Example #1
0
void VM_DeoptimizeAll::doit() {
  DeoptimizationMarker dm;
  // deoptimize all java threads in the system
  if (DeoptimizeALot) {
    for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
      if (thread->has_last_Java_frame()) {
        thread->deoptimize();
      }
    }
  } else if (DeoptimizeRandom) {

    // Deoptimize some selected threads and frames
    int tnum = os::random() & 0x3;
    int fnum =  os::random() & 0x3;
    int tcount = 0;
    for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
      if (thread->has_last_Java_frame()) {
        if (tcount++ == tnum)  {
        tcount = 0;
          int fcount = 0;
          // Deoptimize some selected frames.
          // Biased llocking wants a updated register map
          for(StackFrameStream fst(thread, UseBiasedLocking); !fst.is_done(); fst.next()) {
            if (fst.current()->can_be_deoptimized()) {
              if (fcount++ == fnum) {
                fcount = 0;
                Deoptimization::deoptimize(thread, *fst.current(), fst.register_map());
              }
            }
          }
        }
      }
    }
  }
}
void ThreadLocalAllocBuffer::accumulate_statistics_before_gc() {
  global_stats()->initialize();

#ifdef COLORED_TLABS
  if(UseColoredSpaces) {
    for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
      //tty->print("early: %p\n", thread);
      thread->tlab(HC_RED).accumulate_statistics();
      thread->tlab(HC_RED).initialize_statistics();
      thread->tlab(HC_BLUE).accumulate_statistics();
      thread->tlab(HC_BLUE).initialize_statistics();
    }
  } else {
    for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
      //tty->print("early: %p\n", thread);
      thread->tlab().accumulate_statistics();
      thread->tlab().initialize_statistics();
    }
  }
#else
  for (JavaThread *thread = Threads::first(); thread != NULL; thread = thread->next()) {
    thread->tlab().accumulate_statistics();
    thread->tlab().initialize_statistics();
  }
#endif

  // Publish new stats if some allocation occurred.
  if (global_stats()->allocation() != 0) {
    global_stats()->publish();
    if (PrintTLAB) {
      global_stats()->print();
    }
  }
}
void ThreadLocalAllocBuffer::resize_all_tlabs() {
  if (ResizeTLAB) {
    if (UseColoredSpaces) {
      for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
        thread->tlab(HC_RED).resize();
        thread->tlab(HC_BLUE).resize();
      }
    } else {
      for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
        thread->tlab().resize();
      }
    }
  }
}
void ThreadLocalAllocBuffer::resize_all_tlabs() {
  if (ResizeTLAB) {
    for (JavaThread *thread = Threads::first(); thread != NULL; thread = thread->next()) {
      thread->tlab().resize();
    }
  }
}
Example #5
0
void DirtyCardQueueSet::concatenate_logs() {
  // Iterate over all the threads, if we find a partial log add it to
  // the global list of logs.  Temporarily turn off the limit on the number
  // of outstanding buffers.
  int save_max_completed_queue = _max_completed_queue;
  _max_completed_queue = max_jint;
  assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
  for (JavaThread* t = Threads::first(); t; t = t->next()) {
    DirtyCardQueue& dcq = t->dirty_card_queue();
    if (dcq.size() != 0) {
      void **buf = t->dirty_card_queue().get_buf();
      // We must NULL out the unused entries, then enqueue.
      for (size_t i = 0; i < t->dirty_card_queue().get_index(); i += oopSize) {
        buf[PtrQueue::byte_index_to_index((int)i)] = NULL;
      }
      enqueue_complete_buffer(dcq.get_buf(), dcq.get_index());
      dcq.reinitialize();
    }
  }
  if (_shared_dirty_card_queue.size() != 0) {
    enqueue_complete_buffer(_shared_dirty_card_queue.get_buf(),
                            _shared_dirty_card_queue.get_index());
    _shared_dirty_card_queue.reinitialize();
  }
  // Restore the completed buffer queue limit.
  _max_completed_queue = save_max_completed_queue;
}
Example #6
0
void MemProfiler::do_trace() {
  // Calculate thread local sizes
  size_t handles_memory_usage    = VMThread::vm_thread()->handle_area()->size_in_bytes();
  size_t resource_memory_usage   = VMThread::vm_thread()->resource_area()->size_in_bytes();
  JavaThread *cur = Threads::first();
  while (cur != NULL) {
    handles_memory_usage  += cur->handle_area()->size_in_bytes();
    resource_memory_usage += cur->resource_area()->size_in_bytes();
    cur = cur->next();
  }

  // Print trace line in log
  fprintf(_log_fp, "%6.1f,%5d,%5d," UINTX_FORMAT_W(6) "," UINTX_FORMAT_W(6) ",",
          os::elapsedTime(),
          Threads::number_of_threads(),
          SystemDictionary::number_of_classes(),
          Universe::heap()->used() / K,
          Universe::heap()->capacity() / K);

  fprintf(_log_fp, UINTX_FORMAT_W(6) ",", CodeCache::capacity() / K);

  fprintf(_log_fp, UINTX_FORMAT_W(6) "," UINTX_FORMAT_W(6) ",%6ld\n",
          handles_memory_usage / K,
          resource_memory_usage / K,
          OopMapCache::memory_usage() / K);
  fflush(_log_fp);
}
Example #7
0
void DirtyCardQueueSet::abandon_logs() {
  assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
  clear();
  // Since abandon is done only at safepoints, we can safely manipulate
  // these queues.
  for (JavaThread* t = Threads::first(); t; t = t->next()) {
    t->dirty_card_queue().reset();
  }
  shared_dirty_card_queue()->reset();
}
Example #8
0
void VM_ThreadDump::doit() {
  ResourceMark rm;

  ConcurrentLocksDump concurrent_locks(true);
  if (_with_locked_synchronizers) {
    concurrent_locks.dump_at_safepoint();
  }

  if (_num_threads == 0) {
    // Snapshot all live threads
    for (JavaThread* jt = Threads::first(); jt != NULL; jt = jt->next()) {
      if (jt->is_exiting() ||
          jt->is_hidden_from_external_view())  {
        // skip terminating threads and hidden threads
        continue;
      }
      ThreadConcurrentLocks* tcl = NULL;
      if (_with_locked_synchronizers) {
        tcl = concurrent_locks.thread_concurrent_locks(jt);
      }
      ThreadSnapshot* ts = snapshot_thread(jt, tcl);
      _result->add_thread_snapshot(ts);
    }
  } else {
    // Snapshot threads in the given _threads array
    // A dummy snapshot is created if a thread doesn't exist
    for (int i = 0; i < _num_threads; i++) {
      instanceHandle th = _threads->at(i);
      if (th() == NULL) {
        // skip if the thread doesn't exist
        // Add a dummy snapshot
        _result->add_thread_snapshot(new ThreadSnapshot());
        continue;
      }

      // Dump thread stack only if the thread is alive and not exiting
      // and not VM internal thread.
      JavaThread* jt = java_lang_Thread::thread(th());
      if (jt == NULL || /* thread not alive */
          jt->is_exiting() ||
          jt->is_hidden_from_external_view())  {
        // add a NULL snapshot if skipped
        _result->add_thread_snapshot(new ThreadSnapshot());
        continue;
      }
      ThreadConcurrentLocks* tcl = NULL;
      if (_with_locked_synchronizers) {
        tcl = concurrent_locks.thread_concurrent_locks(jt);
      }
      ThreadSnapshot* ts = snapshot_thread(jt, tcl);
      _result->add_thread_snapshot(ts);
    }
  }
}
Example #9
0
void DirtyCardQueueSet::iterate_closure_all_threads(bool consume,
                                                    size_t worker_i) {
  assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
  for(JavaThread* t = Threads::first(); t; t = t->next()) {
    bool b = t->dirty_card_queue().apply_closure(_closure, consume);
    guarantee(b, "Should not be interrupted.");
  }
  bool b = shared_dirty_card_queue()->apply_closure(_closure,
                                                    consume,
                                                    worker_i);
  guarantee(b, "Should not be interrupted.");
}
Example #10
0
void IdealGraphPrinter::clean_up() {
  JavaThread *p;
  for (p = Threads::first(); p; p = p->next()) {
    if (p->is_Compiler_thread()) {
      CompilerThread *c = (CompilerThread *)p;
      IdealGraphPrinter *printer = c->ideal_graph_printer();
      if (printer) {
        delete printer;
      }
      c->set_ideal_graph_printer(NULL);
    }
  }
}
Example #11
0
int VM_Exit::wait_for_threads_in_native_to_block() {
  // VM exits at safepoint. This function must be called at the final safepoint
  // to wait for threads in _thread_in_native state to be quiescent.
  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already");

  Thread * thr_cur = Thread::current();
  Monitor timer(Mutex::leaf, "VM_Exit timer", true,
                Monitor::_safepoint_check_never);

  // Compiler threads need longer wait because they can access VM data directly
  // while in native. If they are active and some structures being used are
  // deleted by the shutdown sequence, they will crash. On the other hand, user
  // threads must go through native=>Java/VM transitions first to access VM
  // data, and they will be stopped during state transition. In theory, we
  // don't have to wait for user threads to be quiescent, but it's always
  // better to terminate VM when current thread is the only active thread, so
  // wait for user threads too. Numbers are in 10 milliseconds.
  int max_wait_user_thread = 30;                  // at least 300 milliseconds
  int max_wait_compiler_thread = 1000;            // at least 10 seconds

  int max_wait = max_wait_compiler_thread;

  int attempts = 0;
  while (true) {
    int num_active = 0;
    int num_active_compiler_thread = 0;

    for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next()) {
      if (thr!=thr_cur && thr->thread_state() == _thread_in_native) {
        num_active++;
        if (thr->is_Compiler_thread()) {
          num_active_compiler_thread++;
        }
      }
    }

    if (num_active == 0) {
       return 0;
    } else if (attempts > max_wait) {
       return num_active;
    } else if (num_active_compiler_thread == 0 && attempts > max_wait_user_thread) {
       return num_active;
    }

    attempts++;

    MutexLockerEx ml(&timer, Mutex::_no_safepoint_check_flag);
    timer.wait(Mutex::_no_safepoint_check_flag, 10);
  }
}
Example #12
0
void DirtyCardQueueSet::concatenate_logs() {
  // Iterate over all the threads, if we find a partial log add it to
  // the global list of logs.  Temporarily turn off the limit on the number
  // of outstanding buffers.
  int save_max_completed_queue = _max_completed_queue;
  _max_completed_queue = max_jint;
  assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
  for (JavaThread* t = Threads::first(); t; t = t->next()) {
    concatenate_log(t->dirty_card_queue());
  }
  concatenate_log(_shared_dirty_card_queue);
  // Restore the completed buffer queue limit.
  _max_completed_queue = save_max_completed_queue;
}
Example #13
0
// Check if the NUMA topology has changed. Add and remove spaces if needed.
// The update can be forced by setting the force parameter equal to true.
bool MutableNUMASpace::update_layout(bool force) {
  // Check if the topology had changed.
  bool changed = os::numa_topology_changed();
  if (force || changed) {
    // Compute lgrp intersection. Add/remove spaces.
    int lgrp_limit = (int)os::numa_get_groups_num();
    int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtGC);
    int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
    assert(lgrp_num > 0, "There should be at least one locality group");
    // Add new spaces for the new nodes
    for (int i = 0; i < lgrp_num; i++) {
      bool found = false;
      for (int j = 0; j < lgrp_spaces()->length(); j++) {
        if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) {
          found = true;
          break;
        }
      }
      if (!found) {
        lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i], alignment()));
      }
    }

    // Remove spaces for the removed nodes.
    for (int i = 0; i < lgrp_spaces()->length();) {
      bool found = false;
      for (int j = 0; j < lgrp_num; j++) {
        if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) {
          found = true;
          break;
        }
      }
      if (!found) {
        delete lgrp_spaces()->at(i);
        lgrp_spaces()->remove_at(i);
      } else {
        i++;
      }
    }

    FREE_C_HEAP_ARRAY(int, lgrp_ids);

    if (changed) {
      for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
        thread->set_lgrp_id(-1);
      }
    }
    return true;
  }
Example #14
0
void BiasedLocking::preserve_marks() {
  if (!UseBiasedLocking)
    return;

  assert(SafepointSynchronize::is_at_safepoint(), "must only be called while at safepoint");

  assert(_preserved_oop_stack  == NULL, "double initialization");
  assert(_preserved_mark_stack == NULL, "double initialization");

  // In order to reduce the number of mark words preserved during GC
  // due to the presence of biased locking, we reinitialize most mark
  // words to the class's prototype during GC -- even those which have
  // a currently valid bias owner. One important situation where we
  // must not clobber a bias is when a biased object is currently
  // locked. To handle this case we iterate over the currently-locked
  // monitors in a prepass and, if they are biased, preserve their
  // mark words here. This should be a relatively small set of objects
  // especially compared to the number of objects in the heap.
  _preserved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markOop>(10, true);
  _preserved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<Handle>(10, true);

  ResourceMark rm;
  Thread* cur = Thread::current();
  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
    if (thread->has_last_Java_frame()) {
      RegisterMap rm(thread);
      for (javaVFrame* vf = thread->last_java_vframe(&rm); vf != NULL; vf = vf->java_sender()) {
        GrowableArray<MonitorInfo*> *monitors = vf->monitors();
        if (monitors != NULL) {
          int len = monitors->length();
          // Walk monitors youngest to oldest
          for (int i = len - 1; i >= 0; i--) {
            MonitorInfo* mon_info = monitors->at(i);
            if (mon_info->owner_is_scalar_replaced()) continue;
            oop owner = mon_info->owner();
            if (owner != NULL) {
              markOop mark = owner->mark();
              if (mark->has_bias_pattern()) {
                _preserved_oop_stack->push(Handle(cur, owner));
                _preserved_mark_stack->push(mark);
              }
            }
          }
        }
      }
    }
  }
}
void ThreadLocalAllocBuffer::accumulate_statistics_before_gc() {
  global_stats()->initialize();

  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
    thread->tlab().accumulate_statistics();
    thread->tlab().initialize_statistics();
  }

  // Publish new stats if some allocation occurred.
  if (global_stats()->allocation() != 0) {
    global_stats()->publish();
    if (PrintTLAB) {
      global_stats()->print();
    }
  }
}
Example #16
0
int VM_Exit::set_vm_exited() {
  Thread * thr_cur = ThreadLocalStorage::get_thread_slow();

  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already");

  int num_active = 0;

  _shutdown_thread = thr_cur;
  _vm_exited = true;                                // global flag
  for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next())
    if (thr!=thr_cur && thr->thread_state() == _thread_in_native) {
      ++num_active;
      thr->set_terminated(JavaThread::_vm_exited);  // per-thread flag
    }

  return num_active;
}
Example #17
0
void FlatProfiler::record_thread_ticks() {

  int maxthreads, suspendedthreadcount;
  JavaThread** threadsList;
  bool interval_expired = false;

  if (ProfileIntervals &&
      (FlatProfiler::received_ticks >= interval_ticks_previous + ProfileIntervalsTicks)) {
    interval_expired = true;
    interval_ticks_previous = FlatProfiler::received_ticks;
  }

  // Try not to wait for the Threads_lock
  if (Threads_lock->try_lock()) {
    {  // Threads_lock scope
      maxthreads = Threads::number_of_threads();
      threadsList = NEW_C_HEAP_ARRAY(JavaThread *, maxthreads, mtInternal);
      suspendedthreadcount = 0;
      for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
        if (tp->is_Compiler_thread()) {
          // Only record ticks for active compiler threads
          CompilerThread* cthread = (CompilerThread*)tp;
          if (cthread->task() != NULL) {
            // The compiler is active.  If we need to access any of the fields
            // of the compiler task we should suspend the CompilerThread first.
            FlatProfiler::compiler_ticks += 1;
            continue;
          }
        }

        // First externally suspend all threads by marking each for
        // external suspension - so it will stop at its next transition
        // Then do a safepoint
        ThreadProfiler* pp = tp->get_thread_profiler();
        if (pp != NULL && pp->engaged) {
          MutexLockerEx ml(tp->SR_lock(), Mutex::_no_safepoint_check_flag);
          if (!tp->is_external_suspend() && !tp->is_exiting()) {
            tp->set_external_suspend();
            threadsList[suspendedthreadcount++] = tp;
          }
        }
      }
      Threads_lock->unlock();
    }
Example #18
0
int VM_Exit::set_vm_exited() {
  CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::LastStep);

  Thread * thr_cur = Thread::current();

  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already");

  int num_active = 0;

  _shutdown_thread = thr_cur;
  _vm_exited = true;                                // global flag
  for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next())
    if (thr!=thr_cur && thr->thread_state() == _thread_in_native) {
      ++num_active;
      thr->set_terminated(JavaThread::_vm_exited);  // per-thread flag
    }

  return num_active;
}
void print_statistics() {

  if (CITime) {
CompileBroker::_c1.print_times();
    CompileBroker::_c2.print_times();
  }

  if( ProfileMMU ) {
    MutexLockerAllowGC mu(Threads_lock, JavaThread::current());
    for( JavaThread* X = Threads::first(); X; X = X->next() )
      if( X->mmu() ) X->mmu()->fold_into_global();
    MMU::print(NULL);
  }

  if (PrintLockContentionAtExit) {
    MutexLocker::print_lock_contention(NULL);
    AzLock::print_lock_hold_times(NULL);
  }

}
Example #20
0
ThreadsListEnumerator::ThreadsListEnumerator(Thread* cur_thread,
                                             bool include_jvmti_agent_threads,
                                             bool include_jni_attaching_threads) {
  assert(cur_thread == Thread::current(), "Check current thread");

  int init_size = ThreadService::get_live_thread_count();
  _threads_array = new GrowableArray<instanceHandle>(init_size);

  MutexLockerEx ml(Threads_lock);

  for (JavaThread* jt = Threads::first(); jt != NULL; jt = jt->next()) {
    // skips JavaThreads in the process of exiting
    // and also skips VM internal JavaThreads
    // Threads in _thread_new or _thread_new_trans state are included.
    // i.e. threads have been started but not yet running.
    if (jt->threadObj() == NULL   ||
        jt->is_exiting() ||
        !java_lang_Thread::is_alive(jt->threadObj())   ||
        jt->is_hidden_from_external_view()) {
      continue;
    }

    // skip agent threads
    if (!include_jvmti_agent_threads && jt->is_jvmti_agent_thread()) {
      continue;
    }

    // skip jni threads in the process of attaching
    if (!include_jni_attaching_threads && jt->is_attaching_via_jni()) {
      continue;
    }

    instanceHandle h(cur_thread, (instanceOop) jt->threadObj());
    _threads_array->append(h);
  }
}
void print_statistics() {
  
#ifdef ASSERT

  if (CountJNICalls) {
    extern Histogram *JNIHistogram;
JNIHistogram->print(tty);
  }

  if (CountJVMCalls) {
    extern Histogram *JVMHistogram;
JVMHistogram->print(tty);
  }

#endif

  Statistics::stats_print();
  
  if (MemProfiling) {
    MemProfiler::disengage();
  }

  if (CITime) {
CompileBroker::_c1.print_times();
    CompileBroker::_c2.print_times();
  }
  if( PrintStatistics ) {
    SharedRuntime::print_statistics();
CompiledIC::print_statistics();
    Deoptimization::print_statistics();
    if (UseC1) Runtime1::print_statistics();
    if (UseC2) {
Parse::print_statistics();
PhaseCCP::print_statistics();
PhaseRegAlloc::print_statistics();
PhasePeephole::print_statistics();
PhaseIdealLoop::print_statistics();
      if (TimeLivenessAnalysis) MethodLiveness::print_times();
      if (TimeCompiler) Compile::print_timers();
    }
    os::print_statistics();
if(TimeCompilationPolicy)CompilationPolicy::print_time();
#ifndef PRODUCT
    if (LogCompilerOutput) {
      if (UseC1) tty->print_cr("C1 Log Output Size: %ld", Compilation::_c1outputsize);
      if (UseC2) tty->print_cr("C2 Log Output Size: %ld", Compile::_c2outputsize);
    }
#endif
  }
  if (ProfilerCheckIntervals) {
    PeriodicTask::print_intervals();
  }
  if( ProfileMMU ) {
    { 
      MutexLockerAllowGC mu(Threads_lock, JavaThread::current());
      for( JavaThread* X = Threads::first(); X; X = X->next() )
        if( X->mmu() ) X->mmu()->fold_into_global();
    }
    MMU::print(NULL);
  }
  if (PrintSymbolTableSizeHistogram) {
    SymbolTable::print_histogram();
  }
  if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
    BytecodeCounter::print();
  }  
  if (PrintCodeCache) {
    assert0(Thread::current()->is_Java_thread() && ((JavaThread*)Thread::current())->jvm_locked_by_self());
    CodeCache::print();
    CodeCache::print_internals();
  }

  if (PrintLockContentionAtExit) {
    MutexLocker::print_lock_contention(NULL);
    AzLock::print_lock_hold_times(NULL);
  }

  if (PrintClassStatistics) {
    SystemDictionary::print_class_statistics();
  }
  if (PrintMethodStatistics) {
    SystemDictionary::print_method_statistics();
  }

  print_bytecode_count();

  if (PrintSystemDictionaryAtExit) {
    SystemDictionary::print();
  }

//---------------------------------
/* Turn on for memcpy profiling.  
   See matching code in //azul/main-dev/gnu/newlib-1.11.0/newlib/libc/machine/azul/memcpy.S
  printf("memcpy Size histogram\n");
  jlong total_bytes = 0;
  for( int i=0; i<128; i++ )
    total_bytes += (jlong)i*(jlong)memcpy_size_histogram[i];
  for( int i=7; i<32; i++ )
    total_bytes += (1LL<<i)*(jlong)memcpy_size_histogram[128+i-7];
  jlong invokes = 0;
  for( int i=0; i<sizeof(memcpy_size_histogram)/sizeof(memcpy_size_histogram[0]); i++ )
    invokes += memcpy_size_histogram[i];
  printf("bytes   cnt\n");
  for( int i=0; i<128; i++ )
    print_memcpy_size_histo(i,memcpy_size_histogram[i],total_bytes, invokes);
  for( int i=7; i<32; i++ )
    print_memcpy_size_histo(1L<<i,memcpy_size_histogram[128+(i-7)],total_bytes, invokes);
  printf("\n");
  fflush(stdout);

  printf("memcpy Alignment histogram\n");
  printf("alignment       dst            src|dst          src^dst       src|dst|len\n");
  jlong cum_dst=invokes, cum_src_dst=invokes, cum_src_xor=invokes, cum_src_len=invokes;
  for( int i=0; i<32; i++ ) {
    if( dst_align[i] ||
        src_or_dst_align[i]  ||
        src_xor_dst_align[i]  ||
        src_or_dst_or_len_align[i] ) {
      printf("%8d",1L<<i);
      cum_dst     = print_align(               dst_align[i], cum_dst    , invokes );
      cum_src_dst = print_align(        src_or_dst_align[i], cum_src_dst, invokes );
      cum_src_xor = print_align(       src_xor_dst_align[i], cum_src_xor, invokes );
      cum_src_len = print_align( src_or_dst_or_len_align[i], cum_src_len, invokes );
      printf("\n");
    }
  }
  printf("total word-misaligned bytes moved: %lld  (%5.2f%%)", 
         memcpy_misalign_bytes, (double)memcpy_misalign_bytes/(double)total_bytes);
  printf("\n");
*/
  fflush(stdout);
}
Example #22
0
// Find deadlocks involving object monitors and concurrent locks if concurrent_locks is true
DeadlockCycle* ThreadService::find_deadlocks_at_safepoint(bool concurrent_locks) {
  // This code was modified from the original Threads::find_deadlocks code.
  int globalDfn = 0, thisDfn;
  ObjectMonitor* waitingToLockMonitor = NULL;
  oop waitingToLockBlocker = NULL;
  bool blocked_on_monitor = false;
  JavaThread *currentThread, *previousThread;
  int num_deadlocks = 0;

  for (JavaThread* p = Threads::first(); p != NULL; p = p->next()) {
    // Initialize the depth-first-number
    p->set_depth_first_number(-1);
  }

  DeadlockCycle* deadlocks = NULL;
  DeadlockCycle* last = NULL;
  DeadlockCycle* cycle = new DeadlockCycle();
  for (JavaThread* jt = Threads::first(); jt != NULL; jt = jt->next()) {
    if (jt->depth_first_number() >= 0) {
      // this thread was already visited
      continue;
    }

    thisDfn = globalDfn;
    jt->set_depth_first_number(globalDfn++);
    previousThread = jt;
    currentThread = jt;

    cycle->reset();

    // When there is a deadlock, all the monitors involved in the dependency
    // cycle must be contended and heavyweight. So we only care about the
    // heavyweight monitor a thread is waiting to lock.
    waitingToLockMonitor = (ObjectMonitor*)jt->current_pending_monitor();
    if (concurrent_locks) {
      waitingToLockBlocker = jt->current_park_blocker();
    }
    while (waitingToLockMonitor != NULL || waitingToLockBlocker != NULL) {
      cycle->add_thread(currentThread);
      if (waitingToLockMonitor != NULL) {
        address currentOwner = (address)waitingToLockMonitor->owner();
        if (currentOwner != NULL) {
          currentThread = Threads::owning_thread_from_monitor_owner(
                            currentOwner,
                            false /* no locking needed */);
          if (currentThread == NULL) {
            // This function is called at a safepoint so the JavaThread
            // that owns waitingToLockMonitor should be findable, but
            // if it is not findable, then the previous currentThread is
            // blocked permanently. We record this as a deadlock.
            num_deadlocks++;

            cycle->set_deadlock(true);

            // add this cycle to the deadlocks list
            if (deadlocks == NULL) {
              deadlocks = cycle;
            } else {
              last->set_next(cycle);
            }
            last = cycle;
            cycle = new DeadlockCycle();
            break;
          }
        }
      } else {
        if (concurrent_locks) {
          if (waitingToLockBlocker->is_a(SystemDictionary::abstract_ownable_synchronizer_klass())) {
            oop threadObj = java_util_concurrent_locks_AbstractOwnableSynchronizer::get_owner_threadObj(waitingToLockBlocker);
            currentThread = threadObj != NULL ? java_lang_Thread::thread(threadObj) : NULL;
          } else {
            currentThread = NULL;
          }
        }
      }

      if (currentThread == NULL) {
        // No dependency on another thread
        break;
      }
      if (currentThread->depth_first_number() < 0) {
        // First visit to this thread
        currentThread->set_depth_first_number(globalDfn++);
      } else if (currentThread->depth_first_number() < thisDfn) {
        // Thread already visited, and not on a (new) cycle
        break;
      } else if (currentThread == previousThread) {
        // Self-loop, ignore
        break;
      } else {
        // We have a (new) cycle
        num_deadlocks++;

        cycle->set_deadlock(true);

        // add this cycle to the deadlocks list
        if (deadlocks == NULL) {
          deadlocks = cycle;
        } else {
          last->set_next(cycle);
        }
        last = cycle;
        cycle = new DeadlockCycle();
        break;
      }
      previousThread = currentThread;
      waitingToLockMonitor = (ObjectMonitor*)currentThread->current_pending_monitor();
      if (concurrent_locks) {
        waitingToLockBlocker = currentThread->current_park_blocker();
      }
    }

  }
  delete cycle;
  return deadlocks;
}
Example #23
0
static void find(intptr_t x, bool print_pc) {
  address addr = (address)x;

  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
  if (b != NULL) {
    if (b->is_buffer_blob()) {
      // the interpreter is generated into a buffer blob
      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
      if (i != NULL) {
        i->print();
        return;
      }
      if (Interpreter::contains(addr)) {
        tty->print_cr(INTPTR_FORMAT " is pointing into interpreter code (not bytecode specific)", addr);
        return;
      }
      //
      if (AdapterHandlerLibrary::contains(b)) {
        AdapterHandlerLibrary::print_handler(b);
      }
      // the stubroutines are generated into a buffer blob
      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
      if (d != NULL) {
        d->print();
        if (print_pc) tty->cr();
        return;
      }
      if (StubRoutines::contains(addr)) {
        tty->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", addr);
        return;
      }
      // the InlineCacheBuffer is using stubs generated into a buffer blob
      if (InlineCacheBuffer::contains(addr)) {
        tty->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
        return;
      }
      VtableStub* v = VtableStubs::stub_containing(addr);
      if (v != NULL) {
        v->print();
        return;
      }
    }
    if (print_pc && b->is_nmethod()) {
      ResourceMark rm;
      tty->print("%#p: Compiled ", addr);
      ((nmethod*)b)->method()->print_value_on(tty);
      tty->print("  = (CodeBlob*)" INTPTR_FORMAT, b);
      tty->cr();
      return;
    }
    if ( b->is_nmethod()) {
      if (b->is_zombie()) {
        tty->print_cr(INTPTR_FORMAT " is zombie nmethod", b);
      } else if (b->is_not_entrant()) {
        tty->print_cr(INTPTR_FORMAT " is non-entrant nmethod", b);
      }
    }
    b->print();
    return;
  }

  if (Universe::heap()->is_in(addr)) {
    HeapWord* p = Universe::heap()->block_start(addr);
    bool print = false;
    // If we couldn't find it it just may mean that heap wasn't parseable
    // See if we were just given an oop directly
    if (p != NULL && Universe::heap()->block_is_obj(p)) {
      print = true;
    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
      p = (HeapWord*) addr;
      print = true;
    }
    if (print) {
      oop(p)->print();
      if (p != (HeapWord*)x && oop(p)->is_constMethod() &&
          constMethodOop(p)->contains(addr)) {
        Thread *thread = Thread::current();
        HandleMark hm(thread);
        methodHandle mh (thread, constMethodOop(p)->method());
        if (!mh->is_native()) {
          tty->print_cr("bci_from(%p) = %d; print_codes():",
                        addr, mh->bci_from(address(x)));
          mh->print_codes();
        }
      }
      return;
    }
  } else if (Universe::heap()->is_in_reserved(addr)) {
    tty->print_cr(INTPTR_FORMAT " is an unallocated location in the heap", addr);
    return;
  }

  if (JNIHandles::is_global_handle((jobject) addr)) {
    tty->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
    return;
  }
  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
    tty->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
    return;
  }
  if (JNIHandleBlock::any_contains((jobject) addr)) {
    tty->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
    return;
  }

  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
    // Check for privilege stack
    if (thread->privileged_stack_top() != NULL && thread->privileged_stack_top()->contains(addr)) {
      tty->print_cr(INTPTR_FORMAT " is pointing into the privilege stack for thread: " INTPTR_FORMAT, addr, thread);
      return;
    }
    // If the addr is a java thread print information about that.
    if (addr == (address)thread) {
       thread->print();
       return;
    }
  }

  // Try an OS specific find
  if (os::find(addr)) {
    return;
  }

  if (print_pc) {
    tty->print_cr(INTPTR_FORMAT ": probably in C++ code; check debugger", addr);
    Disassembler::decode(same_page(addr-40,addr),same_page(addr+40,addr));
    return;
  }

  tty->print_cr(INTPTR_FORMAT " is pointing to unknown location", addr);
}
Example #24
0
// Compute truly enabled events - meaning if the event can and could be
// sent.  An event is truly enabled if it is user enabled on the thread
// or globally user enabled, but only if there is a callback or event hook
// for it and, for field watch and frame pop, one has been set.
// Compute if truly enabled, per thread, per environment, per combination
// (thread x environment), and overall.  These merges are true if any is true.
// True per thread if some environment has callback set and the event is globally
// enabled or enabled for this thread.
// True per environment if the callback is set and the event is globally
// enabled in this environment or enabled for any thread in this environment.
// True per combination if the environment has the callback set and the
// event is globally enabled in this environment or the event is enabled
// for this thread and environment.
//
// All states transitions dependent on these transitions are also handled here.
void
JvmtiEventControllerPrivate::recompute_enabled() {
  assert(Threads::number_of_threads() == 0 || JvmtiThreadState_lock->is_locked(), "sanity check");

  // event enabled for any thread in any environment
  jlong was_any_env_thread_enabled = JvmtiEventController::_universal_global_event_enabled.get_bits();
  jlong any_env_thread_enabled = 0;

  EC_TRACE(("JVMTI [-] # recompute enabled - before " UINT64_FORMAT_X, was_any_env_thread_enabled));

  // compute non-thread-filters events.
  // This must be done separately from thread-filtered events, since some
  // events can occur before any threads exist.
  JvmtiEnvIterator it;
  for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
    any_env_thread_enabled |= recompute_env_enabled(env);
  }

  // We need to create any missing jvmti_thread_state if there are globally set thread
  // filtered events and there weren't last time
  if (    (any_env_thread_enabled & THREAD_FILTERED_EVENT_BITS) != 0 &&
      (was_any_env_thread_enabled & THREAD_FILTERED_EVENT_BITS) == 0) {
    assert(JvmtiEnv::is_vm_live() || (JvmtiEnv::get_phase()==JVMTI_PHASE_START),
      "thread filtered events should not be enabled when VM not in start or live phase");
    {
      MutexLocker mu(Threads_lock);   //hold the Threads_lock for the iteration
      for (JavaThread *tp = Threads::first(); tp != NULL; tp = tp->next()) {
        // state_for_while_locked() makes tp->is_exiting() check
        JvmtiThreadState::state_for_while_locked(tp);  // create the thread state if missing
      }
    }// release Threads_lock
  }

  // compute and set thread-filtered events
  for (JvmtiThreadState *state = JvmtiThreadState::first(); state != NULL; state = state->next()) {
    any_env_thread_enabled |= recompute_thread_enabled(state);
  }

  // set universal state (across all envs and threads)
  jlong delta = any_env_thread_enabled ^ was_any_env_thread_enabled;
  if (delta != 0) {
    JvmtiExport::set_should_post_field_access((any_env_thread_enabled & FIELD_ACCESS_BIT) != 0);
    JvmtiExport::set_should_post_field_modification((any_env_thread_enabled & FIELD_MODIFICATION_BIT) != 0);
    JvmtiExport::set_should_post_class_load((any_env_thread_enabled & CLASS_LOAD_BIT) != 0);
    JvmtiExport::set_should_post_class_file_load_hook((any_env_thread_enabled & CLASS_FILE_LOAD_HOOK_BIT) != 0);
    JvmtiExport::set_should_post_native_method_bind((any_env_thread_enabled & NATIVE_METHOD_BIND_BIT) != 0);
    JvmtiExport::set_should_post_dynamic_code_generated((any_env_thread_enabled & DYNAMIC_CODE_GENERATED_BIT) != 0);
    JvmtiExport::set_should_post_data_dump((any_env_thread_enabled & DATA_DUMP_BIT) != 0);
    JvmtiExport::set_should_post_class_prepare((any_env_thread_enabled & CLASS_PREPARE_BIT) != 0);
    JvmtiExport::set_should_post_class_unload((any_env_thread_enabled & CLASS_UNLOAD_BIT) != 0);
    JvmtiExport::set_should_post_monitor_contended_enter((any_env_thread_enabled & MONITOR_CONTENDED_ENTER_BIT) != 0);
    JvmtiExport::set_should_post_monitor_contended_entered((any_env_thread_enabled & MONITOR_CONTENDED_ENTERED_BIT) != 0);
    JvmtiExport::set_should_post_monitor_wait((any_env_thread_enabled & MONITOR_WAIT_BIT) != 0);
    JvmtiExport::set_should_post_monitor_waited((any_env_thread_enabled & MONITOR_WAITED_BIT) != 0);
    JvmtiExport::set_should_post_garbage_collection_start((any_env_thread_enabled & GARBAGE_COLLECTION_START_BIT) != 0);
    JvmtiExport::set_should_post_garbage_collection_finish((any_env_thread_enabled & GARBAGE_COLLECTION_FINISH_BIT) != 0);
    JvmtiExport::set_should_post_object_free((any_env_thread_enabled & OBJECT_FREE_BIT) != 0);
    JvmtiExport::set_should_post_resource_exhausted((any_env_thread_enabled & RESOURCE_EXHAUSTED_BIT) != 0);
    JvmtiExport::set_should_post_compiled_method_load((any_env_thread_enabled & COMPILED_METHOD_LOAD_BIT) != 0);
    JvmtiExport::set_should_post_compiled_method_unload((any_env_thread_enabled & COMPILED_METHOD_UNLOAD_BIT) != 0);
    JvmtiExport::set_should_post_vm_object_alloc((any_env_thread_enabled & VM_OBJECT_ALLOC_BIT) != 0);

    // need this if we want thread events or we need them to init data
    JvmtiExport::set_should_post_thread_life((any_env_thread_enabled & NEED_THREAD_LIFE_EVENTS) != 0);

    // If single stepping is turned on or off, execute the VM op to change it.
    if (delta & SINGLE_STEP_BIT) {
      switch (JvmtiEnv::get_phase()) {
      case JVMTI_PHASE_DEAD:
        // If the VM is dying we can't execute VM ops
        break;
      case JVMTI_PHASE_LIVE: {
        VM_ChangeSingleStep op((any_env_thread_enabled & SINGLE_STEP_BIT) != 0);
        VMThread::execute(&op);
        break;
      }
      default:
        assert(false, "should never come here before live phase");
        break;
      }
    }

    // set global truly enabled, that is, any thread in any environment
    JvmtiEventController::_universal_global_event_enabled.set_bits(any_env_thread_enabled);

    // set global should_post_on_exceptions
    JvmtiExport::set_should_post_on_exceptions((any_env_thread_enabled & SHOULD_POST_ON_EXCEPTIONS_BITS) != 0);

  }

  EC_TRACE(("JVMTI [-] # recompute enabled - after " UINT64_FORMAT_X, any_env_thread_enabled));
}
Example #25
0
static BiasedLocking::Condition bulk_revoke_or_rebias_at_safepoint(oop o,
                                                                   bool bulk_rebias,
                                                                   bool attempt_rebias_of_object,
                                                                   JavaThread* requesting_thread) {
  assert(SafepointSynchronize::is_at_safepoint(), "must be done at safepoint");

  if (TraceBiasedLocking) {
    tty->print_cr("* Beginning bulk revocation (kind == %s) because of object "
                  INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
                  (bulk_rebias ? "rebias" : "revoke"),
                  p2i((void *) o), (intptr_t) o->mark(), o->klass()->external_name());
  }

  jlong cur_time = os::javaTimeMillis();
  o->klass()->set_last_biased_lock_bulk_revocation_time(cur_time);


  Klass* k_o = o->klass();
  Klass* klass = k_o;

  if (bulk_rebias) {
    // Use the epoch in the klass of the object to implicitly revoke
    // all biases of objects of this data type and force them to be
    // reacquired. However, we also need to walk the stacks of all
    // threads and update the headers of lightweight locked objects
    // with biases to have the current epoch.

    // If the prototype header doesn't have the bias pattern, don't
    // try to update the epoch -- assume another VM operation came in
    // and reset the header to the unbiased state, which will
    // implicitly cause all existing biases to be revoked
    if (klass->prototype_header()->has_bias_pattern()) {
      int prev_epoch = klass->prototype_header()->bias_epoch();
      klass->set_prototype_header(klass->prototype_header()->incr_bias_epoch());
      int cur_epoch = klass->prototype_header()->bias_epoch();

      // Now walk all threads' stacks and adjust epochs of any biased
      // and locked objects of this data type we encounter
      for (JavaThread* thr = Threads::first(); thr != NULL; thr = thr->next()) {
        GrowableArray<MonitorInfo*>* cached_monitor_info = get_or_compute_monitor_info(thr);
        for (int i = 0; i < cached_monitor_info->length(); i++) {
          MonitorInfo* mon_info = cached_monitor_info->at(i);
          oop owner = mon_info->owner();
          markOop mark = owner->mark();
          if ((owner->klass() == k_o) && mark->has_bias_pattern()) {
            // We might have encountered this object already in the case of recursive locking
            assert(mark->bias_epoch() == prev_epoch || mark->bias_epoch() == cur_epoch, "error in bias epoch adjustment");
            owner->set_mark(mark->set_bias_epoch(cur_epoch));
          }
        }
      }
    }

    // At this point we're done. All we have to do is potentially
    // adjust the header of the given object to revoke its bias.
    revoke_bias(o, attempt_rebias_of_object && klass->prototype_header()->has_bias_pattern(), true, requesting_thread);
  } else {
    if (TraceBiasedLocking) {
      ResourceMark rm;
      tty->print_cr("* Disabling biased locking for type %s", klass->external_name());
    }

    // Disable biased locking for this data type. Not only will this
    // cause future instances to not be biased, but existing biased
    // instances will notice that this implicitly caused their biases
    // to be revoked.
    klass->set_prototype_header(markOopDesc::prototype());

    // Now walk all threads' stacks and forcibly revoke the biases of
    // any locked and biased objects of this data type we encounter.
    for (JavaThread* thr = Threads::first(); thr != NULL; thr = thr->next()) {
      GrowableArray<MonitorInfo*>* cached_monitor_info = get_or_compute_monitor_info(thr);
      for (int i = 0; i < cached_monitor_info->length(); i++) {
        MonitorInfo* mon_info = cached_monitor_info->at(i);
        oop owner = mon_info->owner();
        markOop mark = owner->mark();
        if ((owner->klass() == k_o) && mark->has_bias_pattern()) {
          revoke_bias(owner, false, true, requesting_thread);
        }
      }
    }

    // Must force the bias of the passed object to be forcibly revoked
    // as well to ensure guarantees to callers
    revoke_bias(o, false, true, requesting_thread);
  }

  if (TraceBiasedLocking) {
    tty->print_cr("* Ending bulk revocation");
  }

  BiasedLocking::Condition status_code = BiasedLocking::BIAS_REVOKED;

  if (attempt_rebias_of_object &&
      o->mark()->has_bias_pattern() &&
      klass->prototype_header()->has_bias_pattern()) {
    markOop new_mark = markOopDesc::encode(requesting_thread, o->mark()->age(),
                                           klass->prototype_header()->bias_epoch());
    o->set_mark(new_mark);
    status_code = BiasedLocking::BIAS_REVOKED_AND_REBIASED;
    if (TraceBiasedLocking) {
      tty->print_cr("  Rebiased object toward thread " INTPTR_FORMAT, (intptr_t) requesting_thread);
    }
  }

  assert(!o->mark()->has_bias_pattern() ||
         (attempt_rebias_of_object && (o->mark()->biased_locker() == requesting_thread)),
         "bug in bulk bias revocation");

  return status_code;
}
Example #26
0
static void clean_up_cached_monitor_info() {
  // Walk the thread list clearing out the cached monitors
  for (JavaThread* thr = Threads::first(); thr != NULL; thr = thr->next()) {
    thr->set_cached_monitor_info(NULL);
  }
}
Example #27
0
// Roll all threads forward to a safepoint and suspend them all
void SafepointSynchronize::begin() {

  Thread* myThread = Thread::current();
  assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");

  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
    _safepoint_begin_time = os::javaTimeNanos();
    _ts_of_current_safepoint = tty->time_stamp().seconds();
  }

#if INCLUDE_ALL_GCS
  if (UseConcMarkSweepGC) {
    // In the future we should investigate whether CMS can use the
    // more-general mechanism below.  DLD (01/05).
    ConcurrentMarkSweepThread::synchronize(false);
  } else if (UseG1GC) {
    SuspendibleThreadSet::synchronize();
  }
#endif // INCLUDE_ALL_GCS

  // By getting the Threads_lock, we assure that no threads are about to start or
  // exit. It is released again in SafepointSynchronize::end().
  Threads_lock->lock();

  assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");

  int nof_threads = Threads::number_of_threads();

  if (TraceSafepoint) {
    tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
  }

  RuntimeService::record_safepoint_begin();

  MutexLocker mu(Safepoint_lock);

  // Reset the count of active JNI critical threads
  _current_jni_active_count = 0;

  // Set number of threads to wait for, before we initiate the callbacks
  _waiting_to_block = nof_threads;
  TryingToBlock     = 0 ;
  int still_running = nof_threads;

  // Save the starting time, so that it can be compared to see if this has taken
  // too long to complete.
  jlong safepoint_limit_time;
  timeout_error_printed = false;

  // PrintSafepointStatisticsTimeout can be specified separately. When
  // specified, PrintSafepointStatistics will be set to true in
  // deferred_initialize_stat method. The initialization has to be done
  // early enough to avoid any races. See bug 6880029 for details.
  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
    deferred_initialize_stat();
  }

  // Begin the process of bringing the system to a safepoint.
  // Java threads can be in several different states and are
  // stopped by different mechanisms:
  //
  //  1. Running interpreted
  //     The interpeter dispatch table is changed to force it to
  //     check for a safepoint condition between bytecodes.
  //  2. Running in native code
  //     When returning from the native code, a Java thread must check
  //     the safepoint _state to see if we must block.  If the
  //     VM thread sees a Java thread in native, it does
  //     not wait for this thread to block.  The order of the memory
  //     writes and reads of both the safepoint state and the Java
  //     threads state is critical.  In order to guarantee that the
  //     memory writes are serialized with respect to each other,
  //     the VM thread issues a memory barrier instruction
  //     (on MP systems).  In order to avoid the overhead of issuing
  //     a memory barrier for each Java thread making native calls, each Java
  //     thread performs a write to a single memory page after changing
  //     the thread state.  The VM thread performs a sequence of
  //     mprotect OS calls which forces all previous writes from all
  //     Java threads to be serialized.  This is done in the
  //     os::serialize_thread_states() call.  This has proven to be
  //     much more efficient than executing a membar instruction
  //     on every call to native code.
  //  3. Running compiled Code
  //     Compiled code reads a global (Safepoint Polling) page that
  //     is set to fault if we are trying to get to a safepoint.
  //  4. Blocked
  //     A thread which is blocked will not be allowed to return from the
  //     block condition until the safepoint operation is complete.
  //  5. In VM or Transitioning between states
  //     If a Java thread is currently running in the VM or transitioning
  //     between states, the safepointing code will wait for the thread to
  //     block itself when it attempts transitions to a new state.
  //
  _state            = _synchronizing;
  OrderAccess::fence();

  // Flush all thread states to memory
  if (!UseMembar) {
    os::serialize_thread_states();
  }

  // Make interpreter safepoint aware
  Interpreter::notice_safepoints();

  if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
    // Make polling safepoint aware
    guarantee (PageArmed == 0, "invariant") ;
    PageArmed = 1 ;
    os::make_polling_page_unreadable();
  }

  // Consider using active_processor_count() ... but that call is expensive.
  int ncpus = os::processor_count() ;

#ifdef ASSERT
  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
    assert(cur->safepoint_state()->is_running(), "Illegal initial state");
    // Clear the visited flag to ensure that the critical counts are collected properly.
    cur->set_visited_for_critical_count(false);
  }
#endif // ASSERT

  if (SafepointTimeout)
    safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;

  // Iterate through all threads until it have been determined how to stop them all at a safepoint
  unsigned int iterations = 0;
  int steps = 0 ;
  while(still_running > 0) {
    for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
      assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
      ThreadSafepointState *cur_state = cur->safepoint_state();
      if (cur_state->is_running()) {
        cur_state->examine_state_of_thread();
        if (!cur_state->is_running()) {
           still_running--;
           // consider adjusting steps downward:
           //   steps = 0
           //   steps -= NNN
           //   steps >>= 1
           //   steps = MIN(steps, 2000-100)
           //   if (iterations != 0) steps -= NNN
        }
        if (TraceSafepoint && Verbose) cur_state->print();
      }
    }

    if (PrintSafepointStatistics && iterations == 0) {
      begin_statistics(nof_threads, still_running);
    }

    if (still_running > 0) {
      // Check for if it takes to long
      if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
        print_safepoint_timeout(_spinning_timeout);
      }

      // Spin to avoid context switching.
      // There's a tension between allowing the mutators to run (and rendezvous)
      // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
      // a mutator might otherwise use profitably to reach a safepoint.  Excessive
      // spinning by the VM thread on a saturated system can increase rendezvous latency.
      // Blocking or yielding incur their own penalties in the form of context switching
      // and the resultant loss of $ residency.
      //
      // Further complicating matters is that yield() does not work as naively expected
      // on many platforms -- yield() does not guarantee that any other ready threads
      // will run.   As such we revert yield_all() after some number of iterations.
      // Yield_all() is implemented as a short unconditional sleep on some platforms.
      // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
      // can actually increase the time it takes the VM thread to detect that a system-wide
      // stop-the-world safepoint has been reached.  In a pathological scenario such as that
      // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
      // In that case the mutators will be stalled waiting for the safepoint to complete and the
      // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
      // will eventually wake up and detect that all mutators are safe, at which point
      // we'll again make progress.
      //
      // Beware too that that the VMThread typically runs at elevated priority.
      // Its default priority is higher than the default mutator priority.
      // Obviously, this complicates spinning.
      //
      // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
      // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
      //
      // See the comments in synchronizer.cpp for additional remarks on spinning.
      //
      // In the future we might:
      // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
      //    This is tricky as the path used by a thread exiting the JVM (say on
      //    on JNI call-out) simply stores into its state field.  The burden
      //    is placed on the VM thread, which must poll (spin).
      // 2. Find something useful to do while spinning.  If the safepoint is GC-related
      //    we might aggressively scan the stacks of threads that are already safe.
      // 3. Use Solaris schedctl to examine the state of the still-running mutators.
      //    If all the mutators are ONPROC there's no reason to sleep or yield.
      // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
      // 5. Check system saturation.  If the system is not fully saturated then
      //    simply spin and avoid sleep/yield.
      // 6. As still-running mutators rendezvous they could unpark the sleeping
      //    VMthread.  This works well for still-running mutators that become
      //    safe.  The VMthread must still poll for mutators that call-out.
      // 7. Drive the policy on time-since-begin instead of iterations.
      // 8. Consider making the spin duration a function of the # of CPUs:
      //    Spin = (((ncpus-1) * M) + K) + F(still_running)
      //    Alternately, instead of counting iterations of the outer loop
      //    we could count the # of threads visited in the inner loop, above.
      // 9. On windows consider using the return value from SwitchThreadTo()
      //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.

      if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
         guarantee (PageArmed == 0, "invariant") ;
         PageArmed = 1 ;
         os::make_polling_page_unreadable();
      }

      // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
      // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
      ++steps ;
      if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
        SpinPause() ;     // MP-Polite spin
      } else
      if (steps < DeferThrSuspendLoopCount) {
        os::NakedYield() ;
      } else {
        os::yield_all(steps) ;
        // Alternately, the VM thread could transiently depress its scheduling priority or
        // transiently increase the priority of the tardy mutator(s).
      }

      iterations ++ ;
    }
    assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
  }
  assert(still_running == 0, "sanity check");

  if (PrintSafepointStatistics) {
    update_statistics_on_spin_end();
  }

  // wait until all threads are stopped
  while (_waiting_to_block > 0) {
    if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
    if (!SafepointTimeout || timeout_error_printed) {
      Safepoint_lock->wait(true);  // true, means with no safepoint checks
    } else {
      // Compute remaining time
      jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();

      // If there is no remaining time, then there is an error
      if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
        print_safepoint_timeout(_blocking_timeout);
      }
    }
  }
  assert(_waiting_to_block == 0, "sanity check");

#ifndef PRODUCT
  if (SafepointTimeout) {
    jlong current_time = os::javaTimeNanos();
    if (safepoint_limit_time < current_time) {
      tty->print_cr("# SafepointSynchronize: Finished after "
                    INT64_FORMAT_W(6) " ms",
                    ((current_time - safepoint_limit_time) / MICROUNITS +
                     SafepointTimeoutDelay));
    }
  }
#endif

  assert((_safepoint_counter & 0x1) == 0, "must be even");
  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
  _safepoint_counter ++;

  // Record state
  _state = _synchronized;

  OrderAccess::fence();

#ifdef ASSERT
  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
    // make sure all the threads were visited
    assert(cur->was_visited_for_critical_count(), "missed a thread");
  }
#endif // ASSERT

  // Update the count of active JNI critical regions
  GC_locker::set_jni_lock_count(_current_jni_active_count);

  if (TraceSafepoint) {
    VM_Operation *op = VMThread::vm_operation();
    tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
  }

  RuntimeService::record_safepoint_synchronized();
  if (PrintSafepointStatistics) {
    update_statistics_on_sync_end(os::javaTimeNanos());
  }

  // Call stuff that needs to be run when a safepoint is just about to be completed
  do_cleanup_tasks();

  if (PrintSafepointStatistics) {
    // Record how much time spend on the above cleanup tasks
    update_statistics_on_cleanup_end(os::javaTimeNanos());
  }
}