示例#1
0
void MvQueryRewriteHandler::dumpAnalysisToFile(QueryAnalysis* qa, RelExpr* expr)
{
  // Dump the QueryAnalysis data to a file.
  NAString analysisFileName = fileNamePrefix_ + ".analysis";
  NAString str;
  expr->unparse(str, OPTIMIZER_PHASE, MVINFO_FORMAT);
  str += "\n";
  str += qa->getText();

  // Add in some stuff to look at join predicates for the JBBCs.
  str += "Join Predicates\n";
  str += "===============";
  char buffer[20];
  ARRAY(JBB*) jbbs = qa->getJBBs();
  for (CollIndex jbbInx = 0; jbbInx < jbbs.entries(); jbbInx++)
    {
      JBB* jbb = jbbs[jbbInx];
      str_itoa(jbbInx, buffer);
      ((str += "\nJBB #") += NAString(buffer)) += ":\n";
      CANodeIdSet jbbcs = jbb->getJBBCs();
      for (CANodeId jbbcId=jbbcs.init();  jbbcs.next(jbbcId); jbbcs.advance(jbbcId) )
      {
        str_itoa(jbbcId, buffer);
        ((str += "\nJBBC with CANodeId ") += NAString(buffer)) += ":\n";
        ValueIdSet joinPreds = jbbcId.getNodeAnalysis()->getJBBC()->getJoinPreds();
        str += valueIdSetGetText(joinPreds);
        if (joinPreds.entries() > 0)
          {
            str.append("\n(value ids of predicates are ");
            NABoolean first = true;
            for (ValueId jpVid=joinPreds.init(); joinPreds.next(jpVid); joinPreds.advance(jpVid))
              {
                if (first)
                  first = FALSE;
                else
                  str.append(", ");
                str_itoa(jpVid, buffer);
                str.append(buffer);
              }
            str.append(")\n");
          }
      }
      str += '\n';
    }

  dumpToFile(analysisFileName.data(), str.data());
}  // dumpAnalysisToFile()
short
PhysSequence::codeGen(Generator *generator) 
{
  // Get a local handle on some of the generator objects.
  //
  CollHeap *wHeap = generator->wHeap();
  Space *space = generator->getSpace();
  ExpGenerator *expGen = generator->getExpGenerator();
  MapTable *mapTable = generator->getMapTable();

  // Allocate a new map table for this node. This must be done
  // before generating the code for my child so that this local
  // map table will be sandwiched between the map tables already
  // generated and the map tables generated by my offspring.
  //
  // Only the items available as output from this node will
  // be put in the local map table. Before exiting this function, all of
  // my offsprings map tables will be removed. Thus, none of the outputs 
  // from nodes below this node will be visible to nodes above it except 
  // those placed in the local map table and those that already exist in
  // my ancestors map tables. This is the standard mechanism used in the
  // generator for managing the access to item expressions.
  //
  MapTable *localMapTable = generator->appendAtEnd();

  // Since this operation doesn't modify the row on the way down the tree,
  // go ahead and generate the child subtree. Capture the given composite row
  // descriptor and the child's returned TDB and composite row descriptor.
  //
  ex_cri_desc * givenCriDesc = generator->getCriDesc(Generator::DOWN);
  child(0)->codeGen(generator);
  ComTdb *childTdb = (ComTdb*)generator->getGenObj();
  ex_cri_desc * childCriDesc = generator->getCriDesc(Generator::UP);
  ExplainTuple *childExplainTuple = generator->getExplainTuple();

  // Make all of my child's outputs map to ATP 1. The child row is only 
  // accessed in the project expression and it will be the second ATP 
  // (ATP 1) passed to this expression.
  //
  localMapTable->setAllAtp(1);

  // My returned composite row has an additional tupp.
  //
  Int32 numberTuples = givenCriDesc->noTuples() + 1;
  ex_cri_desc * returnCriDesc 
#pragma nowarn(1506)   // warning elimination 
    = new (space) ex_cri_desc(numberTuples, space);
#pragma warn(1506)  // warning elimination 

  // For now, the history buffer row looks just the return row. Later,
  // it may be useful to add an additional tupp for sequence function
  // itermediates that are not needed above this node -- thus, this
  // ATP is kept separate from the returned ATP.
  //
  const Int32 historyAtp = 0;
  const Int32 historyAtpIndex = numberTuples-1;
#pragma nowarn(1506)   // warning elimination 
  ex_cri_desc *historyCriDesc = new (space) ex_cri_desc(numberTuples, space);
#pragma warn(1506)  // warning elimination 
  ExpTupleDesc *historyDesc = 0;

  //seperate the read and retur expressions
  seperateReadAndReturnItems(wHeap);

  // The history buffer consists of items projected directly from the
  // child, the root sequence functions, the value arguments of the 
  // offset functions, and running sequence functions. These elements must 
  // be materialized in the  history buffer in order to be able to compute 
  // the outputs of this node -- the items projected directly from the child 
  // (projectValues) and the root sequence functions (sequenceFunctions).
  //
  // Compute the set of sequence function items that must be materialized
  // int the history buffer. -- sequenceItems
  //
  // Compute the set of items in the history buffer: the union of the 
  // projected values and the value arguments. -- historyIds
  //
  // Compute the set of items in the history buffer that are computed:
  // the difference between all the elements in the history buffer
  // and the projected items. -- computedHistoryIds
  //

  // KB---will need to return atp with 3 tups only 0,1 and 2 
  // 2 -->values from history buffer after ther are moved to it

 
  addCheckPartitionChangeExpr(generator, TRUE);

  ValueIdSet historyIds;

  historyIds += movePartIdsExpr(); 
  historyIds += sequencedColumns();
  
  ValueIdSet outputFromChild = child(0)->getGroupAttr()->getCharacteristicOutputs();

  getHistoryAttributes(readSeqFunctions(),outputFromChild, historyIds, TRUE, wHeap);

  // Add in the top level sequence functions.
  historyIds += readSeqFunctions();

  getHistoryAttributes(returnSeqFunctions(),outputFromChild, historyIds, TRUE, wHeap);
  // Add in the top level functions.
  historyIds += returnSeqFunctions();
  
  // Layout the work tuple format which consists of the projected
  // columns and the computed sequence functions. First, compute
  // the number of attributes in the tuple.
  //
  ULng32 numberAttributes 
    = ((NOT historyIds.isEmpty()) ? historyIds.entries() : 0);

  // Allocate an attribute pointer vector from the working heap.
  //
  Attributes **attrs = new(wHeap) Attributes*[numberAttributes];

  // Fill in the attributes vector for the history buffer including
  // adding the entries to the map table. Also, compute the value ID
  // set for the elements to project from the child row.
  //
  //??????????re-visit this function??
  computeHistoryAttributes(generator, 
                           localMapTable,
                           attrs,
                           historyIds);

  // Create the tuple descriptor for the history buffer row and
  // assign the offsets to the attributes. For now, this layout is 
  // identical to the returned row. Set the tuple descriptors for
  // the return and history rows.
  //
  ULng32 historyRecLen;
  expGen->processAttributes(numberAttributes,
                            attrs,
                            ExpTupleDesc::SQLARK_EXPLODED_FORMAT,
                            historyRecLen,
                            historyAtp,
                            historyAtpIndex,
                            &historyDesc,
                            ExpTupleDesc::SHORT_FORMAT);
  NADELETEBASIC(attrs, wHeap);
#pragma nowarn(1506)   // warning elimination 
  returnCriDesc->setTupleDescriptor(historyAtpIndex, historyDesc);
#pragma warn(1506)  // warning elimination 
#pragma nowarn(1506)   // warning elimination 
  historyCriDesc->setTupleDescriptor(historyAtpIndex, historyDesc);
#pragma warn(1506)  // warning elimination 

  // If there are any sequence function items, generate the sequence 
  // function expressions.
  //
  ex_expr * readSeqExpr = NULL;
  if(NOT readSeqFunctions().isEmpty())
    {
      ValueIdSet seqVals = readSeqFunctions();
      seqVals += sequencedColumns();
      seqVals += movePartIdsExpr(); 
      expGen->generateSequenceExpression(seqVals,
                                         readSeqExpr);
    }

  ex_expr *checkPartChangeExpr = NULL;
  if (!checkPartitionChangeExpr().isEmpty()) {
    ItemExpr * newCheckPartitionChangeTree= 
        checkPartitionChangeExpr().rebuildExprTree(ITM_AND,TRUE,TRUE);

    expGen->generateExpr(newCheckPartitionChangeTree->getValueId(), 
                         ex_expr::exp_SCAN_PRED,
                         &checkPartChangeExpr);
  }

  //unsigned long rowLength;
  ex_expr * returnExpr = NULL;
  if(NOT returnSeqFunctions().isEmpty())
  {
    expGen->generateSequenceExpression(returnSeqFunctions(),
                                         returnExpr);

  }

  // Generate expression to evaluate predicate on the output
  //
  ex_expr *postPred = 0;

  if (! selectionPred().isEmpty()) {
    ItemExpr * newPredTree = 
      selectionPred().rebuildExprTree(ITM_AND,TRUE,TRUE);

    expGen->generateExpr(newPredTree->getValueId(), ex_expr::exp_SCAN_PRED,
                         &postPred);
  }


  // Reset ATP's to zero for parent.
  //
  localMapTable->setAllAtp(0);


  // Generate expression to evaluate the cancel expression
  //
  ex_expr *cancelExpression = 0;

  if (! cancelExpr().isEmpty()) {
    ItemExpr * newCancelExprTree = 
      cancelExpr().rebuildExprTree(ITM_AND,TRUE,TRUE);

    expGen->generateExpr(newCancelExprTree->getValueId(), ex_expr::exp_SCAN_PRED,
                         &cancelExpression);
  }

  //
  //  For overflow
  //
  // ( The following are meaningless if ! unlimitedHistoryRows() ) 
  NABoolean noOverflow =  
    CmpCommon::getDefault(EXE_BMO_DISABLE_OVERFLOW) == DF_ON ;
  NABoolean logDiagnostics = 
    CmpCommon::getDefault(EXE_DIAGNOSTIC_EVENTS) == DF_ON ;
  NABoolean possibleMultipleCalls = generator->getRightSideOfFlow() ;
  short scratchTresholdPct = 
    (short) CmpCommon::getDefaultLong(SCRATCH_FREESPACE_THRESHOLD_PERCENT);
  // determione the memory usage (amount of memory as percentage from total
  // physical memory used to initialize data structures)
  unsigned short memUsagePercent =
    (unsigned short) getDefault(BMO_MEMORY_USAGE_PERCENT);
  short memPressurePct = (short)getDefault(GEN_MEM_PRESSURE_THRESHOLD);

  historyRecLen = ROUND8(historyRecLen);

  Lng32 maxNumberOfOLAPBuffers;
  Lng32 maxRowsInOLAPBuffer;
  Lng32 minNumberOfOLAPBuffers;
  Lng32 numberOfWinOLAPBuffers;
  Lng32 olapBufferSize;

  computeHistoryParams(historyRecLen,
                       maxRowsInOLAPBuffer,
                       minNumberOfOLAPBuffers,
                       numberOfWinOLAPBuffers,
                       maxNumberOfOLAPBuffers,
                       olapBufferSize);

  ComTdbSequence *sequenceTdb
    = new(space) ComTdbSequence(readSeqExpr,
                                returnExpr,
                                postPred,
                                cancelExpression,
                                getMinFollowingRows(),
#pragma nowarn(1506)   // warning elimination 
                                historyRecLen,
                                historyAtpIndex,
                                childTdb,
                                givenCriDesc,
                                returnCriDesc,
                                (queue_index)getDefault(GEN_SEQFUNC_SIZE_DOWN),
                                (queue_index)getDefault(GEN_SEQFUNC_SIZE_UP),
                                getDefault(GEN_SEQFUNC_NUM_BUFFERS),
                                getDefault(GEN_SEQFUNC_BUFFER_SIZE),
				olapBufferSize,
                                maxNumberOfOLAPBuffers,
                                numHistoryRows(),
                                getUnboundedFollowing(),
				logDiagnostics,
				possibleMultipleCalls,
				scratchTresholdPct,
				memUsagePercent,
				memPressurePct,
                                maxRowsInOLAPBuffer,
                                minNumberOfOLAPBuffers,
                                numberOfWinOLAPBuffers,
                                noOverflow,
                                checkPartChangeExpr);
#pragma warn(1506)  // warning elimination 
  generator->initTdbFields(sequenceTdb);

  // update the estimated value of HistoryRowLength with actual value
  //setEstHistoryRowLength(historyIds.getRowLength());

  double sequenceMemEst = getEstimatedRunTimeMemoryUsage(sequenceTdb);
  generator->addToTotalEstimatedMemory(sequenceMemEst);

  if(!generator->explainDisabled()) {
    Lng32 seqMemEstInKBPerCPU = (Lng32)(sequenceMemEst / 1024) ;
    seqMemEstInKBPerCPU = seqMemEstInKBPerCPU/
      (MAXOF(generator->compilerStatsInfo().dop(),1));
    generator->setOperEstimatedMemory(seqMemEstInKBPerCPU);

    generator->
      setExplainTuple(addExplainInfo(sequenceTdb,
                                     childExplainTuple,
                                     0,
                                     generator));

    generator->setOperEstimatedMemory(0);
  }

  sequenceTdb->setScratchIOVectorSize((Int16)getDefault(SCRATCH_IO_VECTOR_SIZE_HASH));
  sequenceTdb->setOverflowMode(generator->getOverflowMode());

  sequenceTdb->setBmoMinMemBeforePressureCheck((Int16)getDefault(EXE_BMO_MIN_SIZE_BEFORE_PRESSURE_CHECK_IN_MB));
  
  if(generator->getOverflowMode() == ComTdb::OFM_SSD )
    sequenceTdb->setBMOMaxMemThresholdMB((UInt16)(ActiveSchemaDB()->
				   getDefaults()).
			  getAsLong(SSD_BMO_MAX_MEM_THRESHOLD_IN_MB));
  else
    sequenceTdb->setBMOMaxMemThresholdMB((UInt16)(ActiveSchemaDB()->
				   getDefaults()).
			  getAsLong(EXE_MEMORY_AVAILABLE_IN_MB));

  // The CQD EXE_MEM_LIMIT_PER_BMO_IN_MB has precedence over the mem quota sys
  NADefaults &defs = ActiveSchemaDB()->getDefaults();
  UInt16 mmu = (UInt16)(defs.getAsDouble(EXE_MEM_LIMIT_PER_BMO_IN_MB));
  UInt16 numBMOsInFrag = (UInt16)generator->getFragmentDir()->getNumBMOs();
  if (mmu != 0)
    sequenceTdb->setMemoryQuotaMB(mmu);
  else {
    // Apply quota system if either one the following two is true:
    //   1. the memory limit feature is turned off and more than one BMOs 
    //   2. the memory limit feature is turned on
    NABoolean mlimitPerCPU = defs.getAsDouble(EXE_MEMORY_LIMIT_PER_CPU) > 0;

    if ( mlimitPerCPU || numBMOsInFrag > 1 ) {

        double memQuota = 
           computeMemoryQuota(generator->getEspLevel() == 0,
                              mlimitPerCPU,
                              generator->getBMOsMemoryLimitPerCPU().value(),
                              generator->getTotalNumBMOsPerCPU(),
                              generator->getTotalBMOsMemoryPerCPU().value(),
                              numBMOsInFrag, 
                              generator->getFragmentDir()->getBMOsMemoryUsage()
                             );
                                  
        sequenceTdb->setMemoryQuotaMB( UInt16(memQuota) );
    }
  }

  generator->setCriDesc(givenCriDesc, Generator::DOWN);
  generator->setCriDesc(returnCriDesc, Generator::UP);
  generator->setGenObj(this, sequenceTdb);

  return 0;

}
// AppliedStatMan::setupASMCacheForJBB method will be called from
// Query::Analyze after connectivity analysis has been done and
// empty logical properties have been set.
void AppliedStatMan::setupASMCacheForJBB(JBB & jbb)
{
  EstLogPropSharedPtr myEstLogProp;

  // get all JBBCs of JBB
  const CANodeIdSet jbbcNodeIdSet = jbb.getMainJBBSubset().getJBBCs();
  CANodeId jbbcId;

  // for all jbbcs
  for (jbbcId = jbbcNodeIdSet.init();
	  jbbcNodeIdSet.next(jbbcId);
	  jbbcNodeIdSet.advance(jbbcId))
  {
    if (NodeAnalysis * jbbcNode = jbbcId.getNodeAnalysis())
    {
      // Evaluate local predicates only if it is a table.

      RelExpr * jbbcExpr = jbbcNode->getOriginalExpr();

      if ((jbbcNode->getTableAnalysis() != NULL) &&
	        (jbbcExpr->getOperatorType() == REL_SCAN))
      {
        // get the original expression of the jbbc
        Scan * scanExpr = (Scan *) jbbcExpr;

        ValueIdSet localPreds = scanExpr->getSelectionPredicates();

        // if local predicates have already been computed, then skip
        if ((localPreds.entries() > 0) || !(lookup(jbbcId)))
        {
          // check to see this GA has already been associated with
          // a logExpr for synthesis.  If not, then synthesize
	        // log. expression, and then apply local predicates to it

          if (NOT scanExpr->getGroupAttr()->existsLogExprForSynthesis())
	          scanExpr->synthLogProp();

	        myEstLogProp = getStatsForCANodeId(jbbcId);
	      }
      }
    }
  }

  // Now do a second traversal of the JBB looking for join reducers
  for (jbbcId = jbbcNodeIdSet.init();
		jbbcNodeIdSet.next(jbbcId);
		jbbcNodeIdSet.advance(jbbcId))
  {
    // now look for all two way joins for this child
    if (jbbcId.getNodeAnalysis())
    {

      // get all JBBCs connected to this JBBC, and do a two-way
      // join with all of them

      CANodeIdSet connectedNodes = jbbcId.getNodeAnalysis()->\
				  getJBBC()->getJoinedJBBCs();

      for (CANodeId connectedTable = connectedNodes.init();
			      connectedNodes.next(connectedTable);
			      connectedNodes.advance(connectedTable))
      {
	      if (connectedTable.getNodeAnalysis())
	      {

	        // ASM does not concern itself with the order of the tables,
	        // hence it is possible that the join has already been computed

	        CANodeIdSet tableSet = jbbcId;
	        tableSet.insert(connectedTable);

	        if ((myEstLogProp = getCachedStatistics(&tableSet)) == NULL)
	        {
	          CANodeIdSet setForjbbcId(jbbcId);
	          CANodeIdSet setForConnectedTable(connectedTable);
	          myEstLogProp = joinJBBChildren(setForjbbcId, setForConnectedTable);
	        }
	      }
      }
    }
  }
} // AppliedStatMan::setupASMCacheForJBB