//compute interpolation Transform3D<> computeinterpolation(Transform3D<> Tin, Transform3D<> Tdes,double delta) { //number of steps, considering ti=1, ti-1=0, each step is 1/n int n=0; double WS=1.0; Transform3D<> Tout; //compute positional difference Vector3D<> dif=Tdes.P()-Tin.P(); //Compute Wtotal Rotation3D<> forW =inverse(Tin.R())*Tdes.R(); //Compute W vector Vector3D<> W=getW(forW); //Get the number of steps necessary Vector3D<> trans, rot; // trans=(1.0/n)*dif; // rot=(1.0/n)*W; double step; do {n=n+1; trans=(1.0/n)*dif; rot=(1.0/n)*W; step=trans.norm2()/WS+rot.norm2()/pi; } while (step>delta); n=1; //number of steps EAA<> eaa(rot*n); Transform3D<> current(Tin.P()+trans*n,Tin.R()*eaa.toRotation3D()); Tout=current; return Tout; }
//compute the small iteration VelocityScrew6D<> computeG(Transform3D<> Tin, Transform3D<> Tdes){ //compute positional difference Vector3D<> dif=Tdes.P()-Tin.P(); //compute rotation difference Rotation3D<> rot=Tdes.R()*inverse(Tin.R()); //assign values to deltau VelocityScrew6D<> deltau(dif(0),dif(1),dif(2),(rot(2,1)-rot(1,2))/2,(rot(0,2)-rot(2,0))/2,(rot(1,0)-rot(0,1))/2); return(deltau); }
void calculatePose(Q q){ State tmpState = wc->getDefaultState(); device->setQ(q, tmpState); Transform3D<double> cPose = device->baseTend(tmpState); RPY<double> rpy(cPose.R()); pose.x = cPose.P()[0]; pose.y = cPose.P()[1]; pose.z = cPose.P()[2]; pose.R = rpy(0)*180/Pi; pose.P = rpy(1)*180/Pi; pose.Y = rpy(2)*180/Pi; //cout << "POOOOOSE: " << cPose.P() << "\n"; kinematics::Pose msg; msg.x = cPose.P()[0]; msg.y = cPose.P()[1]; msg.z = cPose.P()[2]; msg.R = rpy(0)*180/Pi; msg.P = rpy(1)*180/Pi; msg.Y = rpy(2)*180/Pi; pose_pub.publish(msg); }
bool receiveJog(kinematics::KinXYZRPY::Request &req, kinematics::KinXYZRPY::Response &res){ device->setQ(positions, state); cout << "POSITIONS: " << positions << "\n"; Transform3D<double> Tcurrent = device->baseTend(state); Transform3D<double> Tdesired = device->baseTend(state); Tdesired.P() += Vector3D<double>(req.x, req.y, req.z); //Rotation3D<double> rot = RPY<double>(req.R, req.P, req.Y).toRotation3D(); /* Tdesired.R() = Rotation3D<double>( Tcurrent.R(0,0)+rot(0,0), Tcurrent.R(0,1)+rot(0,1), Tcurrent.R(0,2)+rot(0,2), Tcurrent.R(1,0)+rot(1,0), Tcurrent.R(1,1)+rot(1,1), Tcurrent.R(1,2)+rot(1,2), Tcurrent.R(2,0)+rot(2,0), Tcurrent.R(2,1)+rot(2,1), Tcurrent.R(2,1)+rot(2,2), ); */ res.success = sendConfigurations(Tcurrent, Tdesired, state, req.interpolate); return true; }
int main(int argc, char** argv) { //get wcFile and device name string wcFile = "/home/sdsuvei/robwork/RobWorkStudio/scenes/COBLab/KitchenScene.wc.xml"; string robotName = "UR"; string gripperName = "SDH"; std::string connectorName = "URConnector"; cout << "Trying to use workcell: " << wcFile << " and device " << robotName << endl; //load work cell WorkCell::Ptr wc = WorkCellFactory::load(wcFile); Device::Ptr UR = wc->findDevice(robotName); Device::Ptr gripper = wc->findDevice(gripperName); Device::Ptr connector = wc->findDevice(connectorName); if (UR == NULL) { cerr << "Device: " << robotName << " not found!" << endl; return 0; } //default state of the RobWork Workcell State state = wc->getDefaultState(); //load the collision detector CollisionDetector cd(wc,ProximityStrategyFactory::makeDefaultCollisionStrategy()); //ROS initialization ros::init(argc, argv, "listener"); ros::NodeHandle nh; ros::Rate loop_rate(5); sub = nh.subscribe ("/joint_states", 1, jointCallback); while(ros::ok()) { if(itHappened) { //RobWork robot model initialization //starting configuration of the UR5 arm // Q pos(6,0.0785, -1.7667, 2.037, -2.1101, -2.1724, -1.8505); // Q pos(6,-0.3946, -1.8944, 1.9378, -1.3807, -1.1023, -2.4439); Q pos(6, joint_pos[0], joint_pos[1], joint_pos[2], joint_pos[3], joint_pos[4], joint_pos[5]); cout<<"Initial arm configuration:\n"<<pos<<"\n"; //set the initial position of the UR5 arm UR->setQ(pos,state); //starting configuration of the SDH gripper Q grip(7,-1.047,0.000,0.000,-0.765,-0.282,-0.846,0); //set the initial position of the gripper gripper->setQ(grip,state); //half-away configuration of the URconnector Q conn(1,-1.597); //set the half-away configuration of the URconnector connector->setQ(conn,state); //RobWork Workcell frame definitions // Frame* bottle = wc->findFrame("BottleTray"); //bootle frame MovableFrame* bottle = (MovableFrame*)wc->findFrame("BottleTray"); Frame* marker=wc->findFrame("SDH.Marker"); //marker frame Frame* camera=wc->findFrame("Camera3D"); //camera frame Frame* pregrasp=wc->findFrame("Pregrasp"); // pregrasping frame if(cd.inCollision(state)) { cout<<"Before change: In collision!\n"; } //update the bottle frame with the value from the tracker Transform3D<> camTobj_rw=rw_camTobj(UR,state,bottle,camera); //change the object frame in the RobWork scene bottle->setTransform(camTobj_rw,state); if(cd.inCollision(state)) { cout<<"After change: In collision!\n"; } //store the kinematic values, from the RobWork workcell Transform3D<> kinematic_camTobj=Kinematics::frameTframe(camera,bottle,state); Transform3D<> kinematic_camTmrk=Kinematics::frameTframe(camera,marker,state); //compute the intermediate transforms // 1)URbase -> MARKER transform Transform3D<> urTmrk = UR->baseTframe(marker,state); // 2)CAMERA -> OBJECT transform Transform3D<> camTobj=find_camTobj(UR,state,bottle,camera,kinematic_camTobj); // 3)CAMERA -> MARKER transform Transform3D<> camTmrk=find_camTmrk(UR,state,marker,camera,kinematic_camTmrk); // 4)MARKER -> OBJECT transform Transform3D<> mrkTobj=inverse(camTmrk)*camTobj; // 5)OBJECT -> PREGRASP transform // Transform3D<> objTpg=Kinematics::frameTframe(bottle,pregrasp,state); // 6)URbase -> PreGrasping frame Transform3D<> objTpg=Kinematics::frameTframe(bottle,pregrasp,state); Transform3D<> urTcam=find_urTcam(UR,state,camera); Transform3D<> urTpg=urTcam*camTobj_rw*objTpg; //take initial rotation of object as pregrasping rotation // Transform3D<> urTpg=urTcam*camTobj_rw; // 7)URbase -> OBJECT transform Transform3D<> urTobj((urTmrk*mrkTobj*objTpg).P(),urTpg.R()); // Transform3D<> urTobj((urTmrk*mrkTobj).P(),urTpg.R()); //determine initial distance between the gripper-marker and the object Vector3D<> dist=(urTobj.P()-urTmrk.P()); cout<<"Initial distance is: "<<dist.norm2()<<endl; cout<<endl; //set the admissible threshold - distance between gripper-marker and object double tresh=0.01; //store the current value kinematic_camTmrk=camTmrk; kinematic_camTobj=camTobj; //start servoing method while (!cd.inCollision(state)){ //compute current distance between gripper-marker and object Vector3D<> cur_dist=(urTobj.P()-urTmrk.P()); cout<<"Current distance: "<<cur_dist.norm2()<<"\n"; //stop program if threshold limit is exceeded if(cur_dist.norm2()<tresh) { cout<<"Threshold limit exceeded!"<<endl; ros::shutdown(); break; } //compute the new urTmrk transform by performing interpolation between urTmrk & urTobj Transform3D<> urTmrk_new=computeinterpolation(urTmrk,urTobj,deltatess); //compute the new UR5 configuration which moves the gripper-marker closer to the object T1=clock(); Q new_pos=computenewQ(pos,urTmrk,urTmrk_new,UR,state,marker,bottle); //new configuration //Bring robot in new configuration UR->setQ(new_pos,state); //set device cout<<"new_pos:"<<new_pos; cout<<endl; //store the new urTmrk transform urTmrk=urTmrk_new; //store the new UR5 arm configuration pos=new_pos; //recompute the intermediate transforms // 1)CAMERA -> OBJECT transform Transform3D<> camTobj=find_camTobj(UR,state,bottle,camera,kinematic_camTobj); // 2)CAMERA -> MARKER transform Transform3D<> camTmrk=find_camTmrk(UR,state,marker,camera,kinematic_camTmrk); // 3)MARKER -> OBJECT transform Transform3D<> mrkTobj=inverse(camTmrk)*camTobj; // 4)URbase -> OBJECT transform // Transform3D<> urTobj((urTmrk*mrkTobj*objTpg).P(),urTpg.R()); //use the pregrasping rotation Transform3D<> urTobj((urTmrk*mrkTobj).P(),urTpg.R()); //store kinematic values for camTobj & camTmrk kinematic_camTobj=camTobj; kinematic_camTmrk=camTmrk; //execute robot movement //open file to write the script std::ofstream myfile; cout << "Generating script ... "; myfile.open ("/home/sdsuvei/workspace/PythonScripts/armQ.py"); if (myfile.is_open()){ myfile << "#!/usr/bin/python \n \n" << "import roslib \n" << "roslib.load_manifest('cob_script_server') \n" << "import rospy \n \n" << "from simple_script_server import * \n" << "sss = simple_script_server() \n \n" << "if __name__ == \"__main__\": \n" << " rospy.init_node(\"asd\") \n" << " sss.move(\"arm\", [["<<pos[0]<<","<<pos[1]<<","<<pos[2]<<","<<pos[3]<<","<<pos[4]<<","<<pos[5]<<"]]) \n"; myfile.close(); cout << "Done!" << endl; } else{ cout << "myfile not open!" << endl; } int val1; cout<<"\n Press key to allow movement: "; cin>>val1; cout<<"\n"; cout << "Executing movement..." << endl; system("python /home/sdsuvei/workspace/PythonScripts/armQ.py"); cout << "Movement done!" << endl; int val; cout<<"\n Press any key to continue "; cin>>val; cout<<"\n"; } itHappened=false; } ros::spinOnce(); loop_rate.sleep(); } cout<<"After While"; cout<<endl; if(flag) { cout<<"\nOrientation impossible! Try a different grasping approach!\n"<< endl; } else { cout<<"\nDone!\n\n"; } return 0; }
bool sendConfigurations(Transform3D<double> Tcurrent, Transform3D<double> Tdesired, State& curState, bool interpolate=false, bool force_angle=false, double angle=0.0){ ROS_INFO("MAKING XYZ RPY"); transformToText("From", Tcurrent); transformToText("To", Tdesired); //cout << "From " << Tcurrent.P() << "\n"; //cout << "To " << Tdesired.P() << "\n"; rw::invkin::JacobianIKSolver solver(device, curState); solver.setCheckJointLimits(true); solver.setClampToBounds(true); Q qDesired; vector<Q> path; double length = (Tdesired.P()-Tcurrent.P()).norm2(); if (interpolate && length > interpolateStepSize){ solver.setEnableInterpolation(true); double stepSize = interpolateStepSize; cout << "Norm2: " << length << endl; rw::trajectory::LinearInterpolator<Transform3D<double> > interpolator(Tcurrent,Tdesired,length); double while_t = 0; while(while_t <= length){ double t = while_t; //for (double t=stepSize; t <= length; t+=stepSize){ cout << "T at: " << t << " : " << interpolator.x(t).P() << "\n"; vector<Q> newQs = solver.solve(interpolator.x(t), curState); if (newQs.size()>0){ qDesired = newQs[0] *180 / Pi; path.push_back(qDesired); device->setQ(newQs[0], curState); cout << "Q at: " << t << " : " << qDesired << "\n"; }else{ cout << "Couldn't interpolate " << Tdesired << "\n"; break; } while_t += stepSize; } } vector<Q> newQs = solver.solve(Tdesired, curState); cout << "Last T: " << Tdesired.P() << "\n"; if (newQs.size()>0){ qDesired = newQs[0] * 180 / Pi; //cout << "Q: " << qDesired << " - " << newQs[0] << "\n"; path.push_back(qDesired); device->setQ(newQs[0], curState); cout << "last Q: " << qDesired << "\n"; //cout << "AFTER: " << endl; //transformToText("After: ", device->baseTend(curState)); //cout << "AFTER : " << device->baseTend(curState).P() << "\n"; //cout << "AFTER : " << device->baseTend(state).P() << "\n"; } if (path.size() > 0){ for (int i = 0; i < (int) path.size(); i++){ if (force_angle){ path[i][6] += angle; } sendQs(path[i]); } return true; }else{ return false; } }
void transformToText(string pre, Transform3D<double> T){ RPY<double> rpy = RPY<double>(T.R()); ROS_INFO("xyz (%0.2f, %0.2f, %0.2f), RPY (%0.2f, %0.2f, %0.2f)", T.P()[0], T.P()[1], T.P()[2], rpy(0), rpy(1), rpy(2)); }