Пример #1
0
// the bit that does all the work
OP_ERROR SOP_rmanPtc::cookMySop(OP_Context &context)
{
    // get some useful bits & bobs
    UT_Interrupt *boss;
    float now = context.myTime;
    UT_String ptcFile = getPtcFile(now);
    int loadPercentage = getLoadPercentage(now);
    int displayPercentage = getDisplayPercentage(now);
    float pointSize = getPointSize(now);
    int useDisk = getUseDisk(now);
    int boundOnLoad = getBoundOnLoad(now);
    int displayChannel = getDisplayChannel(now);
    int onlyOutputDisplayChannel = getOnlyOutputDisplayChannel(now);
    /*
      float nearDensity = getNearDensity(now);
      float farDensity = getFarDensity(now);
      UT_String cullCamera = getCullCamera(now);
    */

    // lock out inputs
    if ( lockInputs(context) >= UT_ERROR_ABORT)
        error();

    // Check to see that there hasn't been a critical error in cooking the SOP.
    if (error() < UT_ERROR_ABORT)
    {
        boss = UTgetInterrupt();

        // here we make sure our detail is an instance of rmanPtcDetail
        rmanPtcDetail *ptc_gdp = dynamic_cast<rmanPtcSop::rmanPtcDetail *>(gdp);
        if ( !ptc_gdp )
            ptc_gdp = allocateNewDetail();

        // clear our gdp
        ptc_gdp->clearAndDestroy();

        // start our work
        boss->opStart("Loading point cloud");

        // get our bbox
        bool has_bbox = false;
        const GU_Detail *input_geo = inputGeo( 0, context );
        updateBBox( input_geo );

        // pass information to our detail
        ptc_gdp->point_size = pointSize;
        ptc_gdp->use_disk = useDisk;
        ptc_gdp->cull_bbox = mBBox;
        ptc_gdp->use_cull_bbox = (mHasBBox&&(!mBoundOnLoad))?true:false;
        ptc_gdp->display_probability = displayPercentage/100.f;
        ptc_gdp->display_channel = displayChannel;
        if ( onlyOutputDisplayChannel )
            ptc_gdp->display_channel = 0;

        // here we load our ptc
        if ( mReload )
        {            
            // clear everything
            mChannelNames.clear();
            cachePoints.clear();
            cacheNormals.clear();
            cacheRadius.clear();
            cacheData.clear();
            mRedraw = true;
            
            // open the point cloud
            PtcPointCloud ptc = PtcSafeOpenPointCloudFile(
                    const_cast<char*>(ptcFile.buffer()) );
            if ( !ptc )
            {
                UT_String msg( "Unable to open input file: " );
                msg += ptcFile;
                addError( SOP_MESSAGE, msg);
                boss->opEnd();
                return error();
            }

            // get some information from the ptc
            ptc_gdp->path = std::string(ptcFile.fileName());
            char **vartypes, **varnames;
            PtcGetPointCloudInfo( ptc, const_cast<char*>("npoints"),
                    &ptc_gdp->nPoints );
            PtcGetPointCloudInfo( ptc, const_cast<char*>("npointvars"),
                    &ptc_gdp->nChannels );
            PtcGetPointCloudInfo( ptc, const_cast<char*>("pointvartypes"),
                    &vartypes );
            PtcGetPointCloudInfo( ptc, const_cast<char*>("pointvarnames"),
                    &varnames );
            PtcGetPointCloudInfo( ptc, const_cast<char*>("datasize"),
                    &ptc_gdp->datasize );
            PtcGetPointCloudInfo( ptc, const_cast<char*>("bbox"),
                    ptc_gdp->bbox );

            // process our channel names
            ptc_gdp->types.clear();
            ptc_gdp->names.clear();
            for ( unsigned int i=0; i<ptc_gdp->nChannels; ++i )
            {
                ptc_gdp->types.push_back( std::string(vartypes[i]) );
                ptc_gdp->names.push_back( std::string(varnames[i]) );
                std::string name = ptc_gdp->types[i] + " " + ptc_gdp->names[i];
                mChannelNames.push_back( name );
            }

            // what percentage of points should we load?
            float load_probability = loadPercentage/100.f;

            // load points into memory
            float point[3], normal[3];
            float radius;
            float data[ptc_gdp->datasize];
            srand(0);
            for ( unsigned int i=0; i<ptc_gdp->nPoints; ++i )
            {
                PtcReadDataPoint( ptc, point, normal, &radius, data );

                // bound on load
                if ( boundOnLoad )
                {
                    UT_Vector3 pt( point[0], point[1], point[2] );
                    if ( !mBBox.isInside(pt) )
                        continue;
                }

                // discard a percentage of our points
                if ( rand()/(float)RAND_MAX>load_probability )
                    continue;

                // put points into our cache
                cachePoints.push_back( point );
                cacheNormals.push_back( normal );
                cacheRadius.push_back( radius );
                for ( unsigned int j=0; j<ptc_gdp->datasize; ++j )
                    cacheData.push_back( data[j] );

                // break for the interrupt handler (i.e. press ESC)
                if ( boss->opInterrupt() )
                    break;
            }
            ptc_gdp->nLoaded = cachePoints.size();

            // mark our detail as valid and close our ptc
            PtcClosePointCloudFile( ptc );
            mReload = false;

            // force update on channel parameter
            getParm("chan").revertToDefaults(now);
        }

        // build a new primitive
        GU_PrimParticle::build( ptc_gdp, cachePoints.size(), 0 );

        // create our output geometry using the output % parameter
        // this is the same variable as GR_ uses to preview
        std::vector<UT_Vector3>::const_iterator pos_it = cachePoints.begin();
        std::vector<UT_Vector3>::const_iterator norm_it = cacheNormals.begin();
        std::vector<float>::const_iterator rad_it = cacheRadius.begin();
        std::vector<float>::const_iterator data_it = cacheData.begin();

        // add some standard attributes
        GB_AttributeRef n_attrib = ptc_gdp->addPointAttrib( "N", sizeof(UT_Vector3),
                GB_ATTRIB_VECTOR, 0 );
        GB_AttributeRef r_attrib = ptc_gdp->addPointAttrib( "radius", sizeof(float),
                GB_ATTRIB_FLOAT, 0 );
        ptc_gdp->N_attrib = n_attrib;
        ptc_gdp->R_attrib = r_attrib;

        // process the rest of our data attributes
        std::vector<GB_AttribType> data_types;
        std::vector<GB_AttributeRef> data_attribs;
        std::vector<int> data_size, data_offset;
        int offset_total = 0;
        ptc_gdp->attributes.clear();
        ptc_gdp->attribute_size.clear();
        for ( unsigned int i=0; i<ptc_gdp->nChannels; ++i )
        {
            GB_AttribType type = GB_ATTRIB_FLOAT; // float, vector
            int size = 1;
            if ( ptc_gdp->types[i] == "point" ||
                    ptc_gdp->types[i] == "vector" ||
                    ptc_gdp->types[i] == "normal" )
            {
                type = GB_ATTRIB_VECTOR;
                size = 3;
            }
            if ( ptc_gdp->types[i] == "color" )
            {
                size=3;
            }
            if ( ptc_gdp->types[i] == "matrix" )
            {
                size=16;
            }
            offset_total += size;

            data_types.push_back( type );
            data_size.push_back( size );
            data_offset.push_back( offset_total );

            if ( onlyOutputDisplayChannel )
            {
                if ( displayChannel==i )
                {
                    GB_AttributeRef attrib = ptc_gdp->addPointAttrib(
                            ptc_gdp->names[i].c_str(), sizeof(float)*size,
                            type, 0 );
                    ptc_gdp->attributes.push_back( attrib );
                    ptc_gdp->attribute_size.push_back( size );
                    data_attribs.push_back( attrib );
                }
            }
            else
            {
                GB_AttributeRef attrib = ptc_gdp->addPointAttrib( ptc_gdp->names[i].c_str(),
                        sizeof(float)*size, type, 0 );
                ptc_gdp->attributes.push_back( attrib );
                ptc_gdp->attribute_size.push_back( size );
                data_attribs.push_back( attrib );
            }
        }
        cacheDataOffsets = data_offset;

/*
        // cull camera
        bool use_cull_cam = false;
        UT_Vector3 cam_pos(0,0,0);
        float cam_near=0.0, cam_far=0.0;

        if ( cullCamera!="" )
        {
            OBJ_Node *cam_node = OPgetDirector()->findOBJNode( cullCamera );
            if ( cam_node )
            {
                OBJ_Camera *cam = cam_node->castToOBJCamera();
                if ( cam )
                {
                    UT_DMatrix4 mtx;
                    cam->getWorldTransform( mtx, context );
                    std::cerr << "mtx: " << mtx << std::endl;
                    cam_pos *= mtx;
                    std::cerr << "pos: " << cam_pos << std::endl;
                    use_cull_cam = true;
                    cam_near = cam->getNEAR(now);
                    cam_far = cam->getFAR(now);
                    std::cerr << "near: " << cam_near << std::endl;
                    std::cerr << "far: " << cam_far << std::endl;

                    mRedraw = true;
                }
            }
            std::cerr << "cull camera: " << cullCamera << std::endl;
            std::cerr << nearDensity << ", " << farDensity << std::endl;
        }
*/
        // add data from our cached points to geometry
        // based on display/output probability
        srand(0);
        float density_mult = 1.f;
        while( pos_it!=cachePoints.end() )
        {

/*            
            if ( use_cull_cam )
            {
                float dist = ((*pos_it)-cam_pos).length();
                if ( dist<cam_near )
                    density_mult = nearDensity;
                else if ( dist>cam_far )
                    density_mult = farDensity;
                else
                {
                    float normalize_dist =( dist - cam_near ) / ( cam_far - cam_near );
                    density_mult = 1.f - normalize_dist;
                }
            }
*/

            if ( rand()/(float)RAND_MAX <
                    ptc_gdp->display_probability*density_mult )
            {
                if ( (!ptc_gdp->use_cull_bbox) ||
                        (ptc_gdp->use_cull_bbox &&
                                ptc_gdp->cull_bbox.isInside( *pos_it ) ) )
                {
                    // add to our SOP geometry
                    GEO_Point *pt = ptc_gdp->appendPoint();
                    pt->setPos( *pos_it );
                    (*pt->castAttribData<UT_Vector3>(n_attrib)) = *norm_it;
                    (*pt->castAttribData<float>(r_attrib)) = *rad_it;
                    const float *data = &*data_it;
                    for ( unsigned int i=0; i<data_types.size(); ++i )
                    {
                        if ( onlyOutputDisplayChannel )
                        {
                            if ( i==displayChannel )
                            {
                                pt->set( data_attribs[0], data, data_size[i] );
                            }
                            data += data_size[i];
                        }
                        else
                        {
                            pt->set( data_attribs[i], data, data_size[i] );
                            data += data_size[i];
                        }
                    }
                }
            }

            // increment our interators
            pos_it++;
            norm_it++;
            rad_it++;
            data_it+=ptc_gdp->datasize;
        }

        // delete our particle primitive
        ptc_gdp->deletePrimitive(0,0);
        
        // info in sop's message area
        std::stringstream ss;
        ss << "Name: " << ptc_gdp->path << std::endl;
        ss << "Points: " << ptc_gdp->nPoints << " - [ " <<
                ptc_gdp->nLoaded << " loaded ]" << std::endl;
        ss << "Channels: " << ptc_gdp->nChannels << std::endl;
        for ( unsigned int i=0; i<ptc_gdp->nChannels; ++i )
            ss << "  " << i << ": " << mChannelNames[i] << std::endl;
        addMessage( SOP_MESSAGE, ss.str().c_str() );

        // Tell the interrupt server that we've completed
        boss->opEnd();

        // force update?
        ptc_gdp->redraw = mRedraw;
        mRedraw = false;
    }

    // tidy up & go home
    unlockInputs();
    return error();
}