void filterColor(const RGBDImage& img, vector<Mat>& hsvs, Mat1b& result, cv::Point3f upleft, cv::Point2f fudge, int hue_from, int hue_to, int sat_from, int sat_to, int val_from, int val_to) { const Mat1f& depth = img.depth(); const Mat1b& mask = img.depthMask(); const Mat& rgb = img.rgb(); const RGBDCalibration* calib = img.calibration(); if (!calib || upleft.y > rgb.rows || upleft.x > rgb.cols) return; int wid = result.cols * STEP_SIZE, ht = result.rows * STEP_SIZE; cv::Range rslice(upleft.y - fudge.y, upleft.y + ht + fudge.y), cslice(upleft.x - fudge.x, upleft.x + wid + fudge.x); rslice.start = max(0, rslice.start); rslice.end = min(rgb.rows, rslice.end); cslice.start = max(0, cslice.start); cslice.end = min(rgb.cols, cslice.end); //printf("%i %i %i %i\n", rslice.start, rslice.end, cslice.start, cslice.end); if (hsvs.size() == 0) { Mat sliced_rgb(rgb, rslice, cslice); Mat hsv; cvtColor(sliced_rgb, hsv, CV_BGR2HSV); split(hsv, hsvs); } const Pose3D* rgb_pose = calib->rgb_pose; const Pose3D* depth_pose = calib->depth_pose; for (int r = 0; r < result.rows; r++) for (int c = 0; c < result.cols; c++) { int x = c * STEP_SIZE + upleft.x; int y = r * STEP_SIZE + upleft.y; if (mask(y, x) == 0) continue; // Calculate rgb location for this particular depth element. double dv = depth(y, x); Point3f pu = depth_pose->unprojectFromImage(Point2f(x, y), dv); Point3f prgb = rgb_pose->projectToImage(pu); int i_x = ntk::math::rnd(prgb.x) - cslice.start; int i_y = ntk::math::rnd(prgb.y) - rslice.start; if (is_yx_in_range(hsvs[0], i_y, i_x)) { uchar hue = hsvs[0].at<uchar>(i_y, i_x); uchar sat = hsvs[1].at<uchar>(i_y, i_x); uchar val = hsvs[2].at<uchar>(i_y, i_x); result.at<bool>(r, c) = ( ((hue_from > hue_to) && ((hue > hue_from) || (hue < hue_to))) || ((hue_from < hue_to) && ((hue > hue_from) && (hue < hue_to)))) && sat > sat_from && sat < sat_to && val > val_from && val < val_to; } } }
void MeshGenerator :: generatePointCloudMesh(const RGBDImage& image, const Pose3D& depth_pose, const Pose3D& rgb_pose) { m_mesh.clear(); m_mesh.vertices.reserve(image.depth().rows*image.depth().cols); m_mesh.colors.reserve(image.depth().rows*image.depth().cols); m_mesh.normals.reserve(image.depth().rows*image.depth().cols); const cv::Mat1f& depth_im = image.depth(); const cv::Mat1b& mask_im = image.depthMask(); cv::Mat3f voxels (depth_im.size()); cv::Mat3f rgb_points (depth_im.size()); cv::Mat1b subsample_mask(mask_im.size()); subsample_mask = 0; for (float r = 0; r < subsample_mask.rows-1; r += 1.0/m_resolution_factor) for (float c = 0; c < subsample_mask.cols-1; c += 1.0/m_resolution_factor) subsample_mask(ntk::math::rnd(r),ntk::math::rnd(c)) = 1; subsample_mask = mask_im & subsample_mask; depth_pose.unprojectFromImage(depth_im, subsample_mask, voxels); if (m_use_color && image.hasRgb()) rgb_pose.projectToImage(voxels, subsample_mask, rgb_points); for (int r = 0; r < voxels.rows; ++r) { Vec3f* voxels_data = voxels.ptr<Vec3f>(r); const uchar* mask_data = subsample_mask.ptr<uchar>(r); for (int c = 0; c < voxels.cols; ++c) { if (!mask_data[c]) continue; Vec3b color (0,0,0); if (m_use_color) { Point3f prgb = rgb_points(r,c); int i_y = ntk::math::rnd(prgb.y); int i_x = ntk::math::rnd(prgb.x); if (is_yx_in_range(image.rgb(), i_y, i_x)) { Vec3b bgr = image.rgb()(i_y, i_x); color = Vec3b(bgr[2], bgr[1], bgr[0]); } } else { int g = 0; if (image.intensity().data) g = image.intensity()(r,c); else g = 255 * voxels_data[c][2] / 10.0; color = Vec3b(g,g,g); } m_mesh.vertices.push_back(voxels_data[c]); m_mesh.colors.push_back(color); } } }
void MeshGenerator :: generateTriangleMesh(const RGBDImage& image, const Pose3D& depth_pose, const Pose3D& rgb_pose) { const Mat1f& depth_im = image.depth(); const Mat1b& mask_im = image.depthMask(); m_mesh.clear(); if (m_use_color) image.rgb().copyTo(m_mesh.texture); else if (image.intensity().data) toMat3b(normalize_toMat1b(image.intensity())).copyTo(m_mesh.texture); else { m_mesh.texture.create(depth_im.size()); m_mesh.texture = Vec3b(255,255,255); } m_mesh.vertices.reserve(depth_im.cols*depth_im.rows); m_mesh.texcoords.reserve(depth_im.cols*depth_im.rows); m_mesh.colors.reserve(depth_im.cols*depth_im.rows); Mat1i vertice_map(depth_im.size()); vertice_map = -1; for_all_rc(depth_im) { if (!mask_im(r,c)) continue; double depth = depth_im(r,c); Point3f p3d = depth_pose.unprojectFromImage(Point3f(c,r,depth)); Point3f p2d_rgb; Point2f texcoords; if (m_use_color) { p2d_rgb = rgb_pose.projectToImage(p3d); texcoords = Point2f(p2d_rgb.x/image.rgb().cols, p2d_rgb.y/image.rgb().rows); } else { p2d_rgb = Point3f(c,r,depth); texcoords = Point2f(p2d_rgb.x/image.intensity().cols, p2d_rgb.y/image.intensity().rows); } vertice_map(r,c) = m_mesh.vertices.size(); m_mesh.vertices.push_back(p3d); // m_mesh.colors.push_back(bgr_to_rgb(im.rgb()(p2d_rgb.y, p2d_rgb.x))); m_mesh.texcoords.push_back(texcoords); } for_all_rc(vertice_map) { if (vertice_map(r,c) < 0) continue; if ((c < vertice_map.cols - 1) && (r < vertice_map.rows - 1) && (vertice_map(r+1,c)>=0) && (vertice_map(r,c+1) >= 0) && (std::abs(depth_im(r,c) - depth_im(r+1, c)) < m_max_delta_depth) && (std::abs(depth_im(r,c) - depth_im(r, c+1)) < m_max_delta_depth)) { Face f; f.indices[2] = vertice_map(r,c); f.indices[1] = vertice_map(r,c+1); f.indices[0] = vertice_map(r+1,c); m_mesh.faces.push_back(f); } if ((c > 0) && (r < vertice_map.rows - 1) && (vertice_map(r+1,c)>=0) && (vertice_map(r+1,c-1) >= 0) && (std::abs(depth_im(r,c) - depth_im(r+1, c)) < m_max_delta_depth) && (std::abs(depth_im(r,c) - depth_im(r+1, c-1)) < m_max_delta_depth)) { Face f; f.indices[2] = vertice_map(r,c); f.indices[1] = vertice_map(r+1,c); f.indices[0] = vertice_map(r+1,c-1); m_mesh.faces.push_back(f); } } m_mesh.computeNormalsFromFaces(); }
void MeshGenerator :: generateSurfelsMesh(const RGBDImage& image, const Pose3D& depth_pose, const Pose3D& rgb_pose) { double min_val = 0, max_val = 0; if (image.amplitude().data) minMaxLoc(image.amplitude(), &min_val, &max_val); m_mesh.clear(); const cv::Mat1f& depth_im = image.depth(); const cv::Mat1b& mask_im = image.depthMask(); for_all_rc(depth_im) { int i_r = r; int i_c = c; if (!is_yx_in_range(depth_im, i_r, i_c)) continue; if (!mask_im(r,c)) continue; double depth = depth_im(i_r,i_c); cv::Point3f p = depth_pose.unprojectFromImage(Point2f(c,r), depth); Point3f normal = image.normal().data ? image.normal()(i_r, i_c) : Vec3f(0,0,1); Vec3b color (0,0,0); if (m_use_color) { cv::Point3f prgb = rgb_pose.projectToImage(p); int i_y = ntk::math::rnd(prgb.y); int i_x = ntk::math::rnd(prgb.x); if (is_yx_in_range(image.rgb(), i_y, i_x)) { Vec3b bgr = image.rgb()(i_y, i_x); color = Vec3b(bgr[2], bgr[1], bgr[0]); } } else { int g = 0; if (image.amplitude().data) g = 255.0 * (image.amplitude()(i_r,i_c) - min_val) / (max_val-min_val); else g = 255 * depth / 10.0; color = Vec3b(g,g,g); } Surfel s; s.color = color; s.confidence = 0; s.location = p; s.normal = normal; s.n_views = 1; double normal_z = std::max(normal.z, 0.5f); s.radius = m_resolution_factor * ntk::math::sqrt1_2 * depth / (depth_pose.focalX() * normal_z); m_mesh.addSurfel(s); } }
bool SurfelsRGBDModeler :: addNewView(const RGBDImage& image_, Pose3D& depth_pose) { ntk::TimeCount tc("SurfelsRGBDModeler::addNewView", 1); const float max_camera_normal_angle = ntk::deg_to_rad(90); RGBDImage image; image_.copyTo(image); if (!image_.normal().data) { OpenniRGBDProcessor processor; processor.computeNormalsPCL(image); } Pose3D rgb_pose = depth_pose; rgb_pose.toRightCamera(image.calibration()->rgb_intrinsics, image.calibration()->R, image.calibration()->T); Pose3D world_to_camera_normal_pose; world_to_camera_normal_pose.applyTransformBefore(cv::Vec3f(0,0,0), depth_pose.cvEulerRotation()); Pose3D camera_to_world_normal_pose = world_to_camera_normal_pose; camera_to_world_normal_pose.invert(); const Mat1f& depth_im = image.depth(); Mat1b covered_pixels (depth_im.size()); covered_pixels = 0; std::list<Surfel> surfels_to_reinsert; // Surfel updating. for (SurfelMap::iterator next_it = m_surfels.begin(); next_it != m_surfels.end(); ) { SurfelMap::iterator surfel_it = next_it; ++next_it; Surfel& surfel = surfel_it->second; if (!surfel.enabled()) continue; Point3f surfel_2d = depth_pose.projectToImage(surfel.location); bool surfel_deleted = false; int r = ntk::math::rnd(surfel_2d.y); int c = ntk::math::rnd(surfel_2d.x); int d = ntk::math::rnd(surfel_2d.z); if (!is_yx_in_range(depth_im, r, c) || !image.depthMask()(r, c) || !image.isValidNormal(r,c)) continue; const float update_max_dist = getCompatibilityDistance(depth_im(r,c)); Vec3f camera_normal = image.normal()(r, c); normalize(camera_normal); Vec3f world_normal = camera_to_world_normal_pose.cameraTransform(camera_normal); normalize(world_normal); Vec3f eyev = camera_eye_vector(depth_pose, r, c); double camera_angle = acos(camera_normal.dot(-eyev)); if (camera_angle > max_camera_normal_angle) continue; float normal_angle = acos(world_normal.dot(surfel.normal)); // Surfels have different normals, maybe two different faces of the same object. if (normal_angle > (m_update_max_normal_angle*M_PI/180.0)) { // Removal check. If a surfel has a different normal and is closer to the camera // than the new scan, remove it. if ((-surfel_2d.z) < depth_im(r,c) && surfel.n_views < 3) { m_surfels.erase(surfel_it); surfel_deleted = true; } continue; } // If existing surfel is far from new depth value: // - If existing one had a worst point of view, and was seen only once, remove it. // - Otherwise do not include the new one. if (std::abs(surfel_2d.z - depth_im(r,c)) > update_max_dist) { if (surfel.min_camera_angle > camera_angle && surfel.n_views < 3) { m_surfels.erase(surfel_it); surfel_deleted = true; } else covered_pixels(r,c) = 1; continue; } // Compatible surfel found. const float depth = depth_im(r,c) + m_global_depth_offset; Point3f p3d = depth_pose.unprojectFromImage(Point2f(c,r), depth); cv::Vec3b rgb_color = bgr_to_rgb(image.mappedRgb()(r, c)); Surfel image_surfel; image_surfel.location = p3d; image_surfel.normal = world_normal; image_surfel.color = rgb_color; image_surfel.min_camera_angle = camera_angle; image_surfel.n_views = 1; image_surfel.radius = computeSurfelRadius(depth, camera_normal[2], depth_pose.meanFocal()); mergeToLeftSurfel(surfel, image_surfel); covered_pixels(r,c) = 1; // needs to change the cell? Cell new_cell = worldToCell(surfel.location); if (new_cell != surfel_it->first) { surfels_to_reinsert.push_back(surfel); m_surfels.erase(surfel_it); } } foreach_const_it(it, surfels_to_reinsert, std::list<Surfel>) { Cell new_cell = worldToCell(it->location); m_surfels.insert(std::make_pair(new_cell, *it)); }