void netcdf_mpas_read_xyzcell ( string filename, int ncells, double xcell[], double ycell[], double zcell[] ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_XYZCELL reads xCell, yCell, zCell. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 December 2010 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Input, int NCELLS, the number of nodes. // // Output, double XCELL[NCELLS], YCELL[NCELLS], ZCELL[NCELLS], the // coordinates of the nodes. // { NcVar *var_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get the variable values. // var_id = ncid.get_var ( "xCell" ); (*var_id).get ( &xcell[0], ncells ); var_id = ncid.get_var ( "yCell" ); (*var_id).get ( &ycell[0], ncells ); var_id = ncid.get_var ( "zCell" ); (*var_id).get ( &zcell[0], ncells ); // // Close the file. // ncid.close ( ); return; }
void netcdf_mpas_read_xyzvertex ( string filename, int nvertices, double xvertex[], double yvertex[], double zvertex[] ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_CELLS gets the cell center coordinates. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 January 2011 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Input, int NVERTICES, the number of vertices. // // Output, double XVERTEX[NVERTICES], YVERTEXL[NVERTICES], // ZVERTEX[NVERTICES], the coordinates of the nodes. // { NcVar *var_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get the variable values. // var_id = ncid.get_var ( "xVertex" ); (*var_id).get ( &xvertex[0], nvertices ); var_id = ncid.get_var ( "yVertex" ); (*var_id).get ( &yvertex[0], nvertices ); var_id = ncid.get_var ( "zVertex" ); (*var_id).get ( &zvertex[0], nvertices ); // // Close the file. // ncid.close ( ); return; }
bool ReadAstro::open(const char *path) { assert(!m_ncfile); m_ncfile = new NcFile(path, NcFile::ReadOnly); if (!m_ncfile->is_valid()) { close(); sendError("failed to open NetCDF file %s", path); return false; } if (m_ncfile->get_format() == NcFile::BadFormat) { close(); sendError("bad NetCDF file"); return false; } fprintf(stderr, "dims=%d, vars=%d, attrs=%d\n", m_ncfile->num_dims(), m_ncfile->num_vars(), m_ncfile->num_atts()); for (int i = 0; i < m_ncfile->num_dims(); ++i) { fprintf(stderr, "%s: %ld\n", m_ncfile->get_dim(i)->name(), m_ncfile->get_dim(i)->size()); } for (int i = 0; i < m_ncfile->num_vars(); ++i) { fprintf(stderr, "%s: dims=%d atts=%d vals=%ld type=%d\n", m_ncfile->get_var(i)->name(), m_ncfile->get_var(i)->num_dims(), m_ncfile->get_var(i)->num_atts(), m_ncfile->get_var(i)->num_vals(), m_ncfile->get_var(i)->type()); //int dims = m_ncfile->get_var(i)->num_dims(); NcVar *var = m_ncfile->get_var(i); for (int j = 0; j < var->num_dims(); ++j) { fprintf(stderr, " %s: %ld edge=%ld\n", var->get_dim(j)->name(), var->get_dim(j)->size(), var->edges()[j]); } } for (int i = 0; i < m_ncfile->num_atts(); ++i) { fprintf(stderr, "%s\n", m_ncfile->get_att(i)->name()); } return true; }
std::vector<T> read_vector(NcFile &nc, std::string const &var_name) { // Read points vector NcVar *vpoints = nc.get_var(var_name.c_str()); long npoints = vpoints->get_dim(0)->size(); std::vector<T> points(npoints); vpoints->get(&points[0], npoints); return points; }
void netcdf_mpas_read_verticesoncell ( string filename, int maxedges, int ncells, int verticesoncell[] ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_VERTICESONCELLS gets verticesOnCells. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 January 2011 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Input, int MAXEDGES, the maximum number of edges for a cell. // // Input, int NCELLS, the number of cells. // // Output, int VERTICESONCELLS[MAXEDGES*NCELLS]; // { NcVar *var_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get the variable values. // var_id = ncid.get_var ( "verticesOnCell" ); (*var_id).get ( &verticesoncell[0], ncells, maxedges ); // // Close the file. // ncid.close ( ); return; }
void netcdf_mpas_read_cellsonvertex ( string filename, int nvertices, int cellsonvertex[] ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_CELLSONVERTEX gets the cellsOnVertex information. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 December 2010 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Input, int NEDGES, the number of edges. // // Output, int CELLSONVERTEX[3*NVERTICES]; // { NcVar *var_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get the variable values. // var_id = ncid.get_var ( "cellsOnVertex" ); (*var_id).get ( &cellsonvertex[0], nvertices, 3 ); // // Close the file. // ncid.close ( ); return; }
void Grid_LonLat::read_from_netcdf(NcFile &nc, std::string const &vname) { Grid::read_from_netcdf(nc, vname); NcVar *info_var = nc.get_var((vname + ".info").c_str()); north_pole = (giss::get_att(info_var, "north_pole_cap")->as_int(0) != 0); south_pole = (giss::get_att(info_var, "south_pole_cap")->as_int(0) != 0); points_in_side = giss::get_att(info_var, "points_in_side")->as_int(0); // _nlon = giss::get_att(info_var, "nlon")->as_int(0); // _nlat = giss::get_att(info_var, "nlat")->as_int(0); lonb = giss::read_double_vector(nc, vname + ".lon_boundaries"); latb = giss::read_double_vector(nc, vname + ".lat_boundaries"); }
void CopyNcVarIfExists( NcFile & ncIn, NcFile & ncOut, const std::string & strVarName, bool fCopyAttributes, bool fCopyData ) { // Turn off fatal errors in NetCDF NcError error(NcError::silent_nonfatal); NcVar * var = ncIn.get_var(strVarName.c_str()); if (var != NULL) { CopyNcVar(ncIn, ncOut, strVarName, fCopyAttributes, fCopyData); } }
boost::function<void ()> netcdf_define( NcFile &nc, std::string const &vname_prefix, // vname = vname_prefix + vmeta.name VarMetaData const &vmeta, blitz::Array<T,rank> const &val, std::vector<NcDim *> const &ddims = {}) { std::string vname = vname_prefix + vmeta.get_name(); auto ret(netcdf_define(nc, vname, val, ddims)); NcVar *nc_var = nc.get_var(vname.c_str()); std::string const &description(vmeta.get_description()); if (description != "") nc_var->add_att("long_name", description.c_str()); std::string const &units(vmeta.get_units()); if (units != "") nc_var->add_att("units", units.c_str()); return ret; }
void TrajectoryForecaster::readTime(const NcFile &data ) { float *year = read1DimVar(data, "year"); float *month = read1DimVar(data, "month"); float *day = read1DimVar(data, "day"); float *hour = read1DimVar(data, "hour"); int n = data.get_var("year")->num_vals(); for ( int i=0; i<n; i++ ) { time.push_back( ptime( boost::gregorian::date(year[i],month[i],day[i]), boost::posix_time::hours(hour[i])) ); } delete [] year; delete [] month; delete [] day; delete [] hour; }
const bool read( const std::string filename ) { if ( m_file ) delete m_file; m_filename = filename; m_file = new NcFile( filename.c_str(), NcFile::ReadOnly ); if ( !m_file ) return( false ); if ( !m_file->is_valid() ) return( false ); const int ndims = m_file->num_dims(); for ( int i = 0; i < ndims; i++ ) { m_dims.push_back( new Dim( m_file->get_dim(i) ) ); } const int nvars = m_file->num_vars(); for ( int i = 0; i < nvars; i++ ) { m_vars.push_back( new Var( m_file->get_var(i) ) ); } return( true ); }
boost::function<void ()> Grid_LonLat::netcdf_define(NcFile &nc, std::string const &vname) const { auto parent = Grid::netcdf_define(nc, vname); NcDim *lonbDim = nc.add_dim((vname + ".lon_boundaries.length").c_str(), this->lonb.size()); NcVar *lonb_var = nc.add_var((vname + ".lon_boundaries").c_str(), ncDouble, lonbDim); NcDim *latbDim = nc.add_dim((vname + ".lat_boundaries.length").c_str(), this->latb.size()); NcVar *latb_var = nc.add_var((vname + ".lat_boundaries").c_str(), ncDouble, latbDim); NcVar *info_var = nc.get_var((vname + ".info").c_str()); info_var->add_att("north_pole_cap", north_pole ? 1 : 0); info_var->add_att("south_pole_cap", south_pole ? 1 : 0); info_var->add_att("points_in_side", points_in_side); info_var->add_att("nlon", nlon()); info_var->add_att("nlat", nlat()); return boost::bind(&Grid_LonLat_netcdf_write, parent, &nc, this, vname); }
blitz::Array<T,rank> read_blitz(NcFile &nc, std::string const &var_name) { // Read points vector NcVar *vpoints = nc.get_var(var_name.c_str()); int ndims = vpoints->num_dims(); if (ndims != rank) { fprintf(stderr, "NetCDF variable %s has rank %d, expected rank %d\n", var_name.c_str(), ndims, rank); throw std::exception(); } blitz::TinyVector<int,rank> shape(0); long counts[rank]; for (int i=0; i<rank; ++i) { shape[i] = vpoints->get_dim(i)->size(); printf("read_blitz: shape[%d] = %d\n", i, shape[i]); counts[i] = shape[i]; } blitz::Array<T,rank> ret(shape); for (int i=0; i<rank; ++i) printf("read_blitz: ret.extent(%d) = %d\n", i, ret.extent(i)); vpoints->get(ret.data(), counts); return ret; }
void netcdf_mpas_report ( string filename ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_REPORT reads an MPAS NETCDF grid file and reports. // // Discussion: // // In this example, we want to extract all the information from a file // of unknown type. // // Here, we are pretending we have no idea what's in the file, so we // have to go step by step, making inquiries to NETCDF. // // As we go, we print out what we have discovered. We don't attempt // to return any of the data. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 December 2010 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string FILENAME, the name of the NETCDF file to examine. // { NcAtt *att; NcDim *dim; int i; int j; long int len; NcToken name; int num_atts; int num_dims; int num_vars; NcType type; NcDim *unlimdimid; NcVar *var; cout << "\n"; cout << "NETCDF_MPAS_REPORT:\n"; cout << " Report the information stored in a NETCDF\n"; cout << " file. Although we wish to examine a file containing\n"; cout << " grid data generated by MPAS, we will assume we do not\n"; cout << " have any idea of what is in the file. So we just read,\n"; cout << " inquire, and print out.\n"; cout << "\n"; cout << " The name of the file is \"" << filename << "\"\n"; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Return information about the NETCDF file. // num_dims = ncid.num_dims ( ); num_vars = ncid.num_vars ( ); num_atts = ncid.num_atts ( ); unlimdimid = ncid.rec_dim ( ); cout << "\n"; cout << "PRIMARY PARAMETERS:\n"; cout << "\n"; cout << " The number of dimensions NUM_DIMS = " << num_dims << "\n"; cout << " The number of variables NUM_VARS = " << num_vars << "\n"; cout << " The number of global attributes NUM_ATTS = " << num_atts << "\n"; cout << " The unlimited dimension (if any) UNLIMDIMID = \"" << (*unlimdimid).name ( ) << "\"\n"; // // Retrieve global attributes. // First, we must evaluate the constant "NC_GLOBAL". // // nc_global = netcdf.getConstant ( 'NC_GLOBAL' ); cout << "\n"; cout << "GLOBAL ATTRIBUTES:\n"; cout << " Att --------Name-------- Type Len\n"; cout << "\n"; for ( i = 0; i < num_atts; i++ ) { att = ncid.get_att ( i ); name = (*att).name ( ); type = (*att).type ( ); len = (*att).num_vals ( ); cout << " " << setw(2) << i << " \"" << setw(18) << name << "\"" << " " << setw(4) << type << " " << setw(4) << len << "\n"; } // // Determine names and extents of dimensions. // Since each NAME is a char array, we make a cell array to hold them. // cout << "\n"; cout << "DIMENSIONS:\n"; cout << " Dim --------Name-------- Extent\n"; cout << "\n"; for ( i = 0; i < num_dims; i++ ) { dim = ncid.get_dim ( i ); name = (*dim).name ( ); len = (*dim).size ( ); cout << " " << setw(2) << i << " \"" << setw(18) << name << "\"" << " " << setw(6) << len << "\n"; } // // Get variable names, types, dimensions, number of attributes. // cout << "\n"; cout << "VARIABLES:\n"; cout << " Var --------Name-------- Type Natts Ndims Dims\n"; cout << "\n"; for ( i = 0; i < num_vars; i++ ) { var = ncid.get_var ( i ); name = (*var).name ( ); type = (*var).type ( ); num_dims = (*var).num_dims ( ); num_atts = (*var).num_atts ( ); cout << " " << setw(2) << i << " \"" << setw(18) << name << "\"" << " " << setw(4) << type << " " << setw(4) << num_atts << " " << setw(4) << num_dims << " "; for ( j = 0; j < num_dims; j++ ) { dim = (*var).get_dim ( j ); if ( j == 0 ) { cout << "["; } cout << (*dim).name ( ); if ( j < num_dims - 1 ) { cout <<","; } else { cout << "]"; } } cout << "\n"; } // // Close the file. // ncid.close ( ); return; }
void CopyNcVar( NcFile & ncIn, NcFile & ncOut, const std::string & strVarName, bool fCopyAttributes, bool fCopyData ) { if (!ncIn.is_valid()) { _EXCEPTIONT("Invalid input file specified"); } if (!ncOut.is_valid()) { _EXCEPTIONT("Invalid output file specified"); } NcVar * var = ncIn.get_var(strVarName.c_str()); if (var == NULL) { _EXCEPTION1("NetCDF file does not contain variable \"%s\"", strVarName.c_str()); } NcVar * varOut; std::vector<NcDim *> dimOut; dimOut.resize(var->num_dims()); std::vector<long> counts; counts.resize(var->num_dims()); long nDataSize = 1; for (int d = 0; d < var->num_dims(); d++) { NcDim * dimA = var->get_dim(d); dimOut[d] = ncOut.get_dim(dimA->name()); if (dimOut[d] == NULL) { if (dimA->is_unlimited()) { dimOut[d] = ncOut.add_dim(dimA->name()); } else { dimOut[d] = ncOut.add_dim(dimA->name(), dimA->size()); } if (dimOut[d] == NULL) { _EXCEPTION2("Failed to add dimension \"%s\" (%i) to file", dimA->name(), dimA->size()); } } if (dimOut[d]->size() != dimA->size()) { if (dimA->is_unlimited() && !dimOut[d]->is_unlimited()) { _EXCEPTION2("Mismatch between input file dimension \"%s\" and " "output file dimension (UNLIMITED / %i)", dimA->name(), dimOut[d]->size()); } else if (!dimA->is_unlimited() && dimOut[d]->is_unlimited()) { _EXCEPTION2("Mismatch between input file dimension \"%s\" and " "output file dimension (%i / UNLIMITED)", dimA->name(), dimA->size()); } else if (!dimA->is_unlimited() && !dimOut[d]->is_unlimited()) { _EXCEPTION3("Mismatch between input file dimension \"%s\" and " "output file dimension (%i / %i)", dimA->name(), dimA->size(), dimOut[d]->size()); } } counts[d] = dimA->size(); nDataSize *= counts[d]; } // ncByte / ncChar type if ((var->type() == ncByte) || (var->type() == ncChar)) { DataVector<char> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } // ncShort type if (var->type() == ncShort) { DataVector<short> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncInt type if (var->type() == ncInt) { DataVector<int> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncFloat type if (var->type() == ncFloat) { DataVector<float> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncDouble type if (var->type() == ncDouble) { DataVector<double> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncInt64 type if (var->type() == ncInt64) { DataVector<ncint64> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // Check output variable exists if (varOut == NULL) { _EXCEPTION1("Unable to create output variable \"%s\"", var->name()); } // Copy attributes if (fCopyAttributes) { CopyNcVarAttributes(var, varOut); } }
// // Reads variable data from dump file // bool DataVar::initFromFile(const string& filename, const_DomainChunk_ptr dom) { cleanup(); #if ESYS_HAVE_NETCDF NcError ncerr(NcError::silent_nonfatal); NcFile* input = new NcFile(filename.c_str()); if (!input->is_valid()) { cerr << "Could not open input file " << filename << "." << endl; delete input; return false; } NcDim* dim; NcAtt* att; att = input->get_att("type_id"); int typeID = att->as_int(0); if (typeID != 2) { cerr << "WARNING: Only expanded data supported!" << endl; delete input; return false; } att = input->get_att("rank"); rank = att->as_int(0); dim = input->get_dim("num_data_points_per_sample"); ptsPerSample = dim->size(); att = input->get_att("function_space_type"); funcSpace = att->as_int(0); centering = dom->getCenteringForFunctionSpace(funcSpace); dim = input->get_dim("num_samples"); numSamples = dim->size(); #ifdef _DEBUG cout << varName << ":\t" << numSamples << " samples, " << ptsPerSample << " pts/s, rank: " << rank << endl; #endif domain = dom; NodeData_ptr nodes = domain->getMeshForFunctionSpace(funcSpace); if (nodes == NULL) { delete input; return false; } meshName = nodes->getName(); siloMeshName = nodes->getFullSiloName(); initialized = true; size_t dimSize = 1; vector<long> counts; if (rank > 0) { dim = input->get_dim("d0"); int d = dim->size(); shape.push_back(d); counts.push_back(d); dimSize *= d; } if (rank > 1) { dim = input->get_dim("d1"); int d = dim->size(); shape.push_back(d); counts.push_back(d); dimSize *= d; } if (rank > 2) { cerr << "WARNING: Rank " << rank << " data is not supported!\n"; initialized = false; } if (initialized && numSamples > 0) { sampleID.insert(sampleID.end(), numSamples, 0); NcVar* var = input->get_var("id"); var->get(&sampleID[0], numSamples); size_t dataSize = dimSize*numSamples*ptsPerSample; counts.push_back(ptsPerSample); counts.push_back(numSamples); float* tempData = new float[dataSize]; var = input->get_var("data"); var->get(tempData, &counts[0]); const float* srcPtr = tempData; for (size_t i=0; i < dimSize; i++, srcPtr++) { float* c = averageData(srcPtr, dimSize); dataArray.push_back(c); } delete[] tempData; initialized = reorderSamples(); } delete input; #endif // ESYS_HAVE_NETCDF return initialized; }
void data_read ( string filename, int dim, int vertices, int edges, int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons, double vertex_coordinate[], int vertex_label[], int edge_vertex[], int edge_label[], int triangle_vertex[], int triangle_label[], int quadrilateral_vertex[], int quadrilateral_label[], int tetrahedron_vertex[], int tetrahedron_label[], int hexahedron_vertex[], int hexahedron_label[] ) //****************************************************************************80 // // Purpose: // // DATA_READ reads ICE data from a NETCDF file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 November 2010 // // Author: // // John Burkardt // // Reference: // // Pascal Frey, // MEDIT: An interactive mesh visualization software, // Technical Report RT-0253, // Institut National de Recherche en Informatique et en Automatique, // 03 December 2001. // // Russ Rew, // The NetCDF C++ Interface Guide, // Unidata Program Center, August 2008. // // Parameters: // // Input, string FILENAME, the name of the file to be read. // Ordinarily, the name should include the extension ".nc". // // Input, int DIM, the spatial dimension, which should be 2 or 3. // // Input, int VERTICES, the number of vertices. // // Input, int EDGES, the number of edges (may be 0). // // Input, int TRIANGLES, the number of triangles (may be 0). // // Input, int QUADRILATERALS, the number of quadrilaterals (may be 0). // // Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0). // // Input, int HEXAHEDRONS, the number of hexahedrons (may be 0). // // Output, double VERTEX_COORDINATE[DIM*VERTICES], the coordinates // of each vertex. // // Output, int VERTEX_LABEL[VERTICES], a label for each vertex. // // Output, int EDGE_VERTEX[2*EDGES], the vertices that form each edge. // // Output, int EDGE_LABEL[EDGES], a label for each edge. // // Output, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form // each triangle. // // Output, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle. // // Output, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that // form each quadrilateral. // // Output, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for // each quadrilateral. // // Output, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that // form each tetrahedron. // // Output, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for // each tetrahedron. // // Output, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form // each hexahedron. // // Output, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron. // { // // Open the file in "read only" mode. // NcFile dataFile ( filename.c_str ( ), NcFile::ReadOnly ); if ( !dataFile.is_valid ( ) ) { cout << "\n"; cout << "DATA_READ: Fatal error!\n"; cout << " Could not open file.\n"; exit ( 1 ); } // // Vertices. // NcVar *var_vertex_coordinate = dataFile.get_var ( "Vertex_Coordinate" ); var_vertex_coordinate->get ( &vertex_coordinate[0], dim, vertices ); NcVar *var_vertex_label = dataFile.get_var ( "Vertex_Label" ); var_vertex_label->get ( &vertex_label[0], vertices ); // // Edges. // if ( 0 < edges ) { NcVar *var_edge_vertex = dataFile.get_var ( "Edge_Vertex" ); var_edge_vertex->get ( &edge_vertex[0], 2, edges ); NcVar *var_edge_label = dataFile.get_var ( "Edge_Label" ); var_edge_label->get ( &edge_label[0], edges ); } // // Triangles. // if ( 0 < triangles ) { NcVar *var_triangle_vertex = dataFile.get_var ( "Triangle_Vertex" ); var_triangle_vertex->get ( &triangle_vertex[0], 3, triangles ); NcVar *var_triangle_label = dataFile.get_var ( "Triangle_Label" ); var_triangle_label->get ( &triangle_label[0], triangles ); } // // Quadrilaterals. // if ( 0 < quadrilaterals ) { NcVar *var_quadrilateral_vertex = dataFile.get_var ( "Quadrilateral_Vertex" ); var_quadrilateral_vertex->get ( &quadrilateral_vertex[0], 4, quadrilaterals ); NcVar *var_quadrilateral_label = dataFile.get_var ( "Quadrilateral_Label" ); var_quadrilateral_label->get ( &quadrilateral_label[0], quadrilaterals ); } // // Tetrahedrons. // if ( 0 < tetrahedrons ) { NcVar *var_tetrahedron_vertex = dataFile.get_var ( "Tetrahedron_Vertex" ); var_tetrahedron_vertex->get ( &tetrahedron_vertex[0], 4, tetrahedrons ); NcVar *var_tetrahedron_label = dataFile.get_var ( "Tetrahedron_Label" ); var_tetrahedron_label->get ( &tetrahedron_label[0], tetrahedrons ); } // // Hexahedrons. // if ( 0 < hexahedrons ) { NcVar *var_hexahedron_vertex = dataFile.get_var ( "Hexahedron_Vertex" ); var_hexahedron_vertex->get ( &hexahedron_vertex[0], 8, hexahedrons ); NcVar *var_hexahedron_label = dataFile.get_var ( "Hexahedron_Label" ); var_hexahedron_label->get ( &hexahedron_label[0], hexahedrons ); } // // Close the file. // dataFile.close ( ); return; }