/// RewriteSingleStoreAlloca - If there is only a single store to this value, /// replace any loads of it that are directly dominated by the definition with /// the value stored. void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI) { StoreInst *OnlyStore = Info.OnlyStore; bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); BasicBlock *StoreBB = OnlyStore->getParent(); int StoreIndex = -1; // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) { Instruction *UserInst = cast<Instruction>(*UI++); if (!isa<LoadInst>(UserInst)) { assert(UserInst == OnlyStore && "Should only have load/stores"); continue; } LoadInst *LI = cast<LoadInst>(UserInst); // Okay, if we have a load from the alloca, we want to replace it with the // only value stored to the alloca. We can do this if the value is // dominated by the store. If not, we use the rest of the mem2reg machinery // to insert the phi nodes as needed. if (!StoringGlobalVal) { // Non-instructions are always dominated. if (LI->getParent() == StoreBB) { // If we have a use that is in the same block as the store, compare the // indices of the two instructions to see which one came first. If the // load came before the store, we can't handle it. if (StoreIndex == -1) StoreIndex = LBI.getInstructionIndex(OnlyStore); if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { // Can't handle this load, bail out. Info.UsingBlocks.push_back(StoreBB); continue; } } else if (LI->getParent() != StoreBB && !dominates(StoreBB, LI->getParent())) { // If the load and store are in different blocks, use BB dominance to // check their relationships. If the store doesn't dom the use, bail // out. Info.UsingBlocks.push_back(LI->getParent()); continue; } } // Otherwise, we *can* safely rewrite this load. Value *ReplVal = OnlyStore->getOperand(0); // If the replacement value is the load, this must occur in unreachable // code. if (ReplVal == LI) ReplVal = UndefValue::get(LI->getType()); LI->replaceAllUsesWith(ReplVal); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); LI->eraseFromParent(); LBI.deleteValue(LI); } }
/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same /// basic block as the load, unless conditions are unfavorable. This allows /// SelectionDAG to fold the extend into the load. /// bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) { // Look for a load being extended. LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0)); if (!LI) return false; // If they're already in the same block, there's nothing to do. if (LI->getParent() == I->getParent()) return false; // If the load has other users and the truncate is not free, this probably // isn't worthwhile. if (!LI->hasOneUse() && TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) || !TLI->isTypeLegal(TLI->getValueType(I->getType()))) && !TLI->isTruncateFree(I->getType(), LI->getType())) return false; // Check whether the target supports casts folded into loads. unsigned LType; if (isa<ZExtInst>(I)) LType = ISD::ZEXTLOAD; else { assert(isa<SExtInst>(I) && "Unexpected ext type!"); LType = ISD::SEXTLOAD; } if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType()))) return false; // Move the extend into the same block as the load, so that SelectionDAG // can fold it. I->removeFromParent(); I->insertAfter(LI); ++NumExtsMoved; return true; }
void DSGraphStats::visitLoad(LoadInst &LI) { if (isNodeForValueUntyped(LI.getOperand(0), 0,LI.getParent()->getParent())) { NumUntypedMemAccesses++; } else { NumTypedMemAccesses++; } }
void LLSTDebuggingPass::insertLoadInstCheck(Function& F) { Value* BrokenPointerMessage = m_builder->CreateGlobalStringPtr("\npointer is broken\n"); InstructionVector Loads; for (Function::iterator BB = F.begin(); BB != F.end(); ++BB) { for(BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) { if (LoadInst* Load = dyn_cast<LoadInst>(II)) { Loads.push_back(Load); } } } for(std::size_t i = 0; i < Loads.size(); i++) { LoadInst* Load = dyn_cast<LoadInst>(Loads[i]); if (belongsToSmalltalkType( Load->getType() )) { //split BB right after load inst. The new BB contains code that will be executed if pointer is OK BasicBlock* PointerIsOkBB = Load->getParent()->splitBasicBlock(++( static_cast<BasicBlock::iterator>(Load) )); BasicBlock* PointerIsBrokenBB = BasicBlock::Create(m_module->getContext(), "", &F, PointerIsOkBB); BasicBlock* PointerIsNotSmallIntBB = BasicBlock::Create(m_module->getContext(), "", &F, PointerIsBrokenBB); Instruction* branchToPointerIsOkBB = ++( static_cast<BasicBlock::iterator>(Load) ); //branchToPointerIsOkBB is created by splitBasicBlock() just after load inst //We force builder to insert instructions before branchToPointerIsOkBB m_builder->SetInsertPoint(branchToPointerIsOkBB); //If pointer to class is null, jump to PointerIsBroken, otherwise to PointerIsOkBB Value* objectPtr = m_builder->CreateBitCast( Load, m_baseTypes.object->getPointerTo()); Value* isSmallInt = m_builder->CreateCall(isSmallInteger, objectPtr); m_builder->CreateCondBr(isSmallInt, PointerIsOkBB, PointerIsNotSmallIntBB); m_builder->SetInsertPoint(PointerIsNotSmallIntBB); Value* klassPtr = m_builder->CreateCall(getObjectClass, objectPtr); Value* pointerIsNull = m_builder->CreateICmpEQ(klassPtr, ConstantPointerNull::get(m_baseTypes.klass->getPointerTo()) ); m_builder->CreateCondBr(pointerIsNull, PointerIsBrokenBB, PointerIsOkBB); branchToPointerIsOkBB->eraseFromParent(); //We don't need it anymore m_builder->SetInsertPoint(PointerIsBrokenBB); m_builder->CreateCall(_printf, BrokenPointerMessage); m_builder->CreateBr(PointerIsOkBB); } } }
bool Scalarizer::visitLoadInst(LoadInst &LI) { if (!ScalarizeLoadStore) return false; if (!LI.isSimple()) return false; VectorLayout Layout; if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout)) return false; unsigned NumElems = Layout.VecTy->getNumElements(); IRBuilder<> Builder(LI.getParent(), &LI); Scatterer Ptr = scatter(&LI, LI.getPointerOperand()); ValueVector Res; Res.resize(NumElems); for (unsigned I = 0; I < NumElems; ++I) Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I), LI.getName() + ".i" + Twine(I)); gather(&LI, Res); return true; }
/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic /// block. If this is the case, avoid traversing the CFG and inserting a lot of /// potentially useless PHI nodes by just performing a single linear pass over /// the basic block using the Alloca. /// /// If we cannot promote this alloca (because it is read before it is written), /// return true. This is necessary in cases where, due to control flow, the /// alloca is potentially undefined on some control flow paths. e.g. code like /// this is potentially correct: /// /// for (...) { if (c) { A = undef; undef = B; } } /// /// ... so long as A is not used before undef is set. /// void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI) { // The trickiest case to handle is when we have large blocks. Because of this, // this code is optimized assuming that large blocks happen. This does not // significantly pessimize the small block case. This uses LargeBlockInfo to // make it efficient to get the index of various operations in the block. // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); // Walk the use-def list of the alloca, getting the locations of all stores. typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy; StoresByIndexTy StoresByIndex; for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ++UI) if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); // If there are no stores to the alloca, just replace any loads with undef. if (StoresByIndex.empty()) { for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) { LI->replaceAllUsesWith(UndefValue::get(LI->getType())); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); LBI.deleteValue(LI); LI->eraseFromParent(); } return; } // Sort the stores by their index, making it efficient to do a lookup with a // binary search. std::sort(StoresByIndex.begin(), StoresByIndex.end()); // Walk all of the loads from this alloca, replacing them with the nearest // store above them, if any. for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { LoadInst *LI = dyn_cast<LoadInst>(*UI++); if (!LI) continue; unsigned LoadIdx = LBI.getInstructionIndex(LI); // Find the nearest store that has a lower than this load. StoresByIndexTy::iterator I = std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)), StoreIndexSearchPredicate()); // If there is no store before this load, then we can't promote this load. if (I == StoresByIndex.begin()) { // Can't handle this load, bail out. Info.UsingBlocks.push_back(LI->getParent()); continue; } // Otherwise, there was a store before this load, the load takes its value. --I; LI->replaceAllUsesWith(I->second->getOperand(0)); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); LI->eraseFromParent(); LBI.deleteValue(LI); } }
/// isSafeToPromoteArgument - As you might guess from the name of this method, /// it checks to see if it is both safe and useful to promote the argument. /// This method limits promotion of aggregates to only promote up to three /// elements of the aggregate in order to avoid exploding the number of /// arguments passed in. bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const { typedef std::set<IndicesVector> GEPIndicesSet; // Quick exit for unused arguments if (Arg->use_empty()) return true; // We can only promote this argument if all of the uses are loads, or are GEP // instructions (with constant indices) that are subsequently loaded. // // Promoting the argument causes it to be loaded in the caller // unconditionally. This is only safe if we can prove that either the load // would have happened in the callee anyway (ie, there is a load in the entry // block) or the pointer passed in at every call site is guaranteed to be // valid. // In the former case, invalid loads can happen, but would have happened // anyway, in the latter case, invalid loads won't happen. This prevents us // from introducing an invalid load that wouldn't have happened in the // original code. // // This set will contain all sets of indices that are loaded in the entry // block, and thus are safe to unconditionally load in the caller. GEPIndicesSet SafeToUnconditionallyLoad; // This set contains all the sets of indices that we are planning to promote. // This makes it possible to limit the number of arguments added. GEPIndicesSet ToPromote; // If the pointer is always valid, any load with first index 0 is valid. if (isByVal || AllCalleesPassInValidPointerForArgument(Arg)) SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); // First, iterate the entry block and mark loads of (geps of) arguments as // safe. BasicBlock *EntryBlock = Arg->getParent()->begin(); // Declare this here so we can reuse it IndicesVector Indices; for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end(); I != E; ++I) if (LoadInst *LI = dyn_cast<LoadInst>(I)) { Value *V = LI->getPointerOperand(); if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { V = GEP->getPointerOperand(); if (V == Arg) { // This load actually loads (part of) Arg? Check the indices then. Indices.reserve(GEP->getNumIndices()); for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); II != IE; ++II) if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) Indices.push_back(CI->getSExtValue()); else // We found a non-constant GEP index for this argument? Bail out // right away, can't promote this argument at all. return false; // Indices checked out, mark them as safe MarkIndicesSafe(Indices, SafeToUnconditionallyLoad); Indices.clear(); } } else if (V == Arg) { // Direct loads are equivalent to a GEP with a single 0 index. MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); } } // Now, iterate all uses of the argument to see if there are any uses that are // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. SmallVector<LoadInst*, 16> Loads; IndicesVector Operands; for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end(); UI != E; ++UI) { User *U = *UI; Operands.clear(); if (LoadInst *LI = dyn_cast<LoadInst>(U)) { if (LI->isVolatile()) return false; // Don't hack volatile loads Loads.push_back(LI); // Direct loads are equivalent to a GEP with a zero index and then a load. Operands.push_back(0); } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { if (GEP->use_empty()) { // Dead GEP's cause trouble later. Just remove them if we run into // them. getAnalysis<AliasAnalysis>().deleteValue(GEP); GEP->eraseFromParent(); // TODO: This runs the above loop over and over again for dead GEPs // Couldn't we just do increment the UI iterator earlier and erase the // use? return isSafeToPromoteArgument(Arg, isByVal); } // Ensure that all of the indices are constants. for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; ++i) if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) Operands.push_back(C->getSExtValue()); else return false; // Not a constant operand GEP! // Ensure that the only users of the GEP are load instructions. for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end(); UI != E; ++UI) if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { if (LI->isVolatile()) return false; // Don't hack volatile loads Loads.push_back(LI); } else { // Other uses than load? return false; } } else { return false; // Not a load or a GEP. } // Now, see if it is safe to promote this load / loads of this GEP. Loading // is safe if Operands, or a prefix of Operands, is marked as safe. if (!PrefixIn(Operands, SafeToUnconditionallyLoad)) return false; // See if we are already promoting a load with these indices. If not, check // to make sure that we aren't promoting too many elements. If so, nothing // to do. if (ToPromote.find(Operands) == ToPromote.end()) { if (maxElements > 0 && ToPromote.size() == maxElements) { DEBUG(dbgs() << "argpromotion not promoting argument '" << Arg->getName() << "' because it would require adding more " << "than " << maxElements << " arguments to the function.\n"); // We limit aggregate promotion to only promoting up to a fixed number // of elements of the aggregate. return false; } ToPromote.insert(Operands); } } if (Loads.empty()) return true; // No users, this is a dead argument. // Okay, now we know that the argument is only used by load instructions and // it is safe to unconditionally perform all of them. Use alias analysis to // check to see if the pointer is guaranteed to not be modified from entry of // the function to each of the load instructions. // Because there could be several/many load instructions, remember which // blocks we know to be transparent to the load. SmallPtrSet<BasicBlock*, 16> TranspBlocks; AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); TargetData *TD = getAnalysisIfAvailable<TargetData>(); if (!TD) return false; // Without TargetData, assume the worst. for (unsigned i = 0, e = Loads.size(); i != e; ++i) { // Check to see if the load is invalidated from the start of the block to // the load itself. LoadInst *Load = Loads[i]; BasicBlock *BB = Load->getParent(); const PointerType *LoadTy = cast<PointerType>(Load->getPointerOperand()->getType()); unsigned LoadSize =(unsigned)TD->getTypeStoreSize(LoadTy->getElementType()); if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize)) return false; // Pointer is invalidated! // Now check every path from the entry block to the load for transparency. // To do this, we perform a depth first search on the inverse CFG from the // loading block. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *P = *PI; for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> > I = idf_ext_begin(P, TranspBlocks), E = idf_ext_end(P, TranspBlocks); I != E; ++I) if (AA.canBasicBlockModify(**I, Arg, LoadSize)) return false; } } // If the path from the entry of the function to each load is free of // instructions that potentially invalidate the load, we can make the // transformation! return true; }
/// \brief Rewrite as many loads as possible given a single store. /// /// When there is only a single store, we can use the domtree to trivially /// replace all of the dominated loads with the stored value. Do so, and return /// true if this has successfully promoted the alloca entirely. If this returns /// false there were some loads which were not dominated by the single store /// and thus must be phi-ed with undef. We fall back to the standard alloca /// promotion algorithm in that case. static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, DominatorTree &DT, AliasSetTracker *AST) { StoreInst *OnlyStore = Info.OnlyStore; bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); BasicBlock *StoreBB = OnlyStore->getParent(); int StoreIndex = -1; // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { Instruction *UserInst = cast<Instruction>(*UI++); if (!isa<LoadInst>(UserInst)) { assert(UserInst == OnlyStore && "Should only have load/stores"); continue; } LoadInst *LI = cast<LoadInst>(UserInst); // Okay, if we have a load from the alloca, we want to replace it with the // only value stored to the alloca. We can do this if the value is // dominated by the store. If not, we use the rest of the mem2reg machinery // to insert the phi nodes as needed. if (!StoringGlobalVal) { // Non-instructions are always dominated. if (LI->getParent() == StoreBB) { // If we have a use that is in the same block as the store, compare the // indices of the two instructions to see which one came first. If the // load came before the store, we can't handle it. if (StoreIndex == -1) StoreIndex = LBI.getInstructionIndex(OnlyStore); if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { // Can't handle this load, bail out. Info.UsingBlocks.push_back(StoreBB); continue; } } else if (LI->getParent() != StoreBB && !DT.dominates(StoreBB, LI->getParent())) { // If the load and store are in different blocks, use BB dominance to // check their relationships. If the store doesn't dom the use, bail // out. Info.UsingBlocks.push_back(LI->getParent()); continue; } } // Otherwise, we *can* safely rewrite this load. Value *ReplVal = OnlyStore->getOperand(0); // If the replacement value is the load, this must occur in unreachable // code. if (ReplVal == LI) ReplVal = UndefValue::get(LI->getType()); LI->replaceAllUsesWith(ReplVal); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); LI->eraseFromParent(); LBI.deleteValue(LI); } // Finally, after the scan, check to see if the store is all that is left. if (!Info.UsingBlocks.empty()) return false; // If not, we'll have to fall back for the remainder. // Record debuginfo for the store and remove the declaration's // debuginfo. if (DbgDeclareInst *DDI = Info.DbgDeclare) { DIBuilder DIB(*AI->getParent()->getParent()->getParent()); ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB); DDI->eraseFromParent(); } // Remove the (now dead) store and alloca. Info.OnlyStore->eraseFromParent(); LBI.deleteValue(Info.OnlyStore); if (AST) AST->deleteValue(AI); AI->eraseFromParent(); LBI.deleteValue(AI); return true; }
void LoadAndStorePromoter:: run(const SmallVectorImpl<Instruction*> &Insts) const { // First step: bucket up uses of the alloca by the block they occur in. // This is important because we have to handle multiple defs/uses in a block // ourselves: SSAUpdater is purely for cross-block references. // FIXME: Want a TinyVector<Instruction*> since there is often 0/1 element. DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock; for (unsigned i = 0, e = Insts.size(); i != e; ++i) { Instruction *User = Insts[i]; UsesByBlock[User->getParent()].push_back(User); } // Okay, now we can iterate over all the blocks in the function with uses, // processing them. Keep track of which loads are loading a live-in value. // Walk the uses in the use-list order to be determinstic. SmallVector<LoadInst*, 32> LiveInLoads; DenseMap<Value*, Value*> ReplacedLoads; for (unsigned i = 0, e = Insts.size(); i != e; ++i) { Instruction *User = Insts[i]; BasicBlock *BB = User->getParent(); std::vector<Instruction*> &BlockUses = UsesByBlock[BB]; // If this block has already been processed, ignore this repeat use. if (BlockUses.empty()) continue; // Okay, this is the first use in the block. If this block just has a // single user in it, we can rewrite it trivially. if (BlockUses.size() == 1) { // If it is a store, it is a trivial def of the value in the block. if (StoreInst *SI = dyn_cast<StoreInst>(User)) { updateDebugInfo(SI); SSA.AddAvailableValue(BB, SI->getOperand(0)); } else // Otherwise it is a load, queue it to rewrite as a live-in load. LiveInLoads.push_back(cast<LoadInst>(User)); BlockUses.clear(); continue; } // Otherwise, check to see if this block is all loads. bool HasStore = false; for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) { if (isa<StoreInst>(BlockUses[i])) { HasStore = true; break; } } // If so, we can queue them all as live in loads. We don't have an // efficient way to tell which on is first in the block and don't want to // scan large blocks, so just add all loads as live ins. if (!HasStore) { for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) LiveInLoads.push_back(cast<LoadInst>(BlockUses[i])); BlockUses.clear(); continue; } // Otherwise, we have mixed loads and stores (or just a bunch of stores). // Since SSAUpdater is purely for cross-block values, we need to determine // the order of these instructions in the block. If the first use in the // block is a load, then it uses the live in value. The last store defines // the live out value. We handle this by doing a linear scan of the block. Value *StoredValue = 0; for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { if (LoadInst *L = dyn_cast<LoadInst>(II)) { // If this is a load from an unrelated pointer, ignore it. if (!isInstInList(L, Insts)) continue; // If we haven't seen a store yet, this is a live in use, otherwise // use the stored value. if (StoredValue) { replaceLoadWithValue(L, StoredValue); L->replaceAllUsesWith(StoredValue); ReplacedLoads[L] = StoredValue; } else { LiveInLoads.push_back(L); } continue; } if (StoreInst *SI = dyn_cast<StoreInst>(II)) { // If this is a store to an unrelated pointer, ignore it. if (!isInstInList(SI, Insts)) continue; updateDebugInfo(SI); // Remember that this is the active value in the block. StoredValue = SI->getOperand(0); } } // The last stored value that happened is the live-out for the block. assert(StoredValue && "Already checked that there is a store in block"); SSA.AddAvailableValue(BB, StoredValue); BlockUses.clear(); } // Okay, now we rewrite all loads that use live-in values in the loop, // inserting PHI nodes as necessary. for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) { LoadInst *ALoad = LiveInLoads[i]; Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); replaceLoadWithValue(ALoad, NewVal); // Avoid assertions in unreachable code. if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); ALoad->replaceAllUsesWith(NewVal); ReplacedLoads[ALoad] = NewVal; } // Allow the client to do stuff before we start nuking things. doExtraRewritesBeforeFinalDeletion(); // Now that everything is rewritten, delete the old instructions from the // function. They should all be dead now. for (unsigned i = 0, e = Insts.size(); i != e; ++i) { Instruction *User = Insts[i]; // If this is a load that still has uses, then the load must have been added // as a live value in the SSAUpdate data structure for a block (e.g. because // the loaded value was stored later). In this case, we need to recursively // propagate the updates until we get to the real value. if (!User->use_empty()) { Value *NewVal = ReplacedLoads[User]; assert(NewVal && "not a replaced load?"); // Propagate down to the ultimate replacee. The intermediately loads // could theoretically already have been deleted, so we don't want to // dereference the Value*'s. DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); while (RLI != ReplacedLoads.end()) { NewVal = RLI->second; RLI = ReplacedLoads.find(NewVal); } replaceLoadWithValue(cast<LoadInst>(User), NewVal); User->replaceAllUsesWith(NewVal); } instructionDeleted(User); User->eraseFromParent(); } }
/// Rewrite as many loads as possible given a single store. /// /// When there is only a single store, we can use the domtree to trivially /// replace all of the dominated loads with the stored value. Do so, and return /// true if this has successfully promoted the alloca entirely. If this returns /// false there were some loads which were not dominated by the single store /// and thus must be phi-ed with undef. We fall back to the standard alloca /// promotion algorithm in that case. static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, const DataLayout &DL, DominatorTree &DT, AssumptionCache *AC) { StoreInst *OnlyStore = Info.OnlyStore; bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); BasicBlock *StoreBB = OnlyStore->getParent(); int StoreIndex = -1; // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { Instruction *UserInst = cast<Instruction>(*UI++); if (!isa<LoadInst>(UserInst)) { assert(UserInst == OnlyStore && "Should only have load/stores"); continue; } LoadInst *LI = cast<LoadInst>(UserInst); // Okay, if we have a load from the alloca, we want to replace it with the // only value stored to the alloca. We can do this if the value is // dominated by the store. If not, we use the rest of the mem2reg machinery // to insert the phi nodes as needed. if (!StoringGlobalVal) { // Non-instructions are always dominated. if (LI->getParent() == StoreBB) { // If we have a use that is in the same block as the store, compare the // indices of the two instructions to see which one came first. If the // load came before the store, we can't handle it. if (StoreIndex == -1) StoreIndex = LBI.getInstructionIndex(OnlyStore); if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { // Can't handle this load, bail out. Info.UsingBlocks.push_back(StoreBB); continue; } } else if (LI->getParent() != StoreBB && !DT.dominates(StoreBB, LI->getParent())) { // If the load and store are in different blocks, use BB dominance to // check their relationships. If the store doesn't dom the use, bail // out. Info.UsingBlocks.push_back(LI->getParent()); continue; } } // Otherwise, we *can* safely rewrite this load. Value *ReplVal = OnlyStore->getOperand(0); // If the replacement value is the load, this must occur in unreachable // code. if (ReplVal == LI) ReplVal = UndefValue::get(LI->getType()); // If the load was marked as nonnull we don't want to lose // that information when we erase this Load. So we preserve // it with an assume. if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) addAssumeNonNull(AC, LI); LI->replaceAllUsesWith(ReplVal); LI->eraseFromParent(); LBI.deleteValue(LI); } // Finally, after the scan, check to see if the store is all that is left. if (!Info.UsingBlocks.empty()) return false; // If not, we'll have to fall back for the remainder. // Record debuginfo for the store and remove the declaration's // debuginfo. for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB); DII->eraseFromParent(); LBI.deleteValue(DII); } // Remove the (now dead) store and alloca. Info.OnlyStore->eraseFromParent(); LBI.deleteValue(Info.OnlyStore); AI->eraseFromParent(); LBI.deleteValue(AI); return true; }
/// PromoteAliasSet - Try to promote memory values to scalars by sinking /// stores out of the loop and moving loads to before the loop. We do this by /// looping over the stores in the loop, looking for stores to Must pointers /// which are loop invariant. /// void LICM::PromoteAliasSet(AliasSet &AS) { // We can promote this alias set if it has a store, if it is a "Must" alias // set, if the pointer is loop invariant, and if we are not eliminating any // volatile loads or stores. if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue())) return; assert(!AS.empty() && "Must alias set should have at least one pointer element in it!"); Value *SomePtr = AS.begin()->getValue(); // It isn't safe to promote a load/store from the loop if the load/store is // conditional. For example, turning: // // for () { if (c) *P += 1; } // // into: // // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; // // is not safe, because *P may only be valid to access if 'c' is true. // // It is safe to promote P if all uses are direct load/stores and if at // least one is guaranteed to be executed. bool GuaranteedToExecute = false; SmallVector<Instruction*, 64> LoopUses; SmallPtrSet<Value*, 4> PointerMustAliases; // Check that all of the pointers in the alias set have the same type. We // cannot (yet) promote a memory location that is loaded and stored in // different sizes. for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) { Value *ASIV = ASI->getValue(); PointerMustAliases.insert(ASIV); // Check that all of the pointers in the alias set have the same type. We // cannot (yet) promote a memory location that is loaded and stored in // different sizes. if (SomePtr->getType() != ASIV->getType()) return; for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end(); UI != UE; ++UI) { // Ignore instructions that are outside the loop. Instruction *Use = dyn_cast<Instruction>(*UI); if (!Use || !CurLoop->contains(Use)) continue; // If there is an non-load/store instruction in the loop, we can't promote // it. if (isa<LoadInst>(Use)) assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken"); else if (isa<StoreInst>(Use)) { assert(!cast<StoreInst>(Use)->isVolatile() && "AST broken"); if (Use->getOperand(0) == ASIV) return; } else return; // Not a load or store. if (!GuaranteedToExecute) GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use); LoopUses.push_back(Use); } } // If there isn't a guaranteed-to-execute instruction, we can't promote. if (!GuaranteedToExecute) return; // Otherwise, this is safe to promote, lets do it! DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n'); Changed = true; ++NumPromoted; // We use the SSAUpdater interface to insert phi nodes as required. SmallVector<PHINode*, 16> NewPHIs; SSAUpdater SSA(&NewPHIs); // It wants to know some value of the same type as what we'll be inserting. Value *SomeValue; if (isa<LoadInst>(LoopUses[0])) SomeValue = LoopUses[0]; else SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0); SSA.Initialize(SomeValue->getType(), SomeValue->getName()); // First step: bucket up uses of the pointers by the block they occur in. // This is important because we have to handle multiple defs/uses in a block // ourselves: SSAUpdater is purely for cross-block references. // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element. DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock; for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) { Instruction *User = LoopUses[i]; UsesByBlock[User->getParent()].push_back(User); } // Okay, now we can iterate over all the blocks in the loop with uses, // processing them. Keep track of which loads are loading a live-in value. SmallVector<LoadInst*, 32> LiveInLoads; DenseMap<Value*, Value*> ReplacedLoads; for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) { Instruction *User = LoopUses[LoopUse]; std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()]; // If this block has already been processed, ignore this repeat use. if (BlockUses.empty()) continue; // Okay, this is the first use in the block. If this block just has a // single user in it, we can rewrite it trivially. if (BlockUses.size() == 1) { // If it is a store, it is a trivial def of the value in the block. if (isa<StoreInst>(User)) { SSA.AddAvailableValue(User->getParent(), cast<StoreInst>(User)->getOperand(0)); } else { // Otherwise it is a load, queue it to rewrite as a live-in load. LiveInLoads.push_back(cast<LoadInst>(User)); } BlockUses.clear(); continue; } // Otherwise, check to see if this block is all loads. If so, we can queue // them all as live in loads. bool HasStore = false; for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) { if (isa<StoreInst>(BlockUses[i])) { HasStore = true; break; } } if (!HasStore) { for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) LiveInLoads.push_back(cast<LoadInst>(BlockUses[i])); BlockUses.clear(); continue; } // Otherwise, we have mixed loads and stores (or just a bunch of stores). // Since SSAUpdater is purely for cross-block values, we need to determine // the order of these instructions in the block. If the first use in the // block is a load, then it uses the live in value. The last store defines // the live out value. We handle this by doing a linear scan of the block. BasicBlock *BB = User->getParent(); Value *StoredValue = 0; for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { if (LoadInst *L = dyn_cast<LoadInst>(II)) { // If this is a load from an unrelated pointer, ignore it. if (!PointerMustAliases.count(L->getOperand(0))) continue; // If we haven't seen a store yet, this is a live in use, otherwise // use the stored value. if (StoredValue) { L->replaceAllUsesWith(StoredValue); ReplacedLoads[L] = StoredValue; } else { LiveInLoads.push_back(L); } continue; } if (StoreInst *S = dyn_cast<StoreInst>(II)) { // If this is a store to an unrelated pointer, ignore it. if (!PointerMustAliases.count(S->getOperand(1))) continue; // Remember that this is the active value in the block. StoredValue = S->getOperand(0); } } // The last stored value that happened is the live-out for the block. assert(StoredValue && "Already checked that there is a store in block"); SSA.AddAvailableValue(BB, StoredValue); BlockUses.clear(); } // Now that all the intra-loop values are classified, set up the preheader. // It gets a load of the pointer we're promoting, and it is the live-out value // from the preheader. LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted", Preheader->getTerminator()); SSA.AddAvailableValue(Preheader, PreheaderLoad); // Now that the preheader is good to go, set up the exit blocks. Each exit // block gets a store of the live-out values that feed them. Since we've // already told the SSA updater about the defs in the loop and the preheader // definition, it is all set and we can start using it. SmallVector<BasicBlock*, 8> ExitBlocks; CurLoop->getUniqueExitBlocks(ExitBlocks); for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { BasicBlock *ExitBlock = ExitBlocks[i]; Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); Instruction *InsertPos = ExitBlock->getFirstNonPHI(); new StoreInst(LiveInValue, SomePtr, InsertPos); } // Okay, now we rewrite all loads that use live-in values in the loop, // inserting PHI nodes as necessary. for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) { LoadInst *ALoad = LiveInLoads[i]; Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); ALoad->replaceAllUsesWith(NewVal); CurAST->copyValue(ALoad, NewVal); ReplacedLoads[ALoad] = NewVal; } // If the preheader load is itself a pointer, we need to tell alias analysis // about the new pointer we created in the preheader block and about any PHI // nodes that just got inserted. if (PreheaderLoad->getType()->isPointerTy()) { // Copy any value stored to or loaded from a must-alias of the pointer. CurAST->copyValue(SomeValue, PreheaderLoad); for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) CurAST->copyValue(SomeValue, NewPHIs[i]); } // Now that everything is rewritten, delete the old instructions from the body // of the loop. They should all be dead now. for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) { Instruction *User = LoopUses[i]; // If this is a load that still has uses, then the load must have been added // as a live value in the SSAUpdate data structure for a block (e.g. because // the loaded value was stored later). In this case, we need to recursively // propagate the updates until we get to the real value. if (!User->use_empty()) { Value *NewVal = ReplacedLoads[User]; assert(NewVal && "not a replaced load?"); // Propagate down to the ultimate replacee. The intermediately loads // could theoretically already have been deleted, so we don't want to // dereference the Value*'s. DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); while (RLI != ReplacedLoads.end()) { NewVal = RLI->second; RLI = ReplacedLoads.find(NewVal); } User->replaceAllUsesWith(NewVal); CurAST->copyValue(User, NewVal); } CurAST->deleteValue(User); User->eraseFromParent(); } // fwew, we're done! }
/// Attempt to merge an objc_release with a store, load, and objc_retain to form /// an objc_storeStrong. This can be a little tricky because the instructions /// don't always appear in order, and there may be unrelated intervening /// instructions. void ObjCARCContract::ContractRelease(Instruction *Release, inst_iterator &Iter) { LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release)); if (!Load || !Load->isSimple()) return; // For now, require everything to be in one basic block. BasicBlock *BB = Release->getParent(); if (Load->getParent() != BB) return; // Walk down to find the store and the release, which may be in either order. BasicBlock::iterator I = Load, End = BB->end(); ++I; AliasAnalysis::Location Loc = AA->getLocation(Load); StoreInst *Store = 0; bool SawRelease = false; for (; !Store || !SawRelease; ++I) { if (I == End) return; Instruction *Inst = I; if (Inst == Release) { SawRelease = true; continue; } InstructionClass Class = GetBasicInstructionClass(Inst); // Unrelated retains are harmless. if (IsRetain(Class)) continue; if (Store) { // The store is the point where we're going to put the objc_storeStrong, // so make sure there are no uses after it. if (CanUse(Inst, Load, PA, Class)) return; } else if (AA->getModRefInfo(Inst, Loc) & AliasAnalysis::Mod) { // We are moving the load down to the store, so check for anything // else which writes to the memory between the load and the store. Store = dyn_cast<StoreInst>(Inst); if (!Store || !Store->isSimple()) return; if (Store->getPointerOperand() != Loc.Ptr) return; } } Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand()); // Walk up to find the retain. I = Store; BasicBlock::iterator Begin = BB->begin(); while (I != Begin && GetBasicInstructionClass(I) != IC_Retain) --I; Instruction *Retain = I; if (GetBasicInstructionClass(Retain) != IC_Retain) return; if (GetObjCArg(Retain) != New) return; Changed = true; ++NumStoreStrongs; LLVMContext &C = Release->getContext(); Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); Type *I8XX = PointerType::getUnqual(I8X); Value *Args[] = { Load->getPointerOperand(), New }; if (Args[0]->getType() != I8XX) Args[0] = new BitCastInst(Args[0], I8XX, "", Store); if (Args[1]->getType() != I8X) Args[1] = new BitCastInst(Args[1], I8X, "", Store); CallInst *StoreStrong = CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()), Args, "", Store); StoreStrong->setDoesNotThrow(); StoreStrong->setDebugLoc(Store->getDebugLoc()); // We can't set the tail flag yet, because we haven't yet determined // whether there are any escaping allocas. Remember this call, so that // we can set the tail flag once we know it's safe. StoreStrongCalls.insert(StoreStrong); if (&*Iter == Store) ++Iter; Store->eraseFromParent(); Release->eraseFromParent(); EraseInstruction(Retain); if (Load->use_empty()) Load->eraseFromParent(); }