Пример #1
0
	void FloatingTextRenderer::render(Camera* cam, Layer* layer, RenderList& instances) {
		if (!m_font) {
			//no font selected.. nothing to render
			return;
		}

		RenderList::const_iterator instance_it = instances.begin();
		uint32_t lm = m_renderbackend->getLightingModel();
		SDL_Color old_color = m_font->getColor();
		if(m_font_color) {
			m_font->setColor(m_color.r, m_color.g, m_color.b, m_color.unused);
		}
		for (;instance_it != instances.end(); ++instance_it) {
			Instance* instance = (*instance_it)->instance;
			const std::string* saytext = instance->getSayText();
			if (saytext) {
				const Rect& ir = (*instance_it)->dimensions;
				Image* img = m_font->getAsImageMultiline(*saytext);
				Rect r;
				r.x = (ir.x + ir.w/2) - img->getWidth()/2; /// the center of the text rect is always aligned to the instance's rect center.
				r.y = ir.y- img->getHeight(); /// make the text rect floating higher than the instance.
				r.w = img->getWidth();
				r.h = img->getHeight();
				// Without this check it can happen that changeRenderInfos() call produces an out_of_range error
				// because the image rendering can be skipped, if it's not on the screen.
				// The result is that it tried to modify more objects as exist.
				if (r.right() < 0 || r.x > static_cast<int32_t>(m_renderbackend->getWidth()) || 
					r.bottom() < 0 || r.y > static_cast<int32_t>(m_renderbackend->getHeight())) {
					continue;
				}
				if(m_background || m_backborder) {
					const int32_t overdraw = 5;

					Point p = Point(r.x-overdraw, r.y-overdraw);

					if(m_background) {
						m_renderbackend->fillRectangle(p, r.w+2*overdraw, r.h+2*overdraw, m_backcolor.r, m_backcolor.g, m_backcolor.b, m_backcolor.unused);
					}

					if(m_backborder) {
						m_renderbackend->drawRectangle(p, r.w+2*overdraw, r.h+2*overdraw, m_backbordercolor.r, m_backbordercolor.g, m_backbordercolor.b, m_backbordercolor.unused);
					}
				}
				img->render(r);
				if(lm > 0) {
					uint16_t elements = 1;
					if (m_background) {
						++elements;
					}
					if (m_backborder) {
						++elements;
					}
					m_renderbackend->changeRenderInfos(RENDER_DATA_WITHOUT_Z, elements, 4, 5, false, true, 255, REPLACE, ALWAYS);
				}
			}
		}
		if(m_font_color) {
			m_font->setColor(old_color.r, old_color.g, old_color.b, old_color.unused);
		}
	}
Пример #2
0
bool Renderer::RemoveFromList(RenderableObject* obj, RenderList& renderlist){
	for( RenderIterator it = renderlist.begin(); it != renderlist.end(); ++it ){
		if( (*it) == obj ){
			renderlist.erase(it);
			return true;
		}
	}
	return false;
}
Пример #3
0
	void FloatingTextRenderer::render(Camera* cam, Layer* layer, RenderList& instances) {
		if (!m_font) {
			//no font selected.. nothing to render
			return;
		}

		RenderList::const_iterator instance_it = instances.begin();
		const std::string* saytext = NULL;
		uint32_t lm = m_renderbackend->getLightingModel();
		SDL_Color old_color = m_font->getColor();
		if(m_font_color) {
			m_font->setColor(m_color.r, m_color.g, m_color.b, m_color.unused);
		}
		for (;instance_it != instances.end(); ++instance_it) {
			Instance* instance = (*instance_it)->instance;
			saytext = instance->getSayText();
			if (saytext) {
				const Rect& ir = (*instance_it)->dimensions;
				Image* img = m_font->getAsImageMultiline(*saytext);
				Rect r;
				r.x = (ir.x + ir.w/2) - img->getWidth()/2; /// the center of the text rect is always aligned to the instance's rect center.
				r.y = ir.y- img->getHeight(); /// make the text rect floating higher than the instance.
				r.w = img->getWidth();
				r.h = img->getHeight();

				if(m_background || m_backborder) {
					const int32_t overdraw = 5;

					Point p = Point(r.x-overdraw, r.y-overdraw);

					if(m_background) {
						m_renderbackend->fillRectangle(p, r.w+2*overdraw, r.h+2*overdraw, m_backcolor.r, m_backcolor.g, m_backcolor.b, m_backcolor.unused);
					}

					if(m_backborder) {
						m_renderbackend->drawRectangle(p, r.w+2*overdraw, r.h+2*overdraw, m_backbordercolor.r, m_backbordercolor.g, m_backbordercolor.b, m_backbordercolor.unused);
					}
				}
				img->render(r);
				if(lm > 0) {
					uint16_t elements = 1;
					if (m_background) {
						++elements;
					}
					if (m_backborder) {
						++elements;
					}
					m_renderbackend->changeRenderInfos(elements, 4, 5, false, true, 255, REPLACE, ALWAYS);
				}
			}
		}
		if(m_font_color) {
			m_font->setColor(old_color.r, old_color.g, old_color.b, old_color.unused);
		}
	}
	void BlockingInfoRenderer::render(Camera* cam, Layer* layer, RenderList& instances) {
		CellGrid* cg = layer->getCellGrid();
		if (!cg) {
			FL_WARN(_log, "No cellgrid assigned to layer, cannot draw grid");
			return;
		}
		
		Rect cv = cam->getViewPort();
		RenderList::const_iterator instance_it = instances.begin();
		for (;instance_it != instances.end(); ++instance_it) {
			Instance* instance = (*instance_it)->instance;
			if (!instance->getObject()->isBlocking() || !instance->isBlocking()) {
				continue;
			}
			std::vector<ExactModelCoordinate> vertices;
			cg->getVertices(vertices, instance->getLocationRef().getLayerCoordinates());
			std::vector<ExactModelCoordinate>::const_iterator it = vertices.begin();
			int halfind = vertices.size() / 2;
			ScreenPoint firstpt = cam->toScreenCoordinates(cg->toMapCoordinates(*it));
			Point pt1(firstpt.x, firstpt.y);
			Point pt2;
			++it;
			for (; it != vertices.end(); it++) {
				ScreenPoint pts = cam->toScreenCoordinates(cg->toMapCoordinates(*it));
				pt2.x = pts.x; pt2.y = pts.y;
				Point cpt1 = pt1;
				Point cpt2 = pt2;
				m_renderbackend->drawLine(cpt1, cpt2, m_color.r, m_color.g, m_color.b);
				pt1 = pt2;
			}
			m_renderbackend->drawLine(pt2, Point(firstpt.x, firstpt.y), m_color.r, m_color.g, m_color.b);
			ScreenPoint spt1 = cam->toScreenCoordinates(cg->toMapCoordinates(vertices[0]));
			Point pt3(spt1.x, spt1.y);
			ScreenPoint spt2 = cam->toScreenCoordinates(cg->toMapCoordinates(vertices[halfind]));
			Point pt4(spt2.x, spt2.y);
			m_renderbackend->drawLine(pt3, pt4, m_color.r, m_color.g, m_color.b);
		}
	}
Пример #5
0
void LayerCache::update(Camera::Transform transform, RenderList& renderlist) {
    const double OVERDRAW = 2.5;
    renderlist.clear();
    m_needupdate = false;
    if(!m_layer->areInstancesVisible()) {
        FL_DBG(_log, "Layer instances hidden");
        return;
    }
    bool isWarped = transform == Camera::WarpedTransform;
    if( isWarped ) {
        fullUpdate();
    }

    Rect viewport = m_camera->getViewPort();
    Rect screen_viewport = viewport;
    double zoom = m_camera->getZoom();
    DoublePoint3D viewport_a = m_camera->screenToVirtualScreen(Point3D(viewport.x, viewport.y));
    DoublePoint3D viewport_b = m_camera->screenToVirtualScreen(Point3D(viewport.right(), viewport.bottom()));
    viewport.x = static_cast<int32_t>(std::min(viewport_a.x, viewport_b.x));
    viewport.y = static_cast<int32_t>(std::min(viewport_a.y, viewport_b.y));
    viewport.w = static_cast<int32_t>(std::max(viewport_a.x, viewport_b.x) - viewport.x);
    viewport.h = static_cast<int32_t>(std::max(viewport_a.y, viewport_b.y) - viewport.y);
    uint8_t layer_trans = m_layer->getLayerTransparency();

    double zmin = 0.0, zmax = 0.0;

    // FL_LOG(_log, LMsg("camera-update viewport") << viewport);
    std::vector<int32_t> index_list;
    collect(viewport, index_list);
    for(unsigned i=0; i!=index_list.size(); ++i) {
        Entry& entry = m_entries[index_list[i]];
        // NOTE
        // An update is forced if the item has an animation/action.
        // This update only happens if it is _already_ included in the viewport
        // Nevertheless: Moving instances - which might move into the viewport will be updated
        // By the layer change listener.
        if(entry.force_update || !isWarped) {
            updateEntry(entry);
        }

        RenderItem& item = m_instances[entry.instance_index];
        InstanceVisual* visual = item.instance->getVisual<InstanceVisual>();
        bool visible = (visual->isVisible() != 0);
        uint8_t instance_trans = visual->getTransparency();
        if(!item.image || !visible || (instance_trans == 255 && layer_trans == 0)
                || (instance_trans == 0 && layer_trans == 255)) {
            continue;
        }

        if(layer_trans != 0) {
            if(instance_trans != 0) {
                uint8_t calc_trans = layer_trans - instance_trans;
                if(calc_trans >= 0) {
                    instance_trans = calc_trans;
                } else {
                    instance_trans = 0;
                }
            } else {
                instance_trans = layer_trans;
            }
        }

        Point3D screen_point = m_camera->virtualScreenToScreen(item.screenpoint);
        // NOTE:
        // One would expect this to be necessary here,
        // however it works the same without, sofar
        // m_camera->calculateZValue(screen_point);
        // item.screenpoint.z = -screen_point.z;

        item.dimensions.x = screen_point.x;
        item.dimensions.y = screen_point.y;
        item.dimensions.w = item.bbox.w;
        item.dimensions.h = item.bbox.h;

        item.transparency = 255 - instance_trans;

        if (zoom != 1.0) {
            // NOTE: Due to image alignment, there is additional additions on image dimensions
            //       There's probabaly some better solution for this, but works "good enough" for now.
            //       In case additions are removed, gaps appear between tiles.
            item.dimensions.w = unsigned(double(item.bbox.w) * zoom + OVERDRAW);
            item.dimensions.h = unsigned(double(item.bbox.h) * zoom + OVERDRAW);
        }

        if (!m_need_sorting) {
            zmin = std::min(zmin, item.screenpoint.z);
            zmax = std::max(zmax, item.screenpoint.z);
        }

        if(item.dimensions.intersects(screen_viewport)) {
            renderlist.push_back(&item);
        }
    }

    if (m_need_sorting) {
        InstanceDistanceSort ids;
        std::stable_sort(renderlist.begin(), renderlist.end(), ids);
    } else {
        zmin -= 0.5;
        zmax += 0.5;

        // We want to put every z value in [-10,10] range.
        // To do it, we simply solve
        // { y1 = a*x1 + b
        // { y2 = a*x2 + b
        // where [y1,y2]' = [-10,10]' is required z range,
        // and [x1,x2]' is expected min,max z coords.
        double det = zmin - zmax;
        if (fabs(det) > FLT_EPSILON) {
            double det_a = -10.0 - 10.0;
            double det_b = 10.0 * zmin - (-10.0) * zmax;
            double a = static_cast<float>(det_a / det);
            double b = static_cast<float>(det_b / det);
            float estimate = sqrtf(static_cast<float>(renderlist.size()));
            float stack_delta = fabs(-10.0f - 10.0f) / estimate * 0.1f;

            RenderList::iterator it = renderlist.begin();
            for ( ; it != renderlist.end(); ++it) {
                double& z = (*it)->screenpoint.z;
                z = a * z + b;
                InstanceVisual* vis = (*it)->instance->getVisual<InstanceVisual>();
                z += vis->getStackPosition() * stack_delta;
            }
        }
    }
    //  FL_LOG(_log, LMsg("camera-update ") << " N=" <<renderlist.size() << "/" << m_instances.size() << "/" << index_list.size());
}
Пример #6
0
void GameRenderer::renderWorld(GameWorld* world, const ViewCamera &camera, float alpha)
{
	_renderAlpha = alpha;
	_renderWorld = world;

	// Store the input camera,
	_camera = camera;

	setupRender();

	glBindVertexArray( vao );

	float tod = world->getHour() + world->getMinute()/60.f;

	// Requires a float 0-24
	auto weatherID = static_cast<WeatherLoader::WeatherCondition>(world->state->basic.nextWeather * 24);
	auto weather = world->data->weatherLoader.getWeatherData(weatherID, tod);

	glm::vec3 skyTop = weather.skyTopColor;
	glm::vec3 skyBottom = weather.skyBottomColor;
	glm::vec3 ambient = weather.ambientColor;
	glm::vec3 dynamic = weather.directLightColor;

	float theta = (tod/(60.f * 24.f) - 0.5f) * 2 * 3.14159265;
	glm::vec3 sunDirection{
		sin(theta),
		0.0,
		cos(theta),
	};
	sunDirection = glm::normalize(sunDirection);

	_camera.frustum.near = world->state->cameraNear;
	_camera.frustum.far = weather.farClipping;

	auto view = _camera.getView();
	auto proj = _camera.frustum.projection();

	Renderer::SceneUniformData sceneParams {
		proj,
		view,
		glm::vec4{ambient, 0.0f},
		glm::vec4{dynamic, 0.0f},
		glm::vec4(skyBottom, 1.f),
		glm::vec4(camera.position, 0.f),
		weather.fogStart,
		camera.frustum.far
	};

	renderer->setSceneParameters(sceneParams);
	
	renderer->clear(glm::vec4(skyBottom, 1.f));

	_camera.frustum.update(proj * view);
	if (cullOverride)
	{
		cullingCamera.frustum.update(
					cullingCamera.frustum.projection() * cullingCamera.getView());
	}
	
	culled = 0;

	renderer->useProgram(worldProg);

	//===============================================================
	//	Render List Construction
	//---------------------------------------------------------------

	RW_PROFILE_BEGIN("RenderList");

	// This is sequential at the moment, it should be easy to make it
	// run in parallel with a good threading system.
	RenderList renderList;
	// Naive optimisation, assume 10% hitrate
	renderList.reserve(world->allObjects.size() * 0.5f);

	RW_PROFILE_BEGIN("Build");

	ObjectRenderer objectRenderer(_renderWorld,
					  (cullOverride ? cullingCamera : _camera),
					  _renderAlpha,
					  getMissingTexture());

	// World Objects
	for (auto object : world->allObjects) {
		objectRenderer.buildRenderList(object, renderList);
	}
	RW_PROFILE_END();

	renderer->pushDebugGroup("Objects");
	renderer->pushDebugGroup("RenderList");

	// Also parallelizable
	RW_PROFILE_BEGIN("Sort");
	std::sort(renderList.begin(), renderList.end(),
			  [](const Renderer::RenderInstruction& a,
				 const Renderer::RenderInstruction&b) {
					return a.sortKey < b.sortKey;
				});
	RW_PROFILE_END();

	RW_PROFILE_BEGIN("Draw");
	renderer->drawBatched(renderList);
	RW_PROFILE_END();

	renderer->popDebugGroup();
	profObjects = renderer->popDebugGroup();

	RW_PROFILE_END();

	// Render arrows above anything that isn't radar only (or hidden)
	ModelRef& arrowModel = world->data->models["arrow"];
	if( arrowModel && arrowModel->resource )
	{
		auto arrowTex = world->data->textures[{"copblue",""}];
		auto arrowFrame = arrowModel->resource->findFrame( "arrow" );
		for( auto& blip : world->state->radarBlips )
		{
			if( blip.second.display == BlipData::Show )
			{
				glm::mat4 model;

				if( blip.second.target > 0 )
				{
					// TODO restore arrows
					/*auto& pool = world->getTypeObjectPool(blip.second.target);
					auto object = pool.find(blip.second.target);
					if( object )
					{
						model = object->getTimeAdjustedTransform( _renderAlpha );
					}*/
				}
				else
				{
					model = glm::translate( model, blip.second.coord );
				}

				float a = world->getGameTime() * glm::pi<float>();
				model = glm::translate( model, glm::vec3(0.f, 0.f, 2.5f + glm::sin( a ) * 0.5f) );
				model = glm::rotate( model, a, glm::vec3(0.f, 0.f, 1.f) );
				model = glm::scale( model, glm::vec3(1.5f, 1.5f, 1.5f) );

				Renderer::DrawParameters dp;
				dp.textures = {arrowTex->getName()};
				dp.ambient = 1.f;
				dp.colour = glm::u8vec4(255, 255, 255, 255);

				auto geom = arrowModel->resource->geometries[arrowFrame->getGeometries()[0]];
				Model::SubGeometry& sg = geom->subgeom[0];

				dp.start = sg.start;
				dp.count = sg.numIndices;
				dp.diffuse = 1.f;

				renderer->draw( model, &geom->dbuff, dp );
			}
		}
	}

	// Draw goal indicators
	glDepthMask(GL_FALSE);
	renderer->useProgram( particleProg );
	for(auto& i : world->getAreaIndicators())
	{
		renderAreaIndicator( &i );
	}
	glDepthMask(GL_TRUE);

	renderer->pushDebugGroup("Water");

	water.render(this, world);

	profWater = renderer->popDebugGroup();

	renderer->pushDebugGroup("Sky");

	glBindVertexArray( vao );

	Renderer::DrawParameters dp;
	dp.start = 0;
	dp.count = skydomeSegments * skydomeRows * 6;

	renderer->useProgram(skyProg);
	renderer->setUniform(skyProg, "TopColor", glm::vec4(skyTop, 1.f));
	renderer->setUniform(skyProg, "BottomColor", glm::vec4(skyBottom, 1.f));

	renderer->draw(glm::mat4(), &skyDbuff, dp);

	profSky = renderer->popDebugGroup();

	renderer->pushDebugGroup("Effects");
	renderEffects(world);
	profEffects = renderer->popDebugGroup();

	glDisable(GL_DEPTH_TEST);

	GLuint splashTexName = 0;
	auto fc = world->state->fadeColour;
	if((fc.r + fc.g + fc.b) == 0 && world->state->currentSplash.size() > 0) {
		auto splash = world->data->findTexture(world->state->currentSplash);
		if ( splash )
		{
			splashTexName = splash->getName();
		}
	}

	if( (world->state->isCinematic || world->state->currentCutscene ) && splashTexName != 0 ) {
		renderLetterbox();
	}

	float fadeTimer = world->getGameTime() - world->state->fadeStart;
	if( fadeTimer < world->state->fadeTime || !world->state->fadeOut ) {
		glUseProgram(ssRectProgram);
		glUniform2f(ssRectOffset, 0.f, 0.f);
		glUniform2f(ssRectSize, 1.f, 1.f);

		glUniform1i(ssRectTexture, 0);

		if(splashTexName != 0) {
			glBindTexture(GL_TEXTURE_2D, splashTexName);
			fc = glm::u16vec3(0, 0, 0);
		}
		else {
			glBindTexture(GL_TEXTURE_2D, 0);
		}

		float fadeFrac = 0.f;
		if( world->state->fadeTime > 0.f ) {
			fadeFrac = std::min(fadeTimer / world->state->fadeTime, 1.f);
		}

		float a = world->state->fadeOut ? 1.f - fadeFrac : fadeFrac;

		glm::vec4 fadeNormed(fc.r / 255.f, fc.g/ 255.f, fc.b/ 255.f, a);

		glUniform4fv(ssRectColour, 1, glm::value_ptr(fadeNormed));

		glBindVertexArray( ssRectDraw.getVAOName() );
		glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
	}

	if( (world->state->isCinematic || world->state->currentCutscene ) && splashTexName == 0 ) {
		renderLetterbox();
	}

	renderPostProcess();

	glUseProgram(0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
	glBindVertexArray( 0 );
}
void Graphics::Plot(HDC hdc, RenderList& renderList) {
	for (RenderList::iterator ite = renderList.begin(); ite != renderList.end(); ++ite) {
		if (!ite->TestState(TriangleStateInactive) && !ite->TestState(TriangleStateBackface) && !ite->TestState(TriangleStateClipped))
			PlotTriangle(hdc, *ite);
	}
}