile::print_timers(); } os::print_statistics(); if(TimeCompilationPolicy)CompilationPolicy::print_time(); #ifndef PRODUCT if (LogCompilerOutput) { if (UseC1) tty->print_cr("C1 Log Output Size: %ld", Compilation::_c1outputsize); if (UseC2) tty->print_cr("C2 Log Output Size: %ld", Compile::_c2outputsize); } #endif } if (ProfilerCheckIntervals) { PeriodicTask::print_intervals(); } if( ProfileMMU ) { { MutexLockerAllowGC mu(Threads_lock, JavaThread::current()); for( JavaThread* X = Threads::first(); X; X = X->next() ) if( X->mmu() ) X->mmu()->fold_into_global(); } MMU::print(NULL); } if (PrintSymbolTableSizeHistogram) { SymbolTable::print_histogram(); } if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { BytecodeCounter::print(); } if (PrintCodeCache) { assert0(Thread::current()->is_Java_thread() && ((JavaThread*)Thread::current())->jvm_locked_by_self()); CodeCache::print(); CodeCache::print_internals(); } if (PrintLockContentionAtExit) { MutexLocker::print_lock_contention(NULL); AzLock::print_lock_hold_times(NULL); } if (PrintClassStatistics) { SystemDictionary::print_class_statistics(); } if (PrintMethodStatistics) { SystemDictionary::print_method_statistics(); } print_bytecode_count(); if (PrintSystemDictionaryAtExit) { SystemDictionary::print(); } //--------------------------------- /* Turn on for memcpy profiling. See matching code in //azul/main-dev/gnu/newlib-1.11.0/newlib/libc/machine/azul/memcpy.S printf("memcpy Size histogram\n"); jlong total_bytes = 0; for( int i=0; i<128; i++ ) total_bytes += (jlong)i*(jlong)memcpy_size_histogram[i]; for( int i=7; i<32; i++ ) total_bytes += (1LL<<i)*(jlong)memcpy_size_histogram[128+i-7]; jlong invokes = 0; for( int i=0; i<sizeof(memcpy_size_histogram)/sizeof(memcpy_size_histogram[0]); i++ ) invokes += memcpy_size_histogram[i]; printf("bytes cnt\n"); for( int i=0; i<128; i++ ) print_memcpy_size_histo(i,memcpy_size_histogram[i],total_bytes, invokes); for( int i=7; i<32; i++ ) print_memcpy_size_histo(1L<<i,memcpy_size_histogram[128+(i-7)],total_bytes, invokes); printf("\n"); fflush(stdout); printf("memcpy Alignment histogram\n"); printf("alignment dst src|dst src^dst src|dst|len\n"); jlong cum_dst=invokes, cum_src_dst=invokes, cum_src_xor=invokes, cum_src_len=invokes; for( int i=0; i<32; i++ ) { if( dst_align[i] || src_or_dst_align[i] || src_xor_dst_align[i] || src_or_dst_or_len_align[i] ) { printf("%8d",1L<<i); cum_dst = print_align( dst_align[i], cum_dst , invokes ); cum_src_dst = print_align( src_or_dst_align[i], cum_src_dst, invokes ); cum_src_xor = print_align( src_xor_dst_align[i], cum_src_xor, invokes ); cum_src_len = print_align( src_or_dst_or_len_align[i], cum_src_len, invokes ); printf("\n"); } } printf("total word-misaligned bytes moved: %lld (%5.2f%%)", memcpy_misalign_bytes, (double)memcpy_misalign_bytes/(double)total_bytes); printf("\n"); */ fflush(stdout); }
// Find deadlocks involving object monitors and concurrent locks if concurrent_locks is true DeadlockCycle* ThreadService::find_deadlocks_at_safepoint(bool concurrent_locks) { // This code was modified from the original Threads::find_deadlocks code. int globalDfn = 0, thisDfn; ObjectMonitor* waitingToLockMonitor = NULL; oop waitingToLockBlocker = NULL; bool blocked_on_monitor = false; JavaThread *currentThread, *previousThread; int num_deadlocks = 0; for (JavaThread* p = Threads::first(); p != NULL; p = p->next()) { // Initialize the depth-first-number p->set_depth_first_number(-1); } DeadlockCycle* deadlocks = NULL; DeadlockCycle* last = NULL; DeadlockCycle* cycle = new DeadlockCycle(); for (JavaThread* jt = Threads::first(); jt != NULL; jt = jt->next()) { if (jt->depth_first_number() >= 0) { // this thread was already visited continue; } thisDfn = globalDfn; jt->set_depth_first_number(globalDfn++); previousThread = jt; currentThread = jt; cycle->reset(); // When there is a deadlock, all the monitors involved in the dependency // cycle must be contended and heavyweight. So we only care about the // heavyweight monitor a thread is waiting to lock. waitingToLockMonitor = (ObjectMonitor*)jt->current_pending_monitor(); if (concurrent_locks) { waitingToLockBlocker = jt->current_park_blocker(); } while (waitingToLockMonitor != NULL || waitingToLockBlocker != NULL) { cycle->add_thread(currentThread); if (waitingToLockMonitor != NULL) { address currentOwner = (address)waitingToLockMonitor->owner(); if (currentOwner != NULL) { currentThread = Threads::owning_thread_from_monitor_owner( currentOwner, false /* no locking needed */); if (currentThread == NULL) { // This function is called at a safepoint so the JavaThread // that owns waitingToLockMonitor should be findable, but // if it is not findable, then the previous currentThread is // blocked permanently. We record this as a deadlock. num_deadlocks++; cycle->set_deadlock(true); // add this cycle to the deadlocks list if (deadlocks == NULL) { deadlocks = cycle; } else { last->set_next(cycle); } last = cycle; cycle = new DeadlockCycle(); break; } } } else { if (concurrent_locks) { if (waitingToLockBlocker->is_a(SystemDictionary::abstract_ownable_synchronizer_klass())) { oop threadObj = java_util_concurrent_locks_AbstractOwnableSynchronizer::get_owner_threadObj(waitingToLockBlocker); currentThread = threadObj != NULL ? java_lang_Thread::thread(threadObj) : NULL; } else { currentThread = NULL; } } } if (currentThread == NULL) { // No dependency on another thread break; } if (currentThread->depth_first_number() < 0) { // First visit to this thread currentThread->set_depth_first_number(globalDfn++); } else if (currentThread->depth_first_number() < thisDfn) { // Thread already visited, and not on a (new) cycle break; } else if (currentThread == previousThread) { // Self-loop, ignore break; } else { // We have a (new) cycle num_deadlocks++; cycle->set_deadlock(true); // add this cycle to the deadlocks list if (deadlocks == NULL) { deadlocks = cycle; } else { last->set_next(cycle); } last = cycle; cycle = new DeadlockCycle(); break; } previousThread = currentThread; waitingToLockMonitor = (ObjectMonitor*)currentThread->current_pending_monitor(); if (concurrent_locks) { waitingToLockBlocker = currentThread->current_park_blocker(); } } } delete cycle; return deadlocks; }
static void find(intptr_t x, bool print_pc) { address addr = (address)x; CodeBlob* b = CodeCache::find_blob_unsafe(addr); if (b != NULL) { if (b->is_buffer_blob()) { // the interpreter is generated into a buffer blob InterpreterCodelet* i = Interpreter::codelet_containing(addr); if (i != NULL) { i->print(); return; } if (Interpreter::contains(addr)) { tty->print_cr(INTPTR_FORMAT " is pointing into interpreter code (not bytecode specific)", addr); return; } // if (AdapterHandlerLibrary::contains(b)) { AdapterHandlerLibrary::print_handler(b); } // the stubroutines are generated into a buffer blob StubCodeDesc* d = StubCodeDesc::desc_for(addr); if (d != NULL) { d->print(); if (print_pc) tty->cr(); return; } if (StubRoutines::contains(addr)) { tty->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", addr); return; } // the InlineCacheBuffer is using stubs generated into a buffer blob if (InlineCacheBuffer::contains(addr)) { tty->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr); return; } VtableStub* v = VtableStubs::stub_containing(addr); if (v != NULL) { v->print(); return; } } if (print_pc && b->is_nmethod()) { ResourceMark rm; tty->print("%#p: Compiled ", addr); ((nmethod*)b)->method()->print_value_on(tty); tty->print(" = (CodeBlob*)" INTPTR_FORMAT, b); tty->cr(); return; } if ( b->is_nmethod()) { if (b->is_zombie()) { tty->print_cr(INTPTR_FORMAT " is zombie nmethod", b); } else if (b->is_not_entrant()) { tty->print_cr(INTPTR_FORMAT " is non-entrant nmethod", b); } } b->print(); return; } if (Universe::heap()->is_in(addr)) { HeapWord* p = Universe::heap()->block_start(addr); bool print = false; // If we couldn't find it it just may mean that heap wasn't parseable // See if we were just given an oop directly if (p != NULL && Universe::heap()->block_is_obj(p)) { print = true; } else if (p == NULL && ((oopDesc*)addr)->is_oop()) { p = (HeapWord*) addr; print = true; } if (print) { oop(p)->print(); if (p != (HeapWord*)x && oop(p)->is_constMethod() && constMethodOop(p)->contains(addr)) { Thread *thread = Thread::current(); HandleMark hm(thread); methodHandle mh (thread, constMethodOop(p)->method()); if (!mh->is_native()) { tty->print_cr("bci_from(%p) = %d; print_codes():", addr, mh->bci_from(address(x))); mh->print_codes(); } } return; } } else if (Universe::heap()->is_in_reserved(addr)) { tty->print_cr(INTPTR_FORMAT " is an unallocated location in the heap", addr); return; } if (JNIHandles::is_global_handle((jobject) addr)) { tty->print_cr(INTPTR_FORMAT " is a global jni handle", addr); return; } if (JNIHandles::is_weak_global_handle((jobject) addr)) { tty->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr); return; } if (JNIHandleBlock::any_contains((jobject) addr)) { tty->print_cr(INTPTR_FORMAT " is a local jni handle", addr); return; } for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { // Check for privilege stack if (thread->privileged_stack_top() != NULL && thread->privileged_stack_top()->contains(addr)) { tty->print_cr(INTPTR_FORMAT " is pointing into the privilege stack for thread: " INTPTR_FORMAT, addr, thread); return; } // If the addr is a java thread print information about that. if (addr == (address)thread) { thread->print(); return; } } // Try an OS specific find if (os::find(addr)) { return; } if (print_pc) { tty->print_cr(INTPTR_FORMAT ": probably in C++ code; check debugger", addr); Disassembler::decode(same_page(addr-40,addr),same_page(addr+40,addr)); return; } tty->print_cr(INTPTR_FORMAT " is pointing to unknown location", addr); }
// Compute truly enabled events - meaning if the event can and could be // sent. An event is truly enabled if it is user enabled on the thread // or globally user enabled, but only if there is a callback or event hook // for it and, for field watch and frame pop, one has been set. // Compute if truly enabled, per thread, per environment, per combination // (thread x environment), and overall. These merges are true if any is true. // True per thread if some environment has callback set and the event is globally // enabled or enabled for this thread. // True per environment if the callback is set and the event is globally // enabled in this environment or enabled for any thread in this environment. // True per combination if the environment has the callback set and the // event is globally enabled in this environment or the event is enabled // for this thread and environment. // // All states transitions dependent on these transitions are also handled here. void JvmtiEventControllerPrivate::recompute_enabled() { assert(Threads::number_of_threads() == 0 || JvmtiThreadState_lock->is_locked(), "sanity check"); // event enabled for any thread in any environment jlong was_any_env_thread_enabled = JvmtiEventController::_universal_global_event_enabled.get_bits(); jlong any_env_thread_enabled = 0; EC_TRACE(("JVMTI [-] # recompute enabled - before " UINT64_FORMAT_X, was_any_env_thread_enabled)); // compute non-thread-filters events. // This must be done separately from thread-filtered events, since some // events can occur before any threads exist. JvmtiEnvIterator it; for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) { any_env_thread_enabled |= recompute_env_enabled(env); } // We need to create any missing jvmti_thread_state if there are globally set thread // filtered events and there weren't last time if ( (any_env_thread_enabled & THREAD_FILTERED_EVENT_BITS) != 0 && (was_any_env_thread_enabled & THREAD_FILTERED_EVENT_BITS) == 0) { assert(JvmtiEnv::is_vm_live() || (JvmtiEnv::get_phase()==JVMTI_PHASE_START), "thread filtered events should not be enabled when VM not in start or live phase"); { MutexLocker mu(Threads_lock); //hold the Threads_lock for the iteration for (JavaThread *tp = Threads::first(); tp != NULL; tp = tp->next()) { // state_for_while_locked() makes tp->is_exiting() check JvmtiThreadState::state_for_while_locked(tp); // create the thread state if missing } }// release Threads_lock } // compute and set thread-filtered events for (JvmtiThreadState *state = JvmtiThreadState::first(); state != NULL; state = state->next()) { any_env_thread_enabled |= recompute_thread_enabled(state); } // set universal state (across all envs and threads) jlong delta = any_env_thread_enabled ^ was_any_env_thread_enabled; if (delta != 0) { JvmtiExport::set_should_post_field_access((any_env_thread_enabled & FIELD_ACCESS_BIT) != 0); JvmtiExport::set_should_post_field_modification((any_env_thread_enabled & FIELD_MODIFICATION_BIT) != 0); JvmtiExport::set_should_post_class_load((any_env_thread_enabled & CLASS_LOAD_BIT) != 0); JvmtiExport::set_should_post_class_file_load_hook((any_env_thread_enabled & CLASS_FILE_LOAD_HOOK_BIT) != 0); JvmtiExport::set_should_post_native_method_bind((any_env_thread_enabled & NATIVE_METHOD_BIND_BIT) != 0); JvmtiExport::set_should_post_dynamic_code_generated((any_env_thread_enabled & DYNAMIC_CODE_GENERATED_BIT) != 0); JvmtiExport::set_should_post_data_dump((any_env_thread_enabled & DATA_DUMP_BIT) != 0); JvmtiExport::set_should_post_class_prepare((any_env_thread_enabled & CLASS_PREPARE_BIT) != 0); JvmtiExport::set_should_post_class_unload((any_env_thread_enabled & CLASS_UNLOAD_BIT) != 0); JvmtiExport::set_should_post_monitor_contended_enter((any_env_thread_enabled & MONITOR_CONTENDED_ENTER_BIT) != 0); JvmtiExport::set_should_post_monitor_contended_entered((any_env_thread_enabled & MONITOR_CONTENDED_ENTERED_BIT) != 0); JvmtiExport::set_should_post_monitor_wait((any_env_thread_enabled & MONITOR_WAIT_BIT) != 0); JvmtiExport::set_should_post_monitor_waited((any_env_thread_enabled & MONITOR_WAITED_BIT) != 0); JvmtiExport::set_should_post_garbage_collection_start((any_env_thread_enabled & GARBAGE_COLLECTION_START_BIT) != 0); JvmtiExport::set_should_post_garbage_collection_finish((any_env_thread_enabled & GARBAGE_COLLECTION_FINISH_BIT) != 0); JvmtiExport::set_should_post_object_free((any_env_thread_enabled & OBJECT_FREE_BIT) != 0); JvmtiExport::set_should_post_resource_exhausted((any_env_thread_enabled & RESOURCE_EXHAUSTED_BIT) != 0); JvmtiExport::set_should_post_compiled_method_load((any_env_thread_enabled & COMPILED_METHOD_LOAD_BIT) != 0); JvmtiExport::set_should_post_compiled_method_unload((any_env_thread_enabled & COMPILED_METHOD_UNLOAD_BIT) != 0); JvmtiExport::set_should_post_vm_object_alloc((any_env_thread_enabled & VM_OBJECT_ALLOC_BIT) != 0); // need this if we want thread events or we need them to init data JvmtiExport::set_should_post_thread_life((any_env_thread_enabled & NEED_THREAD_LIFE_EVENTS) != 0); // If single stepping is turned on or off, execute the VM op to change it. if (delta & SINGLE_STEP_BIT) { switch (JvmtiEnv::get_phase()) { case JVMTI_PHASE_DEAD: // If the VM is dying we can't execute VM ops break; case JVMTI_PHASE_LIVE: { VM_ChangeSingleStep op((any_env_thread_enabled & SINGLE_STEP_BIT) != 0); VMThread::execute(&op); break; } default: assert(false, "should never come here before live phase"); break; } } // set global truly enabled, that is, any thread in any environment JvmtiEventController::_universal_global_event_enabled.set_bits(any_env_thread_enabled); // set global should_post_on_exceptions JvmtiExport::set_should_post_on_exceptions((any_env_thread_enabled & SHOULD_POST_ON_EXCEPTIONS_BITS) != 0); } EC_TRACE(("JVMTI [-] # recompute enabled - after " UINT64_FORMAT_X, any_env_thread_enabled)); }
static BiasedLocking::Condition bulk_revoke_or_rebias_at_safepoint(oop o, bool bulk_rebias, bool attempt_rebias_of_object, JavaThread* requesting_thread) { assert(SafepointSynchronize::is_at_safepoint(), "must be done at safepoint"); if (TraceBiasedLocking) { tty->print_cr("* Beginning bulk revocation (kind == %s) because of object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s", (bulk_rebias ? "rebias" : "revoke"), p2i((void *) o), (intptr_t) o->mark(), o->klass()->external_name()); } jlong cur_time = os::javaTimeMillis(); o->klass()->set_last_biased_lock_bulk_revocation_time(cur_time); Klass* k_o = o->klass(); Klass* klass = k_o; if (bulk_rebias) { // Use the epoch in the klass of the object to implicitly revoke // all biases of objects of this data type and force them to be // reacquired. However, we also need to walk the stacks of all // threads and update the headers of lightweight locked objects // with biases to have the current epoch. // If the prototype header doesn't have the bias pattern, don't // try to update the epoch -- assume another VM operation came in // and reset the header to the unbiased state, which will // implicitly cause all existing biases to be revoked if (klass->prototype_header()->has_bias_pattern()) { int prev_epoch = klass->prototype_header()->bias_epoch(); klass->set_prototype_header(klass->prototype_header()->incr_bias_epoch()); int cur_epoch = klass->prototype_header()->bias_epoch(); // Now walk all threads' stacks and adjust epochs of any biased // and locked objects of this data type we encounter for (JavaThread* thr = Threads::first(); thr != NULL; thr = thr->next()) { GrowableArray<MonitorInfo*>* cached_monitor_info = get_or_compute_monitor_info(thr); for (int i = 0; i < cached_monitor_info->length(); i++) { MonitorInfo* mon_info = cached_monitor_info->at(i); oop owner = mon_info->owner(); markOop mark = owner->mark(); if ((owner->klass() == k_o) && mark->has_bias_pattern()) { // We might have encountered this object already in the case of recursive locking assert(mark->bias_epoch() == prev_epoch || mark->bias_epoch() == cur_epoch, "error in bias epoch adjustment"); owner->set_mark(mark->set_bias_epoch(cur_epoch)); } } } } // At this point we're done. All we have to do is potentially // adjust the header of the given object to revoke its bias. revoke_bias(o, attempt_rebias_of_object && klass->prototype_header()->has_bias_pattern(), true, requesting_thread); } else { if (TraceBiasedLocking) { ResourceMark rm; tty->print_cr("* Disabling biased locking for type %s", klass->external_name()); } // Disable biased locking for this data type. Not only will this // cause future instances to not be biased, but existing biased // instances will notice that this implicitly caused their biases // to be revoked. klass->set_prototype_header(markOopDesc::prototype()); // Now walk all threads' stacks and forcibly revoke the biases of // any locked and biased objects of this data type we encounter. for (JavaThread* thr = Threads::first(); thr != NULL; thr = thr->next()) { GrowableArray<MonitorInfo*>* cached_monitor_info = get_or_compute_monitor_info(thr); for (int i = 0; i < cached_monitor_info->length(); i++) { MonitorInfo* mon_info = cached_monitor_info->at(i); oop owner = mon_info->owner(); markOop mark = owner->mark(); if ((owner->klass() == k_o) && mark->has_bias_pattern()) { revoke_bias(owner, false, true, requesting_thread); } } } // Must force the bias of the passed object to be forcibly revoked // as well to ensure guarantees to callers revoke_bias(o, false, true, requesting_thread); } if (TraceBiasedLocking) { tty->print_cr("* Ending bulk revocation"); } BiasedLocking::Condition status_code = BiasedLocking::BIAS_REVOKED; if (attempt_rebias_of_object && o->mark()->has_bias_pattern() && klass->prototype_header()->has_bias_pattern()) { markOop new_mark = markOopDesc::encode(requesting_thread, o->mark()->age(), klass->prototype_header()->bias_epoch()); o->set_mark(new_mark); status_code = BiasedLocking::BIAS_REVOKED_AND_REBIASED; if (TraceBiasedLocking) { tty->print_cr(" Rebiased object toward thread " INTPTR_FORMAT, (intptr_t) requesting_thread); } } assert(!o->mark()->has_bias_pattern() || (attempt_rebias_of_object && (o->mark()->biased_locker() == requesting_thread)), "bug in bulk bias revocation"); return status_code; }
static void clean_up_cached_monitor_info() { // Walk the thread list clearing out the cached monitors for (JavaThread* thr = Threads::first(); thr != NULL; thr = thr->next()) { thr->set_cached_monitor_info(NULL); } }
// Roll all threads forward to a safepoint and suspend them all void SafepointSynchronize::begin() { Thread* myThread = Thread::current(); assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint"); if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) { _safepoint_begin_time = os::javaTimeNanos(); _ts_of_current_safepoint = tty->time_stamp().seconds(); } #if INCLUDE_ALL_GCS if (UseConcMarkSweepGC) { // In the future we should investigate whether CMS can use the // more-general mechanism below. DLD (01/05). ConcurrentMarkSweepThread::synchronize(false); } else if (UseG1GC) { SuspendibleThreadSet::synchronize(); } #endif // INCLUDE_ALL_GCS // By getting the Threads_lock, we assure that no threads are about to start or // exit. It is released again in SafepointSynchronize::end(). Threads_lock->lock(); assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state"); int nof_threads = Threads::number_of_threads(); if (TraceSafepoint) { tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads); } RuntimeService::record_safepoint_begin(); MutexLocker mu(Safepoint_lock); // Reset the count of active JNI critical threads _current_jni_active_count = 0; // Set number of threads to wait for, before we initiate the callbacks _waiting_to_block = nof_threads; TryingToBlock = 0 ; int still_running = nof_threads; // Save the starting time, so that it can be compared to see if this has taken // too long to complete. jlong safepoint_limit_time; timeout_error_printed = false; // PrintSafepointStatisticsTimeout can be specified separately. When // specified, PrintSafepointStatistics will be set to true in // deferred_initialize_stat method. The initialization has to be done // early enough to avoid any races. See bug 6880029 for details. if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) { deferred_initialize_stat(); } // Begin the process of bringing the system to a safepoint. // Java threads can be in several different states and are // stopped by different mechanisms: // // 1. Running interpreted // The interpeter dispatch table is changed to force it to // check for a safepoint condition between bytecodes. // 2. Running in native code // When returning from the native code, a Java thread must check // the safepoint _state to see if we must block. If the // VM thread sees a Java thread in native, it does // not wait for this thread to block. The order of the memory // writes and reads of both the safepoint state and the Java // threads state is critical. In order to guarantee that the // memory writes are serialized with respect to each other, // the VM thread issues a memory barrier instruction // (on MP systems). In order to avoid the overhead of issuing // a memory barrier for each Java thread making native calls, each Java // thread performs a write to a single memory page after changing // the thread state. The VM thread performs a sequence of // mprotect OS calls which forces all previous writes from all // Java threads to be serialized. This is done in the // os::serialize_thread_states() call. This has proven to be // much more efficient than executing a membar instruction // on every call to native code. // 3. Running compiled Code // Compiled code reads a global (Safepoint Polling) page that // is set to fault if we are trying to get to a safepoint. // 4. Blocked // A thread which is blocked will not be allowed to return from the // block condition until the safepoint operation is complete. // 5. In VM or Transitioning between states // If a Java thread is currently running in the VM or transitioning // between states, the safepointing code will wait for the thread to // block itself when it attempts transitions to a new state. // _state = _synchronizing; OrderAccess::fence(); // Flush all thread states to memory if (!UseMembar) { os::serialize_thread_states(); } // Make interpreter safepoint aware Interpreter::notice_safepoints(); if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) { // Make polling safepoint aware guarantee (PageArmed == 0, "invariant") ; PageArmed = 1 ; os::make_polling_page_unreadable(); } // Consider using active_processor_count() ... but that call is expensive. int ncpus = os::processor_count() ; #ifdef ASSERT for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) { assert(cur->safepoint_state()->is_running(), "Illegal initial state"); // Clear the visited flag to ensure that the critical counts are collected properly. cur->set_visited_for_critical_count(false); } #endif // ASSERT if (SafepointTimeout) safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS; // Iterate through all threads until it have been determined how to stop them all at a safepoint unsigned int iterations = 0; int steps = 0 ; while(still_running > 0) { for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) { assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended"); ThreadSafepointState *cur_state = cur->safepoint_state(); if (cur_state->is_running()) { cur_state->examine_state_of_thread(); if (!cur_state->is_running()) { still_running--; // consider adjusting steps downward: // steps = 0 // steps -= NNN // steps >>= 1 // steps = MIN(steps, 2000-100) // if (iterations != 0) steps -= NNN } if (TraceSafepoint && Verbose) cur_state->print(); } } if (PrintSafepointStatistics && iterations == 0) { begin_statistics(nof_threads, still_running); } if (still_running > 0) { // Check for if it takes to long if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) { print_safepoint_timeout(_spinning_timeout); } // Spin to avoid context switching. // There's a tension between allowing the mutators to run (and rendezvous) // vs spinning. As the VM thread spins, wasting cycles, it consumes CPU that // a mutator might otherwise use profitably to reach a safepoint. Excessive // spinning by the VM thread on a saturated system can increase rendezvous latency. // Blocking or yielding incur their own penalties in the form of context switching // and the resultant loss of $ residency. // // Further complicating matters is that yield() does not work as naively expected // on many platforms -- yield() does not guarantee that any other ready threads // will run. As such we revert yield_all() after some number of iterations. // Yield_all() is implemented as a short unconditional sleep on some platforms. // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping // can actually increase the time it takes the VM thread to detect that a system-wide // stop-the-world safepoint has been reached. In a pathological scenario such as that // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe. // In that case the mutators will be stalled waiting for the safepoint to complete and the // the VMthread will be sleeping, waiting for the mutators to rendezvous. The VMthread // will eventually wake up and detect that all mutators are safe, at which point // we'll again make progress. // // Beware too that that the VMThread typically runs at elevated priority. // Its default priority is higher than the default mutator priority. // Obviously, this complicates spinning. // // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0). // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will. // // See the comments in synchronizer.cpp for additional remarks on spinning. // // In the future we might: // 1. Modify the safepoint scheme to avoid potentally unbounded spinning. // This is tricky as the path used by a thread exiting the JVM (say on // on JNI call-out) simply stores into its state field. The burden // is placed on the VM thread, which must poll (spin). // 2. Find something useful to do while spinning. If the safepoint is GC-related // we might aggressively scan the stacks of threads that are already safe. // 3. Use Solaris schedctl to examine the state of the still-running mutators. // If all the mutators are ONPROC there's no reason to sleep or yield. // 4. YieldTo() any still-running mutators that are ready but OFFPROC. // 5. Check system saturation. If the system is not fully saturated then // simply spin and avoid sleep/yield. // 6. As still-running mutators rendezvous they could unpark the sleeping // VMthread. This works well for still-running mutators that become // safe. The VMthread must still poll for mutators that call-out. // 7. Drive the policy on time-since-begin instead of iterations. // 8. Consider making the spin duration a function of the # of CPUs: // Spin = (((ncpus-1) * M) + K) + F(still_running) // Alternately, instead of counting iterations of the outer loop // we could count the # of threads visited in the inner loop, above. // 9. On windows consider using the return value from SwitchThreadTo() // to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions. if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) { guarantee (PageArmed == 0, "invariant") ; PageArmed = 1 ; os::make_polling_page_unreadable(); } // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus) ++steps ; if (ncpus > 1 && steps < SafepointSpinBeforeYield) { SpinPause() ; // MP-Polite spin } else if (steps < DeferThrSuspendLoopCount) { os::NakedYield() ; } else { os::yield_all(steps) ; // Alternately, the VM thread could transiently depress its scheduling priority or // transiently increase the priority of the tardy mutator(s). } iterations ++ ; } assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long"); } assert(still_running == 0, "sanity check"); if (PrintSafepointStatistics) { update_statistics_on_spin_end(); } // wait until all threads are stopped while (_waiting_to_block > 0) { if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block); if (!SafepointTimeout || timeout_error_printed) { Safepoint_lock->wait(true); // true, means with no safepoint checks } else { // Compute remaining time jlong remaining_time = safepoint_limit_time - os::javaTimeNanos(); // If there is no remaining time, then there is an error if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) { print_safepoint_timeout(_blocking_timeout); } } } assert(_waiting_to_block == 0, "sanity check"); #ifndef PRODUCT if (SafepointTimeout) { jlong current_time = os::javaTimeNanos(); if (safepoint_limit_time < current_time) { tty->print_cr("# SafepointSynchronize: Finished after " INT64_FORMAT_W(6) " ms", ((current_time - safepoint_limit_time) / MICROUNITS + SafepointTimeoutDelay)); } } #endif assert((_safepoint_counter & 0x1) == 0, "must be even"); assert(Threads_lock->owned_by_self(), "must hold Threads_lock"); _safepoint_counter ++; // Record state _state = _synchronized; OrderAccess::fence(); #ifdef ASSERT for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) { // make sure all the threads were visited assert(cur->was_visited_for_critical_count(), "missed a thread"); } #endif // ASSERT // Update the count of active JNI critical regions GC_locker::set_jni_lock_count(_current_jni_active_count); if (TraceSafepoint) { VM_Operation *op = VMThread::vm_operation(); tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation"); } RuntimeService::record_safepoint_synchronized(); if (PrintSafepointStatistics) { update_statistics_on_sync_end(os::javaTimeNanos()); } // Call stuff that needs to be run when a safepoint is just about to be completed do_cleanup_tasks(); if (PrintSafepointStatistics) { // Record how much time spend on the above cleanup tasks update_statistics_on_cleanup_end(os::javaTimeNanos()); } }