void gram_schmidt( StateType &x , LyapType &lyap , size_t n ) { if( !num_of_lyap ) return; if( ptrdiff_t( ( num_of_lyap + 1 ) * n ) != std::distance( x.begin() , x.end() ) ) throw std::domain_error( "renormalization() : size of state does not match the number of lyapunov exponents." ); typedef typename StateType::value_type value_type; typedef typename StateType::iterator iterator; value_type norm[num_of_lyap]; value_type tmp[num_of_lyap]; iterator first = x.begin() + n; iterator beg1 = first , end1 = first + n ; std::fill( norm , norm+num_of_lyap , 0.0 ); // normalize first vector norm[0] = sqrt( std::inner_product( beg1 , end1 , beg1 , 0.0 ) ); normalize( beg1 , end1 , norm[0] ); beg1 += n; end1 += n; for( size_t j=1 ; j<num_of_lyap ; ++j , beg1+=n , end1+=n ) { for( size_t k=0 ; k<j ; ++k ) { tmp[k] = std::inner_product( beg1 , end1 , first + k*n , 0.0 ); // clog << j << " " << k << " " << tmp[k] << "\n"; } for( size_t k=0 ; k<j ; ++k ) substract_vector( beg1 , end1 , first + k*n , tmp[k] ); // normalize j-th vector norm[j] = sqrt( std::inner_product( beg1 , end1 , beg1 , 0.0 ) ); // clog << j << " " << norm[j] << "\n"; normalize( beg1 , end1 , norm[j] ); } for( size_t j=0 ; j<num_of_lyap ; j++ ) lyap[j] += log( norm[j] ); }
inline int CashKarp54(const SystemType &dxdt, StateType &x, double &t, double &h, double relTol, double absTol, double maxStepSize) { // Constants from Butcher tableau, see: http://en.wikipedia.org/wiki/Cash-Karp_method // and http://en.wikipedia.org/wiki/Runge-Kutta_methods const double c2 = 1.0 / 5.0; const double c3 = 3.0 / 10.0; const double c4 = 3.0 / 5.0; const double c5 = 1.0; const double c6 = 7.0 / 8.0; const double b5th1 = 37.0 / 378.0; const double b5th2 = 0.0; const double b5th3 = 250.0 / 621.0; const double b5th4 = 125.0 / 594.0; const double b5th5 = 0.0; const double b5th6 = 512.0 / 1771.0; const double b4th1 = 2825.0 / 27648.0; const double b4th2 = 0.0; const double b4th3 = 18575.0 / 48384.0; const double b4th4 = 13525.0 / 55296.0; const double b4th5 = 277.0 / 14336.0; const double b4th6 = 1.0 / 4.0; const double bDiff1 = b5th1 - b4th1; const double bDiff2 = b5th2 - b4th2; const double bDiff3 = b5th3 - b4th3; const double bDiff4 = b5th4 - b4th4; const double bDiff5 = b5th5 - b4th5; const double bDiff6 = b5th6 - b4th6; const double a21 = 1.0 / 5.0; const double a31 = 3.0 / 40.0; const double a32 = 9.0 / 40.0; const double a41 = 3.0 / 10.0; const double a42 = -9.0 / 10.0; const double a43 = 6.0 / 5.0; const double a51 = -11.0 / 54.0; const double a52 = 5.0 / 2.0; const double a53 = -70.0 / 27.0; const double a54 = 35.0 / 27.0; const double a61 = 1631.0 / 55296.0; const double a62 = 175.0 / 512.0; const double a63 = 575.0 / 13824.0; const double a64 = 44275.0 / 110592.0; const double a65 = 253.0 / 4096.0; const std::size_t stateSize = x.size(); StateType tempState; // used to store state for next k value and later used // for error difference StateType k1; dxdt(x, k1, t); // fill k1 for (std::size_t i = 0; i < stateSize; ++i) tempState[i] = x[i] + h * a21 * k1[i]; StateType k2; dxdt(tempState, k2, t + c2 * h); // fill k2 for (std::size_t i = 0; i < stateSize; ++i) tempState[i] = x[i] + h * (a31 * k1[i] + a32 * k2[i]); StateType k3; dxdt(tempState, k3, t + c3 * h); // fill k3 for (std::size_t i = 0; i < stateSize; ++i) tempState[i] = x[i] + h * (a41 * k1[i] + a42 * k2[i] + a43 * k3[i]); StateType k4; dxdt(tempState, k4, t + c4 * h); // fill k4 for (std::size_t i = 0; i < stateSize; ++i) tempState[i] = x[i] + h * (a51 * k1[i] + a52 * k2[i] + a53 * k3[i] + a54 * k4[i]); StateType k5; dxdt(tempState, k5, t + c5 * h); // fill k5 for (std::size_t i = 0; i < stateSize; ++i) tempState[i] = x[i] + h * (a61 * k1[i] + a62 * k2[i] + a63 * k3[i] + a64 * k4[i] + a65 * k5[i]); StateType k6; dxdt(tempState, k6, t + c6 * h); // fill k6 StateType order5Solution; for (std::size_t i = 0; i < stateSize; ++i) order5Solution[i] = h * (b5th1 * k1[i] + b5th2 * k2[i] + b5th3 * k3[i] + b5th4 * k4[i] + b5th5 * k5[i] + b5th6 * k6[i]); // difference between order 4 and 5, used for error check, reusing tempState // variable for (std::size_t i = 0; i < stateSize; ++i) tempState[i] = h * (bDiff1 * k1[i] + bDiff2 * k2[i] + bDiff3 * k3[i] + bDiff4 * k4[i] + bDiff5 * k5[i] + bDiff6 * k6[i]); StateType potentialSolution; for (std::size_t i = 0; i < stateSize; ++i) potentialSolution[i] = x[i] + order5Solution[i]; // boost odeint syle error step sizing method StateType errorValueList; for (std::size_t i = 0; i < stateSize; ++i) errorValueList[i] = std::abs(tempState[i] / (absTol + relTol * (potentialSolution[i]))); double maxErrorValue = *(std::max_element(errorValueList.begin(), errorValueList.end())); // reject step and decrease step size if (maxErrorValue > 1.0) { h = h * std::max(0.9 * std::pow(maxErrorValue, -0.25), 0.2); return 0; } // use the step t += h; for (std::size_t i = 0; i < stateSize; ++i) x[i] = potentialSolution[i]; // if error is small enough then increase step size if (maxErrorValue < 0.5) { h = std::min(h * std::min(0.9 * std::pow(maxErrorValue, -0.20), 5.0), maxStepSize); } return 1; }