/// Compute the set of return blocks
void PEI::calculateSets(MachineFunction &Fn) {
  const MachineFrameInfo *MFI = Fn.getFrameInfo();

  // Even when we do not change any CSR, we still want to insert the
  // prologue and epilogue of the function.
  // So set the save points for those.

  // Use the points found by shrink-wrapping, if any.
  if (MFI->getSavePoint()) {
    SaveBlock = MFI->getSavePoint();
    assert(MFI->getRestorePoint() && "Both restore and save must be set");
    MachineBasicBlock *RestoreBlock = MFI->getRestorePoint();
    // If RestoreBlock does not have any successor and is not a return block
    // then the end point is unreachable and we do not need to insert any
    // epilogue.
    if (!RestoreBlock->succ_empty() || isReturnBlock(RestoreBlock))
      RestoreBlocks.push_back(RestoreBlock);
    return;
  }

  // Save refs to entry and return blocks.
  SaveBlock = Fn.begin();
  for (MachineFunction::iterator MBB = Fn.begin(), E = Fn.end();
       MBB != E; ++MBB)
    if (isReturnBlock(MBB))
      RestoreBlocks.push_back(MBB);

  return;
}
Пример #2
0
/// Compute the sets of entry and return blocks for saving and restoring
/// callee-saved registers, and placing prolog and epilog code.
void PEI::calculateSaveRestoreBlocks(MachineFunction &MF) {
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  // Even when we do not change any CSR, we still want to insert the
  // prologue and epilogue of the function.
  // So set the save points for those.

  // Use the points found by shrink-wrapping, if any.
  if (MFI.getSavePoint()) {
    SaveBlocks.push_back(MFI.getSavePoint());
    assert(MFI.getRestorePoint() && "Both restore and save must be set");
    MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
    // If RestoreBlock does not have any successor and is not a return block
    // then the end point is unreachable and we do not need to insert any
    // epilogue.
    if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock())
      RestoreBlocks.push_back(RestoreBlock);
    return;
  }

  // Save refs to entry and return blocks.
  SaveBlocks.push_back(&MF.front());
  for (MachineBasicBlock &MBB : MF) {
    if (MBB.isEHFuncletEntry())
      SaveBlocks.push_back(&MBB);
    if (MBB.isReturnBlock())
      RestoreBlocks.push_back(&MBB);
  }
}
Пример #3
0
bool Thumb1FrameLowering::
restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI,
                            const std::vector<CalleeSavedInfo> &CSI,
                            const TargetRegisterInfo *TRI) const {
  if (CSI.empty())
    return false;

  MachineFunction &MF = *MBB.getParent();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  const TargetInstrInfo &TII = *STI.getInstrInfo();

  bool isVarArg = AFI->getArgRegsSaveSize() > 0;
  DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
  MachineInstrBuilder MIB = BuildMI(MF, DL, TII.get(ARM::tPOP));
  AddDefaultPred(MIB);

  bool NeedsPop = false;
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i-1].getReg();
    if (Reg == ARM::LR) {
      if (MBB.succ_empty()) {
        // Special epilogue for vararg functions. See emitEpilogue
        if (isVarArg)
          continue;
        // ARMv4T requires BX, see emitEpilogue
        if (!STI.hasV5TOps())
          continue;
        Reg = ARM::PC;
        (*MIB).setDesc(TII.get(ARM::tPOP_RET));
        if (MI != MBB.end())
          MIB.copyImplicitOps(*MI);
        MI = MBB.erase(MI);
      } else
        // LR may only be popped into PC, as part of return sequence.
        // If this isn't the return sequence, we'll need emitPopSpecialFixUp
        // to restore LR the hard way.
        continue;
    }
    MIB.addReg(Reg, getDefRegState(true));
    NeedsPop = true;
  }

  // It's illegal to emit pop instruction without operands.
  if (NeedsPop)
    MBB.insert(MI, &*MIB);
  else
    MF.DeleteMachineInstr(MIB);

  return true;
}
Пример #4
0
bool SIInsertSkips::shouldSkip(const MachineBasicBlock &From,
                               const MachineBasicBlock &To) const {
  if (From.succ_empty())
    return false;

  unsigned NumInstr = 0;
  const MachineFunction *MF = From.getParent();

  for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end();
       MBBI != End && MBBI != ToI; ++MBBI) {
    const MachineBasicBlock &MBB = *MBBI;

    for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end();
         NumInstr < SkipThreshold && I != E; ++I) {
      if (opcodeEmitsNoInsts(I->getOpcode()))
        continue;

      // FIXME: Since this is required for correctness, this should be inserted
      // during SILowerControlFlow.

      // When a uniform loop is inside non-uniform control flow, the branch
      // leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken
      // when EXEC = 0. We should skip the loop lest it becomes infinite.
      if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ ||
          I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ)
        return true;

      if (I->isInlineAsm()) {
        const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
        const char *AsmStr = I->getOperand(0).getSymbolName();

        // inlineasm length estimate is number of bytes assuming the longest
        // instruction.
        uint64_t MaxAsmSize = TII->getInlineAsmLength(AsmStr, *MAI);
        NumInstr += MaxAsmSize / MAI->getMaxInstLength();
      } else {
        ++NumInstr;
      }

      if (NumInstr >= SkipThreshold)
        return true;
    }
  }

  return false;
}
Пример #5
0
/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
/// after it, replacing it with an unconditional branch to NewDest.
void
TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
                                             MachineBasicBlock *NewDest) const {
  MachineBasicBlock *MBB = Tail->getParent();

  // Remove all the old successors of MBB from the CFG.
  while (!MBB->succ_empty())
    MBB->removeSuccessor(MBB->succ_begin());

  // Remove all the dead instructions from the end of MBB.
  MBB->erase(Tail, MBB->end());

  // If MBB isn't immediately before MBB, insert a branch to it.
  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
    InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
                 Tail->getDebugLoc());
  MBB->addSuccessor(NewDest);
}
Пример #6
0
/// Compute the sets of entry and return blocks for saving and restoring
/// callee-saved registers, and placing prolog and epilog code.
void PEI::calculateSaveRestoreBlocks(MachineFunction &Fn) {
  MachineFrameInfo &MFI = Fn.getFrameInfo();
  const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();

  // Even when we do not change any CSR, we still want to insert the
  // prologue and epilogue of the function.
  // So set the save points for those.

  // Use the points found by shrink-wrapping, if any.
  if (MFI.getSavePoint()) {
    SaveBlocks.push_back(MFI.getSavePoint());
    assert(MFI.getRestorePoint() && "Both restore and save must be set");
    MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
    // If RestoreBlock does not have any successor and is not a return block
    // then the end point is unreachable and we do not need to insert any
    // epilogue.
    if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock())
      RestoreBlocks.push_back(RestoreBlock);

    // If we are adding return protectors ensure we can find a free register
    if (MFI.hasReturnProtector() &&
        !TFI->determineReturnProtectorTempRegister(Fn, SaveBlocks, RestoreBlocks)) {
      // Shrinkwrapping will prevent finding a free register
      SaveBlocks.clear();
      RestoreBlocks.clear();
      MFI.setSavePoint(nullptr);
      MFI.setRestorePoint(nullptr);
    } else {
      return;
    }
  }

  // Save refs to entry and return blocks.
  SaveBlocks.push_back(&Fn.front());
  for (MachineBasicBlock &MBB : Fn) {
    if (MBB.isEHFuncletEntry())
      SaveBlocks.push_back(&MBB);
    if (MBB.isReturnBlock())
      RestoreBlocks.push_back(&MBB);
  }

  if (MFI.hasReturnProtector())
    TFI->determineReturnProtectorTempRegister(Fn, SaveBlocks, RestoreBlocks);
}
Пример #7
0
bool SILowerControlFlowPass::shouldSkip(MachineBasicBlock *From,
                                        MachineBasicBlock *To) {

  unsigned NumInstr = 0;

  for (MachineBasicBlock *MBB = From; MBB != To && !MBB->succ_empty();
       MBB = *MBB->succ_begin()) {

    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
         NumInstr < SkipThreshold && I != E; ++I) {

      if (I->isBundle() || !I->isBundled())
        if (++NumInstr >= SkipThreshold)
          return true;
    }
  }

  return false;
}
Пример #8
0
bool SIInsertSkips::shouldSkip(const MachineBasicBlock &From,
                               const MachineBasicBlock &To) const {
  if (From.succ_empty())
    return false;

  unsigned NumInstr = 0;
  const MachineFunction *MF = From.getParent();

  for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end();
       MBBI != End && MBBI != ToI; ++MBBI) {
    const MachineBasicBlock &MBB = *MBBI;

    for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end();
         NumInstr < SkipThreshold && I != E; ++I) {
      if (opcodeEmitsNoInsts(I->getOpcode()))
        continue;

      // FIXME: Since this is required for correctness, this should be inserted
      // during SILowerControlFlow.

      // When a uniform loop is inside non-uniform control flow, the branch
      // leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken
      // when EXEC = 0. We should skip the loop lest it becomes infinite.
      if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ ||
          I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ)
        return true;

      if (TII->hasUnwantedEffectsWhenEXECEmpty(*I))
        return true;

      ++NumInstr;
      if (NumInstr >= SkipThreshold)
        return true;
    }
  }

  return false;
}
Пример #9
0
void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
                                         RegScavenger *RS) {
  // Get rid of the easy cases first.
  if (!Save)
    Save = &MBB;
  else
    Save = MDT->findNearestCommonDominator(Save, &MBB);

  if (!Save) {
    LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
    return;
  }

  if (!Restore)
    Restore = &MBB;
  else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
                                // means the block never returns. If that's the
                                // case, we don't want to call
                                // `findNearestCommonDominator`, which will
                                // return `Restore`.
    Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
  else
    Restore = nullptr; // Abort, we can't find a restore point in this case.

  // Make sure we would be able to insert the restore code before the
  // terminator.
  if (Restore == &MBB) {
    for (const MachineInstr &Terminator : MBB.terminators()) {
      if (!useOrDefCSROrFI(Terminator, RS))
        continue;
      // One of the terminator needs to happen before the restore point.
      if (MBB.succ_empty()) {
        Restore = nullptr; // Abort, we can't find a restore point in this case.
        break;
      }
      // Look for a restore point that post-dominates all the successors.
      // The immediate post-dominator is what we are looking for.
      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
      break;
    }
  }

  if (!Restore) {
    LLVM_DEBUG(
        dbgs() << "Restore point needs to be spanned on several blocks\n");
    return;
  }

  // Make sure Save and Restore are suitable for shrink-wrapping:
  // 1. all path from Save needs to lead to Restore before exiting.
  // 2. all path to Restore needs to go through Save from Entry.
  // We achieve that by making sure that:
  // A. Save dominates Restore.
  // B. Restore post-dominates Save.
  // C. Save and Restore are in the same loop.
  bool SaveDominatesRestore = false;
  bool RestorePostDominatesSave = false;
  while (Save && Restore &&
         (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
          !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
          // Post-dominance is not enough in loops to ensure that all uses/defs
          // are after the prologue and before the epilogue at runtime.
          // E.g.,
          // while(1) {
          //  Save
          //  Restore
          //   if (...)
          //     break;
          //  use/def CSRs
          // }
          // All the uses/defs of CSRs are dominated by Save and post-dominated
          // by Restore. However, the CSRs uses are still reachable after
          // Restore and before Save are executed.
          //
          // For now, just push the restore/save points outside of loops.
          // FIXME: Refine the criteria to still find interesting cases
          // for loops.
          MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
    // Fix (A).
    if (!SaveDominatesRestore) {
      Save = MDT->findNearestCommonDominator(Save, Restore);
      continue;
    }
    // Fix (B).
    if (!RestorePostDominatesSave)
      Restore = MPDT->findNearestCommonDominator(Restore, Save);

    // Fix (C).
    if (Save && Restore &&
        (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
      if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
        // Push Save outside of this loop if immediate dominator is different
        // from save block. If immediate dominator is not different, bail out.
        Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
        if (!Save)
          break;
      } else {
        // If the loop does not exit, there is no point in looking
        // for a post-dominator outside the loop.
        SmallVector<MachineBasicBlock*, 4> ExitBlocks;
        MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
        // Push Restore outside of this loop.
        // Look for the immediate post-dominator of the loop exits.
        MachineBasicBlock *IPdom = Restore;
        for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
          IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
          if (!IPdom)
            break;
        }
        // If the immediate post-dominator is not in a less nested loop,
        // then we are stuck in a program with an infinite loop.
        // In that case, we will not find a safe point, hence, bail out.
        if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
          Restore = IPdom;
        else {
          Restore = nullptr;
          break;
        }
      }
    }
  }
}
Пример #10
0
/// TailDuplicate - If it is profitable, duplicate TailBB's contents in each
/// of its predecessors.
bool
TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
                                 SmallVector<MachineBasicBlock*, 8> &TDBBs,
                                 SmallVector<MachineInstr*, 16> &Copies) {
  if (!shouldTailDuplicate(MF, *TailBB))
    return false;

  DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');

  // Iterate through all the unique predecessors and tail-duplicate this
  // block into them, if possible. Copying the list ahead of time also
  // avoids trouble with the predecessor list reallocating.
  bool Changed = false;
  SmallSetVector<MachineBasicBlock*, 8> Preds(TailBB->pred_begin(),
                                              TailBB->pred_end());
  DenseSet<unsigned> UsedByPhi;
  getRegsUsedByPHIs(*TailBB, &UsedByPhi);
  for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
       PE = Preds.end(); PI != PE; ++PI) {
    MachineBasicBlock *PredBB = *PI;

    assert(TailBB != PredBB &&
           "Single-block loop should have been rejected earlier!");
    // EH edges are ignored by AnalyzeBranch.
    if (PredBB->succ_size() > 1)
      continue;

    MachineBasicBlock *PredTBB, *PredFBB;
    SmallVector<MachineOperand, 4> PredCond;
    if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
      continue;
    if (!PredCond.empty())
      continue;
    // Don't duplicate into a fall-through predecessor (at least for now).
    if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
      continue;

    DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
                 << "From Succ: " << *TailBB);

    TDBBs.push_back(PredBB);

    // Remove PredBB's unconditional branch.
    TII->RemoveBranch(*PredBB);

    // Clone the contents of TailBB into PredBB.
    DenseMap<unsigned, unsigned> LocalVRMap;
    SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
    MachineBasicBlock::iterator I = TailBB->begin();
    while (I != TailBB->end()) {
      MachineInstr *MI = &*I;
      ++I;
      if (MI->isPHI()) {
        // Replace the uses of the def of the PHI with the register coming
        // from PredBB.
        ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
      } else {
        // Replace def of virtual registers with new registers, and update
        // uses with PHI source register or the new registers.
        DuplicateInstruction(MI, TailBB, PredBB, MF, LocalVRMap, UsedByPhi);
      }
    }
    MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator();
    for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
      Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(),
                               TII->get(TargetOpcode::COPY),
                               CopyInfos[i].first).addReg(CopyInfos[i].second));
    }

    // Simplify
    TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true);

    NumInstrDups += TailBB->size() - 1; // subtract one for removed branch

    // Update the CFG.
    PredBB->removeSuccessor(PredBB->succ_begin());
    assert(PredBB->succ_empty() &&
           "TailDuplicate called on block with multiple successors!");
    for (MachineBasicBlock::succ_iterator I = TailBB->succ_begin(),
           E = TailBB->succ_end(); I != E; ++I)
      PredBB->addSuccessor(*I);

    Changed = true;
    ++NumTailDups;
  }

  // If TailBB was duplicated into all its predecessors except for the prior
  // block, which falls through unconditionally, move the contents of this
  // block into the prior block.
  MachineBasicBlock *PrevBB = prior(MachineFunction::iterator(TailBB));
  MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0;
  SmallVector<MachineOperand, 4> PriorCond;
  // This has to check PrevBB->succ_size() because EH edges are ignored by
  // AnalyzeBranch.
  if (PrevBB->succ_size() == 1 && 
      !TII->AnalyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond, true) &&
      PriorCond.empty() && !PriorTBB && TailBB->pred_size() == 1 &&
      !TailBB->hasAddressTaken()) {
    DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
          << "From MBB: " << *TailBB);
    if (PreRegAlloc) {
      DenseMap<unsigned, unsigned> LocalVRMap;
      SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
      MachineBasicBlock::iterator I = TailBB->begin();
      // Process PHI instructions first.
      while (I != TailBB->end() && I->isPHI()) {
        // Replace the uses of the def of the PHI with the register coming
        // from PredBB.
        MachineInstr *MI = &*I++;
        ProcessPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true);
        if (MI->getParent())
          MI->eraseFromParent();
      }

      // Now copy the non-PHI instructions.
      while (I != TailBB->end()) {
        // Replace def of virtual registers with new registers, and update
        // uses with PHI source register or the new registers.
        MachineInstr *MI = &*I++;
        DuplicateInstruction(MI, TailBB, PrevBB, MF, LocalVRMap, UsedByPhi);
        MI->eraseFromParent();
      }
      MachineBasicBlock::iterator Loc = PrevBB->getFirstTerminator();
      for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
        Copies.push_back(BuildMI(*PrevBB, Loc, DebugLoc(),
                                 TII->get(TargetOpcode::COPY),
                                 CopyInfos[i].first)
                           .addReg(CopyInfos[i].second));
      }
    } else {
      // No PHIs to worry about, just splice the instructions over.
      PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
    }
    PrevBB->removeSuccessor(PrevBB->succ_begin());
    assert(PrevBB->succ_empty());
    PrevBB->transferSuccessors(TailBB);
    TDBBs.push_back(PrevBB);
    Changed = true;
  }

  // If this is after register allocation, there are no phis to fix.
  if (!PreRegAlloc)
    return Changed;

  // If we made no changes so far, we are safe.
  if (!Changed)
    return Changed;


  // Handle the nasty case in that we duplicated a block that is part of a loop
  // into some but not all of its predecessors. For example:
  //    1 -> 2 <-> 3                 |
  //          \                      |
  //           \---> rest            |
  // if we duplicate 2 into 1 but not into 3, we end up with
  // 12 -> 3 <-> 2 -> rest           |
  //   \             /               |
  //    \----->-----/                |
  // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
  // with a phi in 3 (which now dominates 2).
  // What we do here is introduce a copy in 3 of the register defined by the
  // phi, just like when we are duplicating 2 into 3, but we don't copy any
  // real instructions or remove the 3 -> 2 edge from the phi in 2.
  for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
       PE = Preds.end(); PI != PE; ++PI) {
    MachineBasicBlock *PredBB = *PI;
    if (std::find(TDBBs.begin(), TDBBs.end(), PredBB) != TDBBs.end())
      continue;

    // EH edges
    if (PredBB->succ_size() != 1)
      continue;

    DenseMap<unsigned, unsigned> LocalVRMap;
    SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
    MachineBasicBlock::iterator I = TailBB->begin();
    // Process PHI instructions first.
    while (I != TailBB->end() && I->isPHI()) {
      // Replace the uses of the def of the PHI with the register coming
      // from PredBB.
      MachineInstr *MI = &*I++;
      ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
    }
    MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator();
    for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
      Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(),
                               TII->get(TargetOpcode::COPY),
                               CopyInfos[i].first).addReg(CopyInfos[i].second));
    }
  }

  return Changed;
}
Пример #11
0
bool MachineCopyPropagation::CopyPropagateBlock(MachineBasicBlock &MBB) {
  SmallSetVector<MachineInstr*, 8> MaybeDeadCopies;  // Candidates for deletion
  DenseMap<unsigned, MachineInstr*> AvailCopyMap;    // Def -> available copies map
  DenseMap<unsigned, MachineInstr*> CopyMap;         // Def -> copies map
  SourceMap SrcMap; // Src -> Def map

  bool Changed = false;
  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ) {
    MachineInstr *MI = &*I;
    ++I;

    if (MI->isCopy()) {
      unsigned Def = MI->getOperand(0).getReg();
      unsigned Src = MI->getOperand(1).getReg();

      if (TargetRegisterInfo::isVirtualRegister(Def) ||
          TargetRegisterInfo::isVirtualRegister(Src))
        report_fatal_error("MachineCopyPropagation should be run after"
                           " register allocation!");

      DenseMap<unsigned, MachineInstr*>::iterator CI = AvailCopyMap.find(Src);
      if (CI != AvailCopyMap.end()) {
        MachineInstr *CopyMI = CI->second;
        if (!MRI->isReserved(Def) &&
            (!MRI->isReserved(Src) || NoInterveningSideEffect(CopyMI, MI)) &&
            isNopCopy(CopyMI, Def, Src, TRI)) {
          // The two copies cancel out and the source of the first copy
          // hasn't been overridden, eliminate the second one. e.g.
          //  %ECX<def> = COPY %EAX<kill>
          //  ... nothing clobbered EAX.
          //  %EAX<def> = COPY %ECX
          // =>
          //  %ECX<def> = COPY %EAX
          //
          // Also avoid eliminating a copy from reserved registers unless the
          // definition is proven not clobbered. e.g.
          // %RSP<def> = COPY %RAX
          // CALL
          // %RAX<def> = COPY %RSP

          // Clear any kills of Def between CopyMI and MI. This extends the
          // live range.
          for (MachineBasicBlock::iterator I = CopyMI, E = MI; I != E; ++I)
            I->clearRegisterKills(Def, TRI);

          removeCopy(MI);
          Changed = true;
          ++NumDeletes;
          continue;
        }
      }

      // If Src is defined by a previous copy, it cannot be eliminated.
      for (MCRegAliasIterator AI(Src, TRI, true); AI.isValid(); ++AI) {
        CI = CopyMap.find(*AI);
        if (CI != CopyMap.end())
          MaybeDeadCopies.remove(CI->second);
      }

      // Copy is now a candidate for deletion.
      MaybeDeadCopies.insert(MI);

      // If 'Src' is previously source of another copy, then this earlier copy's
      // source is no longer available. e.g.
      // %xmm9<def> = copy %xmm2
      // ...
      // %xmm2<def> = copy %xmm0
      // ...
      // %xmm2<def> = copy %xmm9
      SourceNoLongerAvailable(Def, SrcMap, AvailCopyMap);

      // Remember Def is defined by the copy.
      // ... Make sure to clear the def maps of aliases first.
      for (MCRegAliasIterator AI(Def, TRI, false); AI.isValid(); ++AI) {
        CopyMap.erase(*AI);
        AvailCopyMap.erase(*AI);
      }
      CopyMap[Def] = MI;
      AvailCopyMap[Def] = MI;
      for (MCSubRegIterator SR(Def, TRI); SR.isValid(); ++SR) {
        CopyMap[*SR] = MI;
        AvailCopyMap[*SR] = MI;
      }

      // Remember source that's copied to Def. Once it's clobbered, then
      // it's no longer available for copy propagation.
      if (std::find(SrcMap[Src].begin(), SrcMap[Src].end(), Def) ==
          SrcMap[Src].end()) {
        SrcMap[Src].push_back(Def);
      }

      continue;
    }

    // Not a copy.
    SmallVector<unsigned, 2> Defs;
    int RegMaskOpNum = -1;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isRegMask())
        RegMaskOpNum = i;
      if (!MO.isReg())
        continue;
      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;

      if (TargetRegisterInfo::isVirtualRegister(Reg))
        report_fatal_error("MachineCopyPropagation should be run after"
                           " register allocation!");

      if (MO.isDef()) {
        Defs.push_back(Reg);
        continue;
      }

      // If 'Reg' is defined by a copy, the copy is no longer a candidate
      // for elimination.
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
        DenseMap<unsigned, MachineInstr*>::iterator CI = CopyMap.find(*AI);
        if (CI != CopyMap.end())
          MaybeDeadCopies.remove(CI->second);
      }
    }

    // The instruction has a register mask operand which means that it clobbers
    // a large set of registers.  It is possible to use the register mask to
    // prune the available copies, but treat it like a basic block boundary for
    // now.
    if (RegMaskOpNum >= 0) {
      // Erase any MaybeDeadCopies whose destination register is clobbered.
      const MachineOperand &MaskMO = MI->getOperand(RegMaskOpNum);
      for (SmallSetVector<MachineInstr*, 8>::iterator
           DI = MaybeDeadCopies.begin(), DE = MaybeDeadCopies.end();
           DI != DE; ++DI) {
        unsigned Reg = (*DI)->getOperand(0).getReg();
        if (MRI->isReserved(Reg) || !MaskMO.clobbersPhysReg(Reg))
          continue;
        removeCopy(*DI);
        Changed = true;
        ++NumDeletes;
      }

      // Clear all data structures as if we were beginning a new basic block.
      MaybeDeadCopies.clear();
      AvailCopyMap.clear();
      CopyMap.clear();
      SrcMap.clear();
      continue;
    }

    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
      unsigned Reg = Defs[i];

      // No longer defined by a copy.
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
        CopyMap.erase(*AI);
        AvailCopyMap.erase(*AI);
      }

      // If 'Reg' is previously source of a copy, it is no longer available for
      // copy propagation.
      SourceNoLongerAvailable(Reg, SrcMap, AvailCopyMap);
    }
  }

  // If MBB doesn't have successors, delete the copies whose defs are not used.
  // If MBB does have successors, then conservative assume the defs are live-out
  // since we don't want to trust live-in lists.
  if (MBB.succ_empty()) {
    for (SmallSetVector<MachineInstr*, 8>::iterator
           DI = MaybeDeadCopies.begin(), DE = MaybeDeadCopies.end();
         DI != DE; ++DI) {
      if (!MRI->isReserved((*DI)->getOperand(0).getReg())) {
        removeCopy(*DI);
        Changed = true;
        ++NumDeletes;
      }
    }
  }

  return Changed;
}
Пример #12
0
bool Thumb1FrameLowering::
restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI,
                            std::vector<CalleeSavedInfo> &CSI,
                            const TargetRegisterInfo *TRI) const {
  if (CSI.empty())
    return false;

  MachineFunction &MF = *MBB.getParent();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  const TargetInstrInfo &TII = *STI.getInstrInfo();
  const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
      MF.getSubtarget().getRegisterInfo());

  bool isVarArg = AFI->getArgRegsSaveSize() > 0;
  DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();

  ARMRegSet LoRegsToRestore;
  ARMRegSet HiRegsToRestore;
  // Low registers (r0-r7) which can be used to restore the high registers.
  ARMRegSet CopyRegs;

  for (CalleeSavedInfo I : CSI) {
    unsigned Reg = I.getReg();

    if (ARM::tGPRRegClass.contains(Reg) || Reg == ARM::LR) {
      LoRegsToRestore[Reg] = true;
    } else if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::LR) {
      HiRegsToRestore[Reg] = true;
    } else {
      llvm_unreachable("callee-saved register of unexpected class");
    }

    // If this is a low register not used as the frame pointer, we may want to
    // use it for restoring the high registers.
    if ((ARM::tGPRRegClass.contains(Reg)) &&
        !(hasFP(MF) && Reg == RegInfo->getFrameRegister(MF)))
      CopyRegs[Reg] = true;
  }

  // If this is a return block, we may be able to use some unused return value
  // registers for restoring the high regs.
  auto Terminator = MBB.getFirstTerminator();
  if (Terminator != MBB.end() && Terminator->getOpcode() == ARM::tBX_RET) {
    CopyRegs[ARM::R0] = true;
    CopyRegs[ARM::R1] = true;
    CopyRegs[ARM::R2] = true;
    CopyRegs[ARM::R3] = true;
    for (auto Op : Terminator->implicit_operands()) {
      if (Op.isReg())
        CopyRegs[Op.getReg()] = false;
    }
  }

  static const unsigned AllCopyRegs[] = {ARM::R0, ARM::R1, ARM::R2, ARM::R3,
                                         ARM::R4, ARM::R5, ARM::R6, ARM::R7};
  static const unsigned AllHighRegs[] = {ARM::R8, ARM::R9, ARM::R10, ARM::R11};

  const unsigned *AllCopyRegsEnd = std::end(AllCopyRegs);
  const unsigned *AllHighRegsEnd = std::end(AllHighRegs);

  // Find the first register to restore.
  auto HiRegToRestore = findNextOrderedReg(std::begin(AllHighRegs),
                                           HiRegsToRestore, AllHighRegsEnd);

  while (HiRegToRestore != AllHighRegsEnd) {
    assert(!CopyRegs.none());
    // Find the first low register to use.
    auto CopyReg =
        findNextOrderedReg(std::begin(AllCopyRegs), CopyRegs, AllCopyRegsEnd);

    // Create the POP instruction.
    MachineInstrBuilder PopMIB =
        BuildMI(MBB, MI, DL, TII.get(ARM::tPOP)).add(predOps(ARMCC::AL));

    while (HiRegToRestore != AllHighRegsEnd && CopyReg != AllCopyRegsEnd) {
      // Add the low register to the POP.
      PopMIB.addReg(*CopyReg, RegState::Define);

      // Create the MOV from low to high register.
      BuildMI(MBB, MI, DL, TII.get(ARM::tMOVr))
          .addReg(*HiRegToRestore, RegState::Define)
          .addReg(*CopyReg, RegState::Kill)
          .add(predOps(ARMCC::AL));

      CopyReg = findNextOrderedReg(++CopyReg, CopyRegs, AllCopyRegsEnd);
      HiRegToRestore =
          findNextOrderedReg(++HiRegToRestore, HiRegsToRestore, AllHighRegsEnd);
    }
  }

  MachineInstrBuilder MIB =
      BuildMI(MF, DL, TII.get(ARM::tPOP)).add(predOps(ARMCC::AL));

  bool NeedsPop = false;
  for (unsigned i = CSI.size(); i != 0; --i) {
    CalleeSavedInfo &Info = CSI[i-1];
    unsigned Reg = Info.getReg();

    // High registers (excluding lr) have already been dealt with
    if (!(ARM::tGPRRegClass.contains(Reg) || Reg == ARM::LR))
      continue;

    if (Reg == ARM::LR) {
      Info.setRestored(false);
      if (!MBB.succ_empty() ||
          MI->getOpcode() == ARM::TCRETURNdi ||
          MI->getOpcode() == ARM::TCRETURNri)
        // LR may only be popped into PC, as part of return sequence.
        // If this isn't the return sequence, we'll need emitPopSpecialFixUp
        // to restore LR the hard way.
        // FIXME: if we don't pass any stack arguments it would be actually
        // advantageous *and* correct to do the conversion to an ordinary call
        // instruction here.
        continue;
      // Special epilogue for vararg functions. See emitEpilogue
      if (isVarArg)
        continue;
      // ARMv4T requires BX, see emitEpilogue
      if (!STI.hasV5TOps())
        continue;

      // Pop LR into PC.
      Reg = ARM::PC;
      (*MIB).setDesc(TII.get(ARM::tPOP_RET));
      if (MI != MBB.end())
        MIB.copyImplicitOps(*MI);
      MI = MBB.erase(MI);
    }
    MIB.addReg(Reg, getDefRegState(true));
    NeedsPop = true;
  }

  // It's illegal to emit pop instruction without operands.
  if (NeedsPop)
    MBB.insert(MI, &*MIB);
  else
    MF.DeleteMachineInstr(MIB);

  return true;
}
Пример #13
0
/// If it is profitable, duplicate TailBB's contents in each
/// of its predecessors.
/// \p IsSimple result of isSimpleBB
/// \p TailBB   Block to be duplicated.
/// \p ForcedLayoutPred  When non-null, use this block as the layout predecessor
///                      instead of the previous block in MF's order.
/// \p TDBBs             A vector to keep track of all blocks tail-duplicated
///                      into.
/// \p Copies            A vector of copy instructions inserted. Used later to
///                      walk all the inserted copies and remove redundant ones.
bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
                                   MachineBasicBlock *ForcedLayoutPred,
                                   SmallVectorImpl<MachineBasicBlock *> &TDBBs,
                                   SmallVectorImpl<MachineInstr *> &Copies) {
  DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');

  DenseSet<unsigned> UsedByPhi;
  getRegsUsedByPHIs(*TailBB, &UsedByPhi);

  if (IsSimple)
    return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);

  // Iterate through all the unique predecessors and tail-duplicate this
  // block into them, if possible. Copying the list ahead of time also
  // avoids trouble with the predecessor list reallocating.
  bool Changed = false;
  SmallSetVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
                                               TailBB->pred_end());
  for (MachineBasicBlock *PredBB : Preds) {
    assert(TailBB != PredBB &&
           "Single-block loop should have been rejected earlier!");

    if (!canTailDuplicate(TailBB, PredBB))
      continue;

    // Don't duplicate into a fall-through predecessor (at least for now).
    bool IsLayoutSuccessor = false;
    if (ForcedLayoutPred)
      IsLayoutSuccessor = (ForcedLayoutPred == PredBB);
    else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
      IsLayoutSuccessor = true;
    if (IsLayoutSuccessor)
      continue;

    DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
                 << "From Succ: " << *TailBB);

    TDBBs.push_back(PredBB);

    // Remove PredBB's unconditional branch.
    TII->removeBranch(*PredBB);

    // Clone the contents of TailBB into PredBB.
    DenseMap<unsigned, RegSubRegPair> LocalVRMap;
    SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
    for (MachineBasicBlock::iterator I = TailBB->begin(), E = TailBB->end();
         I != E; /* empty */) {
      MachineInstr *MI = &*I;
      ++I;
      if (MI->isPHI()) {
        // Replace the uses of the def of the PHI with the register coming
        // from PredBB.
        processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
      } else {
        // Replace def of virtual registers with new registers, and update
        // uses with PHI source register or the new registers.
        duplicateInstruction(MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
      }
    }
    appendCopies(PredBB, CopyInfos, Copies);

    // Simplify
    MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
    SmallVector<MachineOperand, 4> PredCond;
    TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond);

    NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch

    // Update the CFG.
    PredBB->removeSuccessor(PredBB->succ_begin());
    assert(PredBB->succ_empty() &&
           "TailDuplicate called on block with multiple successors!");
    for (MachineBasicBlock *Succ : TailBB->successors())
      PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));

    Changed = true;
    ++NumTailDups;
  }

  // If TailBB was duplicated into all its predecessors except for the prior
  // block, which falls through unconditionally, move the contents of this
  // block into the prior block.
  MachineBasicBlock *PrevBB = ForcedLayoutPred;
  if (!PrevBB)
    PrevBB = &*std::prev(TailBB->getIterator());
  MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
  SmallVector<MachineOperand, 4> PriorCond;
  // This has to check PrevBB->succ_size() because EH edges are ignored by
  // analyzeBranch.
  if (PrevBB->succ_size() == 1 &&
      // Layout preds are not always CFG preds. Check.
      *PrevBB->succ_begin() == TailBB &&
      !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) &&
      PriorCond.empty() &&
      (!PriorTBB || PriorTBB == TailBB) &&
      TailBB->pred_size() == 1 &&
      !TailBB->hasAddressTaken()) {
    DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
                 << "From MBB: " << *TailBB);
    // There may be a branch to the layout successor. This is unlikely but it
    // happens. The correct thing to do is to remove the branch before
    // duplicating the instructions in all cases.
    TII->removeBranch(*PrevBB);
    if (PreRegAlloc) {
      DenseMap<unsigned, RegSubRegPair> LocalVRMap;
      SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
      MachineBasicBlock::iterator I = TailBB->begin();
      // Process PHI instructions first.
      while (I != TailBB->end() && I->isPHI()) {
        // Replace the uses of the def of the PHI with the register coming
        // from PredBB.
        MachineInstr *MI = &*I++;
        processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true);
      }

      // Now copy the non-PHI instructions.
      while (I != TailBB->end()) {
        // Replace def of virtual registers with new registers, and update
        // uses with PHI source register or the new registers.
        MachineInstr *MI = &*I++;
        assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
        duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
        MI->eraseFromParent();
      }
      appendCopies(PrevBB, CopyInfos, Copies);
    } else {
      TII->removeBranch(*PrevBB);
      // No PHIs to worry about, just splice the instructions over.
      PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
    }
    PrevBB->removeSuccessor(PrevBB->succ_begin());
    assert(PrevBB->succ_empty());
    PrevBB->transferSuccessors(TailBB);
    TDBBs.push_back(PrevBB);
    Changed = true;
  }

  // If this is after register allocation, there are no phis to fix.
  if (!PreRegAlloc)
    return Changed;

  // If we made no changes so far, we are safe.
  if (!Changed)
    return Changed;

  // Handle the nasty case in that we duplicated a block that is part of a loop
  // into some but not all of its predecessors. For example:
  //    1 -> 2 <-> 3                 |
  //          \                      |
  //           \---> rest            |
  // if we duplicate 2 into 1 but not into 3, we end up with
  // 12 -> 3 <-> 2 -> rest           |
  //   \             /               |
  //    \----->-----/                |
  // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
  // with a phi in 3 (which now dominates 2).
  // What we do here is introduce a copy in 3 of the register defined by the
  // phi, just like when we are duplicating 2 into 3, but we don't copy any
  // real instructions or remove the 3 -> 2 edge from the phi in 2.
  for (MachineBasicBlock *PredBB : Preds) {
    if (is_contained(TDBBs, PredBB))
      continue;

    // EH edges
    if (PredBB->succ_size() != 1)
      continue;

    DenseMap<unsigned, RegSubRegPair> LocalVRMap;
    SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
    MachineBasicBlock::iterator I = TailBB->begin();
    // Process PHI instructions first.
    while (I != TailBB->end() && I->isPHI()) {
      // Replace the uses of the def of the PHI with the register coming
      // from PredBB.
      MachineInstr *MI = &*I++;
      processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
    }
    appendCopies(PredBB, CopyInfos, Copies);
  }

  return Changed;
}
Пример #14
0
/// TailDuplicate - If it is profitable, duplicate TailBB's contents in each
/// of its predecessors.
bool
TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
                                 SmallVector<MachineBasicBlock*, 8> &TDBBs,
                                 SmallVector<MachineInstr*, 16> &Copies) {
    // Set the limit on the number of instructions to duplicate, with a default
    // of one less than the tail-merge threshold. When optimizing for size,
    // duplicate only one, because one branch instruction can be eliminated to
    // compensate for the duplication.
    unsigned MaxDuplicateCount;
    if (TailDuplicateSize.getNumOccurrences() == 0 &&
            MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
        MaxDuplicateCount = 1;
    else
        MaxDuplicateCount = TailDuplicateSize;

    if (PreRegAlloc) {
        if (TailBB->empty())
            return false;
        const TargetInstrDesc &TID = TailBB->back().getDesc();
        // Pre-regalloc tail duplication hurts compile time and doesn't help
        // much except for indirect branches and returns.
        if (!TID.isIndirectBranch() && !TID.isReturn())
            return false;
        // If the target has hardware branch prediction that can handle indirect
        // branches, duplicating them can often make them predictable when there
        // are common paths through the code.  The limit needs to be high enough
        // to allow undoing the effects of tail merging and other optimizations
        // that rearrange the predecessors of the indirect branch.
        MaxDuplicateCount = 20;
    }

    // Don't try to tail-duplicate single-block loops.
    if (TailBB->isSuccessor(TailBB))
        return false;

    // Check the instructions in the block to determine whether tail-duplication
    // is invalid or unlikely to be profitable.
    unsigned InstrCount = 0;
    bool HasCall = false;
    for (MachineBasicBlock::iterator I = TailBB->begin();
            I != TailBB->end(); ++I) {
        // Non-duplicable things shouldn't be tail-duplicated.
        if (I->getDesc().isNotDuplicable()) return false;
        // Do not duplicate 'return' instructions if this is a pre-regalloc run.
        // A return may expand into a lot more instructions (e.g. reload of callee
        // saved registers) after PEI.
        if (PreRegAlloc && I->getDesc().isReturn()) return false;
        // Don't duplicate more than the threshold.
        if (InstrCount == MaxDuplicateCount) return false;
        // Remember if we saw a call.
        if (I->getDesc().isCall()) HasCall = true;
        if (!I->isPHI() && !I->isDebugValue())
            InstrCount += 1;
    }
    // Don't tail-duplicate calls before register allocation. Calls presents a
    // barrier to register allocation so duplicating them may end up increasing
    // spills.
    if (InstrCount > 1 && (PreRegAlloc && HasCall))
        return false;

    DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');

    // Iterate through all the unique predecessors and tail-duplicate this
    // block into them, if possible. Copying the list ahead of time also
    // avoids trouble with the predecessor list reallocating.
    bool Changed = false;
    SmallSetVector<MachineBasicBlock*, 8> Preds(TailBB->pred_begin(),
            TailBB->pred_end());
    for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
            PE = Preds.end(); PI != PE; ++PI) {
        MachineBasicBlock *PredBB = *PI;

        assert(TailBB != PredBB &&
               "Single-block loop should have been rejected earlier!");
        if (PredBB->succ_size() > 1) continue;

        MachineBasicBlock *PredTBB, *PredFBB;
        SmallVector<MachineOperand, 4> PredCond;
        if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
            continue;
        if (!PredCond.empty())
            continue;
        // EH edges are ignored by AnalyzeBranch.
        if (PredBB->succ_size() != 1)
            continue;
        // Don't duplicate into a fall-through predecessor (at least for now).
        if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
            continue;

        DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
              << "From Succ: " << *TailBB);

        TDBBs.push_back(PredBB);

        // Remove PredBB's unconditional branch.
        TII->RemoveBranch(*PredBB);

        // Clone the contents of TailBB into PredBB.
        DenseMap<unsigned, unsigned> LocalVRMap;
        SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
        MachineBasicBlock::iterator I = TailBB->begin();
        while (I != TailBB->end()) {
            MachineInstr *MI = &*I;
            ++I;
            if (MI->isPHI()) {
                // Replace the uses of the def of the PHI with the register coming
                // from PredBB.
                ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos);
            } else {
                // Replace def of virtual registers with new registers, and update
                // uses with PHI source register or the new registers.
                DuplicateInstruction(MI, TailBB, PredBB, MF, LocalVRMap);
            }
        }
        MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator();
        for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
            Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(),
                                     TII->get(TargetOpcode::COPY),
                                     CopyInfos[i].first).addReg(CopyInfos[i].second));
        }
        NumInstrDups += TailBB->size() - 1; // subtract one for removed branch

        // Update the CFG.
        PredBB->removeSuccessor(PredBB->succ_begin());
        assert(PredBB->succ_empty() &&
               "TailDuplicate called on block with multiple successors!");
        for (MachineBasicBlock::succ_iterator I = TailBB->succ_begin(),
                E = TailBB->succ_end(); I != E; ++I)
            PredBB->addSuccessor(*I);

        Changed = true;
        ++NumTailDups;
    }

    // If TailBB was duplicated into all its predecessors except for the prior
    // block, which falls through unconditionally, move the contents of this
    // block into the prior block.
    MachineBasicBlock *PrevBB = prior(MachineFunction::iterator(TailBB));
    MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0;
    SmallVector<MachineOperand, 4> PriorCond;
    bool PriorUnAnalyzable =
        TII->AnalyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond, true);
    // This has to check PrevBB->succ_size() because EH edges are ignored by
    // AnalyzeBranch.
    if (!PriorUnAnalyzable && PriorCond.empty() && !PriorTBB &&
            TailBB->pred_size() == 1 && PrevBB->succ_size() == 1 &&
            !TailBB->hasAddressTaken()) {
        DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
              << "From MBB: " << *TailBB);
        if (PreRegAlloc) {
            DenseMap<unsigned, unsigned> LocalVRMap;
            SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
            MachineBasicBlock::iterator I = TailBB->begin();
            // Process PHI instructions first.
            while (I != TailBB->end() && I->isPHI()) {
                // Replace the uses of the def of the PHI with the register coming
                // from PredBB.
                MachineInstr *MI = &*I++;
                ProcessPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos);
                if (MI->getParent())
                    MI->eraseFromParent();
            }

            // Now copy the non-PHI instructions.
            while (I != TailBB->end()) {
                // Replace def of virtual registers with new registers, and update
                // uses with PHI source register or the new registers.
                MachineInstr *MI = &*I++;
                DuplicateInstruction(MI, TailBB, PrevBB, MF, LocalVRMap);
                MI->eraseFromParent();
            }
            MachineBasicBlock::iterator Loc = PrevBB->getFirstTerminator();
            for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
                Copies.push_back(BuildMI(*PrevBB, Loc, DebugLoc(),
                                         TII->get(TargetOpcode::COPY),
                                         CopyInfos[i].first)
                                 .addReg(CopyInfos[i].second));
            }
        } else {
            // No PHIs to worry about, just splice the instructions over.
            PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
        }
        PrevBB->removeSuccessor(PrevBB->succ_begin());
        assert(PrevBB->succ_empty());
        PrevBB->transferSuccessors(TailBB);
        TDBBs.push_back(PrevBB);
        Changed = true;
    }

    return Changed;
}
Пример #15
0
bool MachineCopyPropagation::CopyPropagateBlock(MachineBasicBlock &MBB) {
  SmallSetVector<MachineInstr*, 8> MaybeDeadCopies; // Candidates for deletion
  DenseMap<unsigned, MachineInstr*> AvailCopyMap;   // Def -> available copies map
  DenseMap<unsigned, MachineInstr*> CopyMap;        // Def -> copies map
  DenseMap<unsigned, unsigned> SrcMap;              // Src -> Def map

  bool Changed = false;
  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ) {
    MachineInstr *MI = &*I;
    ++I;

    if (MI->isCopy()) {
      unsigned Def = MI->getOperand(0).getReg();
      unsigned Src = MI->getOperand(1).getReg();

      if (TargetRegisterInfo::isVirtualRegister(Def) ||
          TargetRegisterInfo::isVirtualRegister(Src))
        report_fatal_error("MachineCopyPropagation should be run after"
                           " register allocation!");

      DenseMap<unsigned, MachineInstr*>::iterator CI = AvailCopyMap.find(Src);
      if (CI != AvailCopyMap.end()) {
        MachineInstr *CopyMI = CI->second;
        unsigned SrcSrc = CopyMI->getOperand(1).getReg();
        if (!ReservedRegs.test(Def) &&
            (!ReservedRegs.test(Src) || NoInterveningSideEffect(CopyMI, MI)) &&
            (SrcSrc == Def || TRI->isSubRegister(SrcSrc, Def))) {
          // The two copies cancel out and the source of the first copy
          // hasn't been overridden, eliminate the second one. e.g.
          //  %ECX<def> = COPY %EAX<kill>
          //  ... nothing clobbered EAX.
          //  %EAX<def> = COPY %ECX
          // =>
          //  %ECX<def> = COPY %EAX
          //
          // Also avoid eliminating a copy from reserved registers unless the
          // definition is proven not clobbered. e.g.
          // %RSP<def> = COPY %RAX
          // CALL
          // %RAX<def> = COPY %RSP
          CopyMI->getOperand(1).setIsKill(false);
          MI->eraseFromParent();
          Changed = true;
          ++NumDeletes;
          continue;
        }
      }

      // If Src is defined by a previous copy, it cannot be eliminated.
      CI = CopyMap.find(Src);
      if (CI != CopyMap.end())
        MaybeDeadCopies.remove(CI->second);
      for (const unsigned *AS = TRI->getAliasSet(Src); *AS; ++AS) {
        CI = CopyMap.find(*AS);
        if (CI != CopyMap.end())
          MaybeDeadCopies.remove(CI->second);
      }

      // Copy is now a candidate for deletion.
      MaybeDeadCopies.insert(MI);

      // If 'Src' is previously source of another copy, then this earlier copy's
      // source is no longer available. e.g.
      // %xmm9<def> = copy %xmm2
      // ...
      // %xmm2<def> = copy %xmm0
      // ...
      // %xmm2<def> = copy %xmm9
      SourceNoLongerAvailable(Def, SrcMap, AvailCopyMap);

      // Remember Def is defined by the copy.
      CopyMap[Def] = MI;
      AvailCopyMap[Def] = MI;
      for (const unsigned *SR = TRI->getSubRegisters(Def); *SR; ++SR) {
        CopyMap[*SR] = MI;
        AvailCopyMap[*SR] = MI;
      }

      // Remember source that's copied to Def. Once it's clobbered, then
      // it's no longer available for copy propagation.
      SrcMap[Src] = Def;

      continue;
    }

    // Not a copy.
    SmallVector<unsigned, 2> Defs;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg())
        continue;
      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;

      if (TargetRegisterInfo::isVirtualRegister(Reg))
        report_fatal_error("MachineCopyPropagation should be run after"
                           " register allocation!");

      if (MO.isDef()) {
        Defs.push_back(Reg);
        continue;
      }

      // If 'Reg' is defined by a copy, the copy is no longer a candidate
      // for elimination.
      DenseMap<unsigned, MachineInstr*>::iterator CI = CopyMap.find(Reg);
      if (CI != CopyMap.end())
        MaybeDeadCopies.remove(CI->second);
      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
        CI = CopyMap.find(*AS);
        if (CI != CopyMap.end())
          MaybeDeadCopies.remove(CI->second);
      }
    }

    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
      unsigned Reg = Defs[i];

      // No longer defined by a copy.
      CopyMap.erase(Reg);
      AvailCopyMap.erase(Reg);
      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
        CopyMap.erase(*AS);
        AvailCopyMap.erase(*AS);
      }

      // If 'Reg' is previously source of a copy, it is no longer available for
      // copy propagation.
      SourceNoLongerAvailable(Reg, SrcMap, AvailCopyMap);
    }
  }

  // If MBB doesn't have successors, delete the copies whose defs are not used.
  // If MBB does have successors, then conservative assume the defs are live-out
  // since we don't want to trust live-in lists.
  if (MBB.succ_empty()) {
    for (SmallSetVector<MachineInstr*, 8>::iterator
           DI = MaybeDeadCopies.begin(), DE = MaybeDeadCopies.end();
         DI != DE; ++DI) {
      if (!ReservedRegs.test((*DI)->getOperand(0).getReg())) {
        (*DI)->eraseFromParent();
        Changed = true;
        ++NumDeletes;
      }
    }
  }

  return Changed;
}
Пример #16
0
void MIPrinter::print(const MachineBasicBlock &MBB) {
  assert(MBB.getNumber() >= 0 && "Invalid MBB number");
  OS << "bb." << MBB.getNumber();
  bool HasAttributes = false;
  if (const auto *BB = MBB.getBasicBlock()) {
    if (BB->hasName()) {
      OS << "." << BB->getName();
    } else {
      HasAttributes = true;
      OS << " (";
      int Slot = MST.getLocalSlot(BB);
      if (Slot == -1)
        OS << "<ir-block badref>";
      else
        OS << (Twine("%ir-block.") + Twine(Slot)).str();
    }
  }
  if (MBB.hasAddressTaken()) {
    OS << (HasAttributes ? ", " : " (");
    OS << "address-taken";
    HasAttributes = true;
  }
  if (MBB.isEHPad()) {
    OS << (HasAttributes ? ", " : " (");
    OS << "landing-pad";
    HasAttributes = true;
  }
  if (MBB.getAlignment()) {
    OS << (HasAttributes ? ", " : " (");
    OS << "align " << MBB.getAlignment();
    HasAttributes = true;
  }
  if (HasAttributes)
    OS << ")";
  OS << ":\n";

  bool HasLineAttributes = false;
  // Print the successors
  bool canPredictProbs = canPredictBranchProbabilities(MBB);
  // Even if the list of successors is empty, if we cannot guess it,
  // we need to print it to tell the parser that the list is empty.
  // This is needed, because MI model unreachable as empty blocks
  // with an empty successor list. If the parser would see that
  // without the successor list, it would guess the code would
  // fallthrough.
  if ((!MBB.succ_empty() && !SimplifyMIR) || !canPredictProbs ||
      !canPredictSuccessors(MBB)) {
    OS.indent(2) << "successors: ";
    for (auto I = MBB.succ_begin(), E = MBB.succ_end(); I != E; ++I) {
      if (I != MBB.succ_begin())
        OS << ", ";
      OS << printMBBReference(**I);
      if (!SimplifyMIR || !canPredictProbs)
        OS << '('
           << format("0x%08" PRIx32, MBB.getSuccProbability(I).getNumerator())
           << ')';
    }
    OS << "\n";
    HasLineAttributes = true;
  }

  // Print the live in registers.
  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  if (MRI.tracksLiveness() && !MBB.livein_empty()) {
    const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
    OS.indent(2) << "liveins: ";
    bool First = true;
    for (const auto &LI : MBB.liveins()) {
      if (!First)
        OS << ", ";
      First = false;
      OS << printReg(LI.PhysReg, &TRI);
      if (!LI.LaneMask.all())
        OS << ":0x" << PrintLaneMask(LI.LaneMask);
    }
    OS << "\n";
    HasLineAttributes = true;
  }

  if (HasLineAttributes)
    OS << "\n";
  bool IsInBundle = false;
  for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; ++I) {
    const MachineInstr &MI = *I;
    if (IsInBundle && !MI.isInsideBundle()) {
      OS.indent(2) << "}\n";
      IsInBundle = false;
    }
    OS.indent(IsInBundle ? 4 : 2);
    print(MI);
    if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
      OS << " {";
      IsInBundle = true;
    }
    OS << "\n";
  }
  if (IsInBundle)
    OS.indent(2) << "}\n";
}
Пример #17
0
void MIPrinter::print(const MachineBasicBlock &MBB) {
  assert(MBB.getNumber() >= 0 && "Invalid MBB number");
  OS << "bb." << MBB.getNumber();
  bool HasAttributes = false;
  if (const auto *BB = MBB.getBasicBlock()) {
    if (BB->hasName()) {
      OS << "." << BB->getName();
    } else {
      HasAttributes = true;
      OS << " (";
      int Slot = MST.getLocalSlot(BB);
      if (Slot == -1)
        OS << "<ir-block badref>";
      else
        OS << (Twine("%ir-block.") + Twine(Slot)).str();
    }
  }
  if (MBB.hasAddressTaken()) {
    OS << (HasAttributes ? ", " : " (");
    OS << "address-taken";
    HasAttributes = true;
  }
  if (MBB.isEHPad()) {
    OS << (HasAttributes ? ", " : " (");
    OS << "landing-pad";
    HasAttributes = true;
  }
  if (MBB.getAlignment()) {
    OS << (HasAttributes ? ", " : " (");
    OS << "align " << MBB.getAlignment();
    HasAttributes = true;
  }
  if (HasAttributes)
    OS << ")";
  OS << ":\n";

  bool HasLineAttributes = false;
  // Print the successors
  if (!MBB.succ_empty()) {
    OS.indent(2) << "successors: ";
    for (auto I = MBB.succ_begin(), E = MBB.succ_end(); I != E; ++I) {
      if (I != MBB.succ_begin())
        OS << ", ";
      printMBBReference(**I);
      if (MBB.hasSuccessorWeights())
        OS << '(' << MBB.getSuccWeight(I) << ')';
    }
    OS << "\n";
    HasLineAttributes = true;
  }

  // Print the live in registers.
  const auto *TRI = MBB.getParent()->getSubtarget().getRegisterInfo();
  assert(TRI && "Expected target register info");
  if (!MBB.livein_empty()) {
    OS.indent(2) << "liveins: ";
    bool First = true;
    for (unsigned LI : MBB.liveins()) {
      if (!First)
        OS << ", ";
      First = false;
      printReg(LI, OS, TRI);
    }
    OS << "\n";
    HasLineAttributes = true;
  }

  if (HasLineAttributes)
    OS << "\n";
  bool IsInBundle = false;
  for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; ++I) {
    const MachineInstr &MI = *I;
    if (IsInBundle && !MI.isInsideBundle()) {
      OS.indent(2) << "}\n";
      IsInBundle = false;
    }
    OS.indent(IsInBundle ? 4 : 2);
    print(MI);
    if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
      OS << " {";
      IsInBundle = true;
    }
    OS << "\n";
  }
  if (IsInBundle)
    OS.indent(2) << "}\n";
}
Пример #18
0
void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB) {
  // Get rid of the easy cases first.
  if (!Save)
    Save = &MBB;
  else
    Save = MDT->findNearestCommonDominator(Save, &MBB);

  if (!Save) {
    DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
    return;
  }

  if (!Restore)
    Restore = &MBB;
  else
    Restore = MPDT->findNearestCommonDominator(Restore, &MBB);

  // Make sure we would be able to insert the restore code before the
  // terminator.
  if (Restore == &MBB) {
    for (const MachineInstr &Terminator : MBB.terminators()) {
      if (!useOrDefCSROrFI(Terminator))
        continue;
      // One of the terminator needs to happen before the restore point.
      if (MBB.succ_empty()) {
        Restore = nullptr;
        break;
      }
      // Look for a restore point that post-dominates all the successors.
      // The immediate post-dominator is what we are looking for.
      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
      break;
    }
  }

  if (!Restore) {
    DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n");
    return;
  }

  // Make sure Save and Restore are suitable for shrink-wrapping:
  // 1. all path from Save needs to lead to Restore before exiting.
  // 2. all path to Restore needs to go through Save from Entry.
  // We achieve that by making sure that:
  // A. Save dominates Restore.
  // B. Restore post-dominates Save.
  // C. Save and Restore are in the same loop.
  bool SaveDominatesRestore = false;
  bool RestorePostDominatesSave = false;
  while (Save && Restore &&
         (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
          !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
          MLI->getLoopFor(Save) != MLI->getLoopFor(Restore))) {
    // Fix (A).
    if (!SaveDominatesRestore) {
      Save = MDT->findNearestCommonDominator(Save, Restore);
      continue;
    }
    // Fix (B).
    if (!RestorePostDominatesSave)
      Restore = MPDT->findNearestCommonDominator(Restore, Save);

    // Fix (C).
    if (Save && Restore && Save != Restore &&
        MLI->getLoopFor(Save) != MLI->getLoopFor(Restore)) {
      if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore))
        // Push Save outside of this loop.
        Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
      else
        // Push Restore outside of this loop.
        Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
    }
  }
}