void MvQueryRewriteHandler::dumpAnalysisToFile(QueryAnalysis* qa, RelExpr* expr) { // Dump the QueryAnalysis data to a file. NAString analysisFileName = fileNamePrefix_ + ".analysis"; NAString str; expr->unparse(str, OPTIMIZER_PHASE, MVINFO_FORMAT); str += "\n"; str += qa->getText(); // Add in some stuff to look at join predicates for the JBBCs. str += "Join Predicates\n"; str += "==============="; char buffer[20]; ARRAY(JBB*) jbbs = qa->getJBBs(); for (CollIndex jbbInx = 0; jbbInx < jbbs.entries(); jbbInx++) { JBB* jbb = jbbs[jbbInx]; str_itoa(jbbInx, buffer); ((str += "\nJBB #") += NAString(buffer)) += ":\n"; CANodeIdSet jbbcs = jbb->getJBBCs(); for (CANodeId jbbcId=jbbcs.init(); jbbcs.next(jbbcId); jbbcs.advance(jbbcId) ) { str_itoa(jbbcId, buffer); ((str += "\nJBBC with CANodeId ") += NAString(buffer)) += ":\n"; ValueIdSet joinPreds = jbbcId.getNodeAnalysis()->getJBBC()->getJoinPreds(); str += valueIdSetGetText(joinPreds); if (joinPreds.entries() > 0) { str.append("\n(value ids of predicates are "); NABoolean first = true; for (ValueId jpVid=joinPreds.init(); joinPreds.next(jpVid); joinPreds.advance(jpVid)) { if (first) first = FALSE; else str.append(", "); str_itoa(jpVid, buffer); str.append(buffer); } str.append(")\n"); } } str += '\n'; } dumpToFile(analysisFileName.data(), str.data()); } // dumpAnalysisToFile()
short PhysSequence::codeGen(Generator *generator) { // Get a local handle on some of the generator objects. // CollHeap *wHeap = generator->wHeap(); Space *space = generator->getSpace(); ExpGenerator *expGen = generator->getExpGenerator(); MapTable *mapTable = generator->getMapTable(); // Allocate a new map table for this node. This must be done // before generating the code for my child so that this local // map table will be sandwiched between the map tables already // generated and the map tables generated by my offspring. // // Only the items available as output from this node will // be put in the local map table. Before exiting this function, all of // my offsprings map tables will be removed. Thus, none of the outputs // from nodes below this node will be visible to nodes above it except // those placed in the local map table and those that already exist in // my ancestors map tables. This is the standard mechanism used in the // generator for managing the access to item expressions. // MapTable *localMapTable = generator->appendAtEnd(); // Since this operation doesn't modify the row on the way down the tree, // go ahead and generate the child subtree. Capture the given composite row // descriptor and the child's returned TDB and composite row descriptor. // ex_cri_desc * givenCriDesc = generator->getCriDesc(Generator::DOWN); child(0)->codeGen(generator); ComTdb *childTdb = (ComTdb*)generator->getGenObj(); ex_cri_desc * childCriDesc = generator->getCriDesc(Generator::UP); ExplainTuple *childExplainTuple = generator->getExplainTuple(); // Make all of my child's outputs map to ATP 1. The child row is only // accessed in the project expression and it will be the second ATP // (ATP 1) passed to this expression. // localMapTable->setAllAtp(1); // My returned composite row has an additional tupp. // Int32 numberTuples = givenCriDesc->noTuples() + 1; ex_cri_desc * returnCriDesc #pragma nowarn(1506) // warning elimination = new (space) ex_cri_desc(numberTuples, space); #pragma warn(1506) // warning elimination // For now, the history buffer row looks just the return row. Later, // it may be useful to add an additional tupp for sequence function // itermediates that are not needed above this node -- thus, this // ATP is kept separate from the returned ATP. // const Int32 historyAtp = 0; const Int32 historyAtpIndex = numberTuples-1; #pragma nowarn(1506) // warning elimination ex_cri_desc *historyCriDesc = new (space) ex_cri_desc(numberTuples, space); #pragma warn(1506) // warning elimination ExpTupleDesc *historyDesc = 0; //seperate the read and retur expressions seperateReadAndReturnItems(wHeap); // The history buffer consists of items projected directly from the // child, the root sequence functions, the value arguments of the // offset functions, and running sequence functions. These elements must // be materialized in the history buffer in order to be able to compute // the outputs of this node -- the items projected directly from the child // (projectValues) and the root sequence functions (sequenceFunctions). // // Compute the set of sequence function items that must be materialized // int the history buffer. -- sequenceItems // // Compute the set of items in the history buffer: the union of the // projected values and the value arguments. -- historyIds // // Compute the set of items in the history buffer that are computed: // the difference between all the elements in the history buffer // and the projected items. -- computedHistoryIds // // KB---will need to return atp with 3 tups only 0,1 and 2 // 2 -->values from history buffer after ther are moved to it addCheckPartitionChangeExpr(generator, TRUE); ValueIdSet historyIds; historyIds += movePartIdsExpr(); historyIds += sequencedColumns(); ValueIdSet outputFromChild = child(0)->getGroupAttr()->getCharacteristicOutputs(); getHistoryAttributes(readSeqFunctions(),outputFromChild, historyIds, TRUE, wHeap); // Add in the top level sequence functions. historyIds += readSeqFunctions(); getHistoryAttributes(returnSeqFunctions(),outputFromChild, historyIds, TRUE, wHeap); // Add in the top level functions. historyIds += returnSeqFunctions(); // Layout the work tuple format which consists of the projected // columns and the computed sequence functions. First, compute // the number of attributes in the tuple. // ULng32 numberAttributes = ((NOT historyIds.isEmpty()) ? historyIds.entries() : 0); // Allocate an attribute pointer vector from the working heap. // Attributes **attrs = new(wHeap) Attributes*[numberAttributes]; // Fill in the attributes vector for the history buffer including // adding the entries to the map table. Also, compute the value ID // set for the elements to project from the child row. // //??????????re-visit this function?? computeHistoryAttributes(generator, localMapTable, attrs, historyIds); // Create the tuple descriptor for the history buffer row and // assign the offsets to the attributes. For now, this layout is // identical to the returned row. Set the tuple descriptors for // the return and history rows. // ULng32 historyRecLen; expGen->processAttributes(numberAttributes, attrs, ExpTupleDesc::SQLARK_EXPLODED_FORMAT, historyRecLen, historyAtp, historyAtpIndex, &historyDesc, ExpTupleDesc::SHORT_FORMAT); NADELETEBASIC(attrs, wHeap); #pragma nowarn(1506) // warning elimination returnCriDesc->setTupleDescriptor(historyAtpIndex, historyDesc); #pragma warn(1506) // warning elimination #pragma nowarn(1506) // warning elimination historyCriDesc->setTupleDescriptor(historyAtpIndex, historyDesc); #pragma warn(1506) // warning elimination // If there are any sequence function items, generate the sequence // function expressions. // ex_expr * readSeqExpr = NULL; if(NOT readSeqFunctions().isEmpty()) { ValueIdSet seqVals = readSeqFunctions(); seqVals += sequencedColumns(); seqVals += movePartIdsExpr(); expGen->generateSequenceExpression(seqVals, readSeqExpr); } ex_expr *checkPartChangeExpr = NULL; if (!checkPartitionChangeExpr().isEmpty()) { ItemExpr * newCheckPartitionChangeTree= checkPartitionChangeExpr().rebuildExprTree(ITM_AND,TRUE,TRUE); expGen->generateExpr(newCheckPartitionChangeTree->getValueId(), ex_expr::exp_SCAN_PRED, &checkPartChangeExpr); } //unsigned long rowLength; ex_expr * returnExpr = NULL; if(NOT returnSeqFunctions().isEmpty()) { expGen->generateSequenceExpression(returnSeqFunctions(), returnExpr); } // Generate expression to evaluate predicate on the output // ex_expr *postPred = 0; if (! selectionPred().isEmpty()) { ItemExpr * newPredTree = selectionPred().rebuildExprTree(ITM_AND,TRUE,TRUE); expGen->generateExpr(newPredTree->getValueId(), ex_expr::exp_SCAN_PRED, &postPred); } // Reset ATP's to zero for parent. // localMapTable->setAllAtp(0); // Generate expression to evaluate the cancel expression // ex_expr *cancelExpression = 0; if (! cancelExpr().isEmpty()) { ItemExpr * newCancelExprTree = cancelExpr().rebuildExprTree(ITM_AND,TRUE,TRUE); expGen->generateExpr(newCancelExprTree->getValueId(), ex_expr::exp_SCAN_PRED, &cancelExpression); } // // For overflow // // ( The following are meaningless if ! unlimitedHistoryRows() ) NABoolean noOverflow = CmpCommon::getDefault(EXE_BMO_DISABLE_OVERFLOW) == DF_ON ; NABoolean logDiagnostics = CmpCommon::getDefault(EXE_DIAGNOSTIC_EVENTS) == DF_ON ; NABoolean possibleMultipleCalls = generator->getRightSideOfFlow() ; short scratchTresholdPct = (short) CmpCommon::getDefaultLong(SCRATCH_FREESPACE_THRESHOLD_PERCENT); // determione the memory usage (amount of memory as percentage from total // physical memory used to initialize data structures) unsigned short memUsagePercent = (unsigned short) getDefault(BMO_MEMORY_USAGE_PERCENT); short memPressurePct = (short)getDefault(GEN_MEM_PRESSURE_THRESHOLD); historyRecLen = ROUND8(historyRecLen); Lng32 maxNumberOfOLAPBuffers; Lng32 maxRowsInOLAPBuffer; Lng32 minNumberOfOLAPBuffers; Lng32 numberOfWinOLAPBuffers; Lng32 olapBufferSize; computeHistoryParams(historyRecLen, maxRowsInOLAPBuffer, minNumberOfOLAPBuffers, numberOfWinOLAPBuffers, maxNumberOfOLAPBuffers, olapBufferSize); ComTdbSequence *sequenceTdb = new(space) ComTdbSequence(readSeqExpr, returnExpr, postPred, cancelExpression, getMinFollowingRows(), #pragma nowarn(1506) // warning elimination historyRecLen, historyAtpIndex, childTdb, givenCriDesc, returnCriDesc, (queue_index)getDefault(GEN_SEQFUNC_SIZE_DOWN), (queue_index)getDefault(GEN_SEQFUNC_SIZE_UP), getDefault(GEN_SEQFUNC_NUM_BUFFERS), getDefault(GEN_SEQFUNC_BUFFER_SIZE), olapBufferSize, maxNumberOfOLAPBuffers, numHistoryRows(), getUnboundedFollowing(), logDiagnostics, possibleMultipleCalls, scratchTresholdPct, memUsagePercent, memPressurePct, maxRowsInOLAPBuffer, minNumberOfOLAPBuffers, numberOfWinOLAPBuffers, noOverflow, checkPartChangeExpr); #pragma warn(1506) // warning elimination generator->initTdbFields(sequenceTdb); // update the estimated value of HistoryRowLength with actual value //setEstHistoryRowLength(historyIds.getRowLength()); double sequenceMemEst = getEstimatedRunTimeMemoryUsage(sequenceTdb); generator->addToTotalEstimatedMemory(sequenceMemEst); if(!generator->explainDisabled()) { Lng32 seqMemEstInKBPerCPU = (Lng32)(sequenceMemEst / 1024) ; seqMemEstInKBPerCPU = seqMemEstInKBPerCPU/ (MAXOF(generator->compilerStatsInfo().dop(),1)); generator->setOperEstimatedMemory(seqMemEstInKBPerCPU); generator-> setExplainTuple(addExplainInfo(sequenceTdb, childExplainTuple, 0, generator)); generator->setOperEstimatedMemory(0); } sequenceTdb->setScratchIOVectorSize((Int16)getDefault(SCRATCH_IO_VECTOR_SIZE_HASH)); sequenceTdb->setOverflowMode(generator->getOverflowMode()); sequenceTdb->setBmoMinMemBeforePressureCheck((Int16)getDefault(EXE_BMO_MIN_SIZE_BEFORE_PRESSURE_CHECK_IN_MB)); if(generator->getOverflowMode() == ComTdb::OFM_SSD ) sequenceTdb->setBMOMaxMemThresholdMB((UInt16)(ActiveSchemaDB()-> getDefaults()). getAsLong(SSD_BMO_MAX_MEM_THRESHOLD_IN_MB)); else sequenceTdb->setBMOMaxMemThresholdMB((UInt16)(ActiveSchemaDB()-> getDefaults()). getAsLong(EXE_MEMORY_AVAILABLE_IN_MB)); // The CQD EXE_MEM_LIMIT_PER_BMO_IN_MB has precedence over the mem quota sys NADefaults &defs = ActiveSchemaDB()->getDefaults(); UInt16 mmu = (UInt16)(defs.getAsDouble(EXE_MEM_LIMIT_PER_BMO_IN_MB)); UInt16 numBMOsInFrag = (UInt16)generator->getFragmentDir()->getNumBMOs(); if (mmu != 0) sequenceTdb->setMemoryQuotaMB(mmu); else { // Apply quota system if either one the following two is true: // 1. the memory limit feature is turned off and more than one BMOs // 2. the memory limit feature is turned on NABoolean mlimitPerCPU = defs.getAsDouble(EXE_MEMORY_LIMIT_PER_CPU) > 0; if ( mlimitPerCPU || numBMOsInFrag > 1 ) { double memQuota = computeMemoryQuota(generator->getEspLevel() == 0, mlimitPerCPU, generator->getBMOsMemoryLimitPerCPU().value(), generator->getTotalNumBMOsPerCPU(), generator->getTotalBMOsMemoryPerCPU().value(), numBMOsInFrag, generator->getFragmentDir()->getBMOsMemoryUsage() ); sequenceTdb->setMemoryQuotaMB( UInt16(memQuota) ); } } generator->setCriDesc(givenCriDesc, Generator::DOWN); generator->setCriDesc(returnCriDesc, Generator::UP); generator->setGenObj(this, sequenceTdb); return 0; }
// AppliedStatMan::setupASMCacheForJBB method will be called from // Query::Analyze after connectivity analysis has been done and // empty logical properties have been set. void AppliedStatMan::setupASMCacheForJBB(JBB & jbb) { EstLogPropSharedPtr myEstLogProp; // get all JBBCs of JBB const CANodeIdSet jbbcNodeIdSet = jbb.getMainJBBSubset().getJBBCs(); CANodeId jbbcId; // for all jbbcs for (jbbcId = jbbcNodeIdSet.init(); jbbcNodeIdSet.next(jbbcId); jbbcNodeIdSet.advance(jbbcId)) { if (NodeAnalysis * jbbcNode = jbbcId.getNodeAnalysis()) { // Evaluate local predicates only if it is a table. RelExpr * jbbcExpr = jbbcNode->getOriginalExpr(); if ((jbbcNode->getTableAnalysis() != NULL) && (jbbcExpr->getOperatorType() == REL_SCAN)) { // get the original expression of the jbbc Scan * scanExpr = (Scan *) jbbcExpr; ValueIdSet localPreds = scanExpr->getSelectionPredicates(); // if local predicates have already been computed, then skip if ((localPreds.entries() > 0) || !(lookup(jbbcId))) { // check to see this GA has already been associated with // a logExpr for synthesis. If not, then synthesize // log. expression, and then apply local predicates to it if (NOT scanExpr->getGroupAttr()->existsLogExprForSynthesis()) scanExpr->synthLogProp(); myEstLogProp = getStatsForCANodeId(jbbcId); } } } } // Now do a second traversal of the JBB looking for join reducers for (jbbcId = jbbcNodeIdSet.init(); jbbcNodeIdSet.next(jbbcId); jbbcNodeIdSet.advance(jbbcId)) { // now look for all two way joins for this child if (jbbcId.getNodeAnalysis()) { // get all JBBCs connected to this JBBC, and do a two-way // join with all of them CANodeIdSet connectedNodes = jbbcId.getNodeAnalysis()->\ getJBBC()->getJoinedJBBCs(); for (CANodeId connectedTable = connectedNodes.init(); connectedNodes.next(connectedTable); connectedNodes.advance(connectedTable)) { if (connectedTable.getNodeAnalysis()) { // ASM does not concern itself with the order of the tables, // hence it is possible that the join has already been computed CANodeIdSet tableSet = jbbcId; tableSet.insert(connectedTable); if ((myEstLogProp = getCachedStatistics(&tableSet)) == NULL) { CANodeIdSet setForjbbcId(jbbcId); CANodeIdSet setForConnectedTable(connectedTable); myEstLogProp = joinJBBChildren(setForjbbcId, setForConnectedTable); } } } } } } // AppliedStatMan::setupASMCacheForJBB