arma_hot
inline
void
spglue_plus::apply_noalias(SpMat<eT>& out, const SpProxy<T1>& pa, const SpProxy<T2>& pb)
  {
  arma_extra_debug_sigprint();
  
  arma_debug_assert_same_size(pa.get_n_rows(), pa.get_n_cols(), pb.get_n_rows(), pb.get_n_cols(), "addition");

  if( (pa.get_n_nonzero() != 0) && (pb.get_n_nonzero() != 0) )
    {
    out.set_size(pa.get_n_rows(), pa.get_n_cols());
    
    // Resize memory to correct size.
    out.mem_resize(n_unique(pa, pb, op_n_unique_add()));
    
    // Now iterate across both matrices.
    typename SpProxy<T1>::const_iterator_type x_it = pa.begin();
    typename SpProxy<T2>::const_iterator_type y_it = pb.begin();
    
    typename SpProxy<T1>::const_iterator_type x_end = pa.end();
    typename SpProxy<T2>::const_iterator_type y_end = pb.end();
    
    uword cur_val = 0;
    while( (x_it != x_end) || (y_it != y_end) )
      {
      if(x_it == y_it)
        {
        const eT val = (*x_it) + (*y_it);
        
        if (val != eT(0))
          {
          access::rw(out.values[cur_val]) = val;
          access::rw(out.row_indices[cur_val]) = x_it.row();
          ++access::rw(out.col_ptrs[x_it.col() + 1]);
          ++cur_val;
          }

        ++x_it;
        ++y_it;
        }
      else
        {
        const uword x_it_row = x_it.row();
        const uword x_it_col = x_it.col();
        
        const uword y_it_row = y_it.row();
        const uword y_it_col = y_it.col();
        
        if((x_it_col < y_it_col) || ((x_it_col == y_it_col) && (x_it_row < y_it_row))) // if y is closer to the end
          {
          access::rw(out.values[cur_val]) = (*x_it);
          access::rw(out.row_indices[cur_val]) = x_it_row;
          ++access::rw(out.col_ptrs[x_it_col + 1]);
          ++cur_val;
          ++x_it;
          }
        else
          {
          access::rw(out.values[cur_val]) = (*y_it);
          access::rw(out.row_indices[cur_val]) = y_it_row;
          ++access::rw(out.col_ptrs[y_it_col + 1]);
          ++cur_val;
          ++y_it;
          }
        }
      }
    
    const uword out_n_cols = out.n_cols;
    
    uword* col_ptrs = access::rwp(out.col_ptrs);
    
    // Fix column pointers to be cumulative.
    for(uword c = 1; c <= out_n_cols; ++c)
      {
      col_ptrs[c] += col_ptrs[c - 1];
      }
    }
  else
    {
    if(pa.get_n_nonzero() == 0)
      {
      out = pb.Q;
      return;
      }
    
    if(pb.get_n_nonzero() == 0)
      {
      out = pa.Q;
      return;
      }
    }
  }
arma_hot
inline
void
spglue_minus::apply_noalias(SpMat<eT>& result, const SpProxy<T1>& pa, const SpProxy<T2>& pb)
  {
  arma_extra_debug_sigprint();
  
  arma_debug_assert_same_size(pa.get_n_rows(), pa.get_n_cols(), pb.get_n_rows(), pb.get_n_cols(), "subtraction");

  result.set_size(pa.get_n_rows(), pa.get_n_cols());

  // Resize memory to correct size.
  result.mem_resize(n_unique(pa, pb, op_n_unique_sub()));

  // Now iterate across both matrices.
  typename SpProxy<T1>::const_iterator_type x_it = pa.begin();
  typename SpProxy<T2>::const_iterator_type y_it = pb.begin();

  uword cur_val = 0;
  while((x_it.pos() < pa.get_n_nonzero()) || (y_it.pos() < pb.get_n_nonzero()))
    {
    if(x_it == y_it)
      {
      const typename T1::elem_type val = (*x_it) - (*y_it);
      if (val != 0)
        {
        access::rw(result.values[cur_val]) = val;
        access::rw(result.row_indices[cur_val]) = x_it.row();
        ++access::rw(result.col_ptrs[x_it.col() + 1]);
        ++cur_val;
        }

      ++x_it;
      ++y_it;
      }
    else
      {
      if((x_it.col() < y_it.col()) || ((x_it.col() == y_it.col()) && (x_it.row() < y_it.row()))) // if y is closer to the end
        {
        access::rw(result.values[cur_val]) = (*x_it);
        access::rw(result.row_indices[cur_val]) = x_it.row();
        ++access::rw(result.col_ptrs[x_it.col() + 1]);
        ++cur_val;
        ++x_it;
        }
      else
        {
        access::rw(result.values[cur_val]) = -(*y_it);
        access::rw(result.row_indices[cur_val]) = y_it.row();
        ++access::rw(result.col_ptrs[y_it.col() + 1]);
        ++cur_val;
        ++y_it;
        }
      }
    }

  // Fix column pointers to be cumulative.
  for(uword c = 1; c <= result.n_cols; ++c)
    {
    access::rw(result.col_ptrs[c]) += result.col_ptrs[c - 1];
    }
  }
Пример #3
0
arma_hot
inline
void
spglue_minus::apply_noalias(SpMat<eT>& out, const SpProxy<T1>& pa, const SpProxy<T2>& pb)
  {
  arma_extra_debug_sigprint();
  
  arma_debug_assert_same_size(pa.get_n_rows(), pa.get_n_cols(), pb.get_n_rows(), pb.get_n_cols(), "subtraction");
  
  if(pa.get_n_nonzero() == 0)  { out = pb.Q; out *= eT(-1); return; }
  if(pb.get_n_nonzero() == 0)  { out = pa.Q;                return; }
  
  const uword max_n_nonzero = spglue_elem_helper::max_n_nonzero_plus(pa, pb);
  
  // Resize memory to upper bound
  out.reserve(pa.get_n_rows(), pa.get_n_cols(), max_n_nonzero);
  
  // Now iterate across both matrices.
  typename SpProxy<T1>::const_iterator_type x_it  = pa.begin();
  typename SpProxy<T1>::const_iterator_type x_end = pa.end();
  
  typename SpProxy<T2>::const_iterator_type y_it  = pb.begin();
  typename SpProxy<T2>::const_iterator_type y_end = pb.end();
  
  uword count = 0;
  
  while( (x_it != x_end) || (y_it != y_end) )
    {
    eT out_val;
    
    const uword x_it_row = x_it.row();
    const uword x_it_col = x_it.col();
    
    const uword y_it_row = y_it.row();
    const uword y_it_col = y_it.col();
    
    bool use_y_loc = false;
    
    if(x_it == y_it)
      {
      out_val = (*x_it) - (*y_it);
      
      ++x_it;
      ++y_it;
      }
    else
      {
      if((x_it_col < y_it_col) || ((x_it_col == y_it_col) && (x_it_row < y_it_row))) // if y is closer to the end
        {
        out_val = (*x_it);
        
        ++x_it;
        }
      else
        {
        out_val = -(*y_it);  // take the negative
        
        ++y_it;
        
        use_y_loc = true;
        }
      }
    
    if(out_val != eT(0))
      {
      access::rw(out.values[count]) = out_val;
      
      const uword out_row = (use_y_loc == false) ? x_it_row : y_it_row;
      const uword out_col = (use_y_loc == false) ? x_it_col : y_it_col;
      
      access::rw(out.row_indices[count]) = out_row;
      access::rw(out.col_ptrs[out_col + 1])++;
      ++count;
      }
    }
  
  const uword out_n_cols = out.n_cols;
  
  uword* col_ptrs = access::rwp(out.col_ptrs);
  
  // Fix column pointers to be cumulative.
  for(uword c = 1; c <= out_n_cols; ++c)
    {
    col_ptrs[c] += col_ptrs[c - 1];
    }
  
  if(count < max_n_nonzero)
    {
    if(count <= (max_n_nonzero/2))
      {
      out.mem_resize(count);
      }
    else
      {
      // quick resize without reallocating memory and copying data
      access::rw(         out.n_nonzero) = count;
      access::rw(     out.values[count]) = eT(0);
      access::rw(out.row_indices[count]) = uword(0);
      }
    }
  }
Пример #4
0
arma_hot
inline
void
spglue_times::apply_noalias(SpMat<eT>& c, const SpProxy<T1>& pa, const SpProxy<T2>& pb)
  {
  arma_extra_debug_sigprint();
  
  const uword x_n_rows = pa.get_n_rows();
  const uword x_n_cols = pa.get_n_cols();
  const uword y_n_rows = pb.get_n_rows();
  const uword y_n_cols = pb.get_n_cols();

  arma_debug_assert_mul_size(x_n_rows, x_n_cols, y_n_rows, y_n_cols, "matrix multiplication");

  // First we must determine the structure of the new matrix (column pointers).
  // This follows the algorithm described in 'Sparse Matrix Multiplication
  // Package (SMMP)' (R.E. Bank and C.C. Douglas, 2001).  Their description of
  // "SYMBMM" does not include anything about memory allocation.  In addition it
  // does not consider that there may be elements which space may be allocated
  // for but which evaluate to zero anyway.  So we have to modify the algorithm
  // to work that way.  For the "SYMBMM" implementation we will not determine
  // the row indices but instead just the column pointers.
  
  //SpMat<typename T1::elem_type> c(x_n_rows, y_n_cols); // Initializes col_ptrs to 0.
  c.zeros(x_n_rows, y_n_cols);
  
  //if( (pa.get_n_elem() == 0) || (pb.get_n_elem() == 0) )
  if( (pa.get_n_nonzero() == 0) || (pb.get_n_nonzero() == 0) )
    {
    return;
    }
  
  // Auxiliary storage which denotes when items have been found.
  podarray<uword> index(x_n_rows);
  index.fill(x_n_rows); // Fill with invalid links.
  
  typename SpProxy<T2>::const_iterator_type y_it  = pb.begin();
  typename SpProxy<T2>::const_iterator_type y_end = pb.end();

  // SYMBMM: calculate column pointers for resultant matrix to obtain a good
  // upper bound on the number of nonzero elements.
  uword cur_col_length = 0;
  uword last_ind = x_n_rows + 1;
  do
    {
    const uword y_it_row = y_it.row();
    
    // Look through the column that this point (*y_it) could affect.
    typename SpProxy<T1>::const_iterator_type x_it = pa.begin_col(y_it_row);
    
    while(x_it.col() == y_it_row)
      {
      // A point at x(i, j) and y(j, k) implies a point at c(i, k).
      if(index[x_it.row()] == x_n_rows)
        {
        index[x_it.row()] = last_ind;
        last_ind = x_it.row();
        ++cur_col_length;
        }

      ++x_it;
      }

    const uword old_col = y_it.col();
    ++y_it;

    // See if column incremented.
    if(old_col != y_it.col())
      {
      // Set column pointer (this is not a cumulative count; that is done later).
      access::rw(c.col_ptrs[old_col + 1]) = cur_col_length;
      cur_col_length = 0;

      // Return index markers to zero.  Use last_ind for traversal.
      while(last_ind != x_n_rows + 1)
        {
        const uword tmp = index[last_ind];
        index[last_ind] = x_n_rows;
        last_ind = tmp;
        }
      }
    }
  while(y_it != y_end);

  // Accumulate column pointers.
  for(uword i = 0; i < c.n_cols; ++i)
    {
    access::rw(c.col_ptrs[i + 1]) += c.col_ptrs[i];
    }

  // Now that we know a decent bound on the number of nonzero elements, allocate
  // the memory and fill it.
  c.mem_resize(c.col_ptrs[c.n_cols]);

  // Now the implementation of the NUMBMM algorithm.
  uword cur_pos = 0; // Current position in c matrix.
  podarray<eT> sums(x_n_rows); // Partial sums.
  sums.zeros();
  
  // setting the size of 'sorted_indices' to x_n_rows is a better-than-nothing guess;
  // the correct minimum size is determined later
  podarray<uword> sorted_indices(x_n_rows);
  
  // last_ind is already set to x_n_rows, and cur_col_length is already set to 0.
  // We will loop through all columns as necessary.
  uword cur_col = 0;
  while(cur_col < c.n_cols)
    {
    // Skip to next column with elements in it.
    while((cur_col < c.n_cols) && (c.col_ptrs[cur_col] == c.col_ptrs[cur_col + 1]))
      {
      // Update current column pointer to actual number of nonzero elements up
      // to this point.
      access::rw(c.col_ptrs[cur_col]) = cur_pos;
      ++cur_col;
      }

    if(cur_col == c.n_cols)
      {
      break;
      }

    // Update current column pointer.
    access::rw(c.col_ptrs[cur_col]) = cur_pos;

    // Check all elements in this column.
    typename SpProxy<T2>::const_iterator_type y_col_it = pb.begin_col(cur_col);
    
    while(y_col_it.col() == cur_col)
      {
      // Check all elements in the column of the other matrix corresponding to
      // the row of this column.
      typename SpProxy<T1>::const_iterator_type x_col_it = pa.begin_col(y_col_it.row());

      const eT y_value = (*y_col_it);

      while(x_col_it.col() == y_col_it.row())
        {
        // A point at x(i, j) and y(j, k) implies a point at c(i, k).
        // Add to partial sum.
        const eT x_value = (*x_col_it);
        sums[x_col_it.row()] += (x_value * y_value);

        // Add point if it hasn't already been marked.
        if(index[x_col_it.row()] == x_n_rows)
          {
          index[x_col_it.row()] = last_ind;
          last_ind = x_col_it.row();
          }

        ++x_col_it;
        }

      ++y_col_it;
      }

    // Now sort the indices that were used in this column.
    //podarray<uword> sorted_indices(c.col_ptrs[cur_col + 1] - c.col_ptrs[cur_col]);
    sorted_indices.set_min_size(c.col_ptrs[cur_col + 1] - c.col_ptrs[cur_col]);
    
    // .set_min_size() can only enlarge the array to the specified size,
    // hence if we request a smaller size than already allocated,
    // no new memory allocation is done
    
    
    uword cur_index = 0;
    while(last_ind != x_n_rows + 1)
      {
      const uword tmp = last_ind;

      // Check that it wasn't a "fake" nonzero element.
      if(sums[tmp] != eT(0))
        {
        // Assign to next open position.
        sorted_indices[cur_index] = tmp;
        ++cur_index;
        }

      last_ind = index[tmp];
      index[tmp] = x_n_rows;
      }

    // Now sort the indices.
    if (cur_index != 0)
      {
      op_sort::direct_sort_ascending(sorted_indices.memptr(), cur_index);

      for(uword k = 0; k < cur_index; ++k)
        {
        const uword row = sorted_indices[k];
        access::rw(c.row_indices[cur_pos]) = row;
        access::rw(c.values[cur_pos]) = sums[row];
        sums[row] = eT(0);
        ++cur_pos;
        }
      }

    // Move to next column.
    ++cur_col;
    }

  // Update last column pointer and resize to actual memory size.
  access::rw(c.col_ptrs[c.n_cols]) = cur_pos;
  c.mem_resize(cur_pos);
  }