Пример #1
0
bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
                                                  const CallContext &Context) {
  // Ok, we can in fact do the transformation for this call.
  // Do not remove the FrameSetup instruction, but adjust the parameters.
  // PEI will end up finalizing the handling of this.
  MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
  MachineBasicBlock &MBB = *(FrameSetup->getParent());
  FrameSetup->getOperand(1).setImm(Context.ExpectedDist);

  DebugLoc DL = FrameSetup->getDebugLoc();
  // Now, iterate through the vector in reverse order, and replace the movs
  // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
  // replace uses.
  for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
    MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
    MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
    MachineBasicBlock::iterator Push = nullptr;
    if (MOV->getOpcode() == X86::MOV32mi) {
      unsigned PushOpcode = X86::PUSHi32;
      // If the operand is a small (8-bit) immediate, we can use a
      // PUSH instruction with a shorter encoding.
      // Note that isImm() may fail even though this is a MOVmi, because
      // the operand can also be a symbol.
      if (PushOp.isImm()) {
        int64_t Val = PushOp.getImm();
        if (isInt<8>(Val))
          PushOpcode = X86::PUSH32i8;
      }
      Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
          .addOperand(PushOp);
    } else {
      unsigned int Reg = PushOp.getReg();

      // If PUSHrmm is not slow on this target, try to fold the source of the
      // push into the instruction.
      bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();

      // Check that this is legal to fold. Right now, we're extremely
      // conservative about that.
      MachineInstr *DefMov = nullptr;
      if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
        Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));

        unsigned NumOps = DefMov->getDesc().getNumOperands();
        for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
          Push->addOperand(DefMov->getOperand(i));

        DefMov->eraseFromParent();
      } else {
        Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
            .addReg(Reg)
            .getInstr();
      }
    }

    // For debugging, when using SP-based CFA, we need to adjust the CFA
    // offset after each push.
    // TODO: This is needed only if we require precise CFA.
    if (!TFL->hasFP(MF))
      TFL->BuildCFI(MBB, std::next(Push), DL, 
                    MCCFIInstruction::createAdjustCfaOffset(nullptr, 4));

    MBB.erase(MOV);
  }

  // The stack-pointer copy is no longer used in the call sequences.
  // There should not be any other users, but we can't commit to that, so:
  if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
    Context.SPCopy->eraseFromParent();

  // Once we've done this, we need to make sure PEI doesn't assume a reserved
  // frame.
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
  FuncInfo->setHasPushSequences(true);

  return true;
}
Пример #2
0
void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
                                                  const CallContext &Context) {
  // Ok, we can in fact do the transformation for this call.
  // Do not remove the FrameSetup instruction, but adjust the parameters.
  // PEI will end up finalizing the handling of this.
  MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
  MachineBasicBlock &MBB = *(FrameSetup->getParent());
  TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);

  DebugLoc DL = FrameSetup->getDebugLoc();
  bool Is64Bit = STI->is64Bit();
  // Now, iterate through the vector in reverse order, and replace the store to
  // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
  // replace uses.
  for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
    MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
    MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
    MachineBasicBlock::iterator Push = nullptr;
    unsigned PushOpcode;
    switch (Store->getOpcode()) {
    default:
      llvm_unreachable("Unexpected Opcode!");
    case X86::AND16mi8:
    case X86::AND32mi8:
    case X86::AND64mi8:
    case X86::OR16mi8:
    case X86::OR32mi8:
    case X86::OR64mi8:
    case X86::MOV32mi:
    case X86::MOV64mi32:
      PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
      // If the operand is a small (8-bit) immediate, we can use a
      // PUSH instruction with a shorter encoding.
      // Note that isImm() may fail even though this is a MOVmi, because
      // the operand can also be a symbol.
      if (PushOp.isImm()) {
        int64_t Val = PushOp.getImm();
        if (isInt<8>(Val))
          PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
      }
      Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
      break;
    case X86::MOV32mr:
    case X86::MOV64mr: {
      unsigned int Reg = PushOp.getReg();

      // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
      // in preparation for the PUSH64. The upper 32 bits can be undef.
      if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
        unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
        Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
        BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
        BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
            .addReg(UndefReg)
            .add(PushOp)
            .addImm(X86::sub_32bit);
      }

      // If PUSHrmm is not slow on this target, try to fold the source of the
      // push into the instruction.
      bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();

      // Check that this is legal to fold. Right now, we're extremely
      // conservative about that.
      MachineInstr *DefMov = nullptr;
      if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
        PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));

        unsigned NumOps = DefMov->getDesc().getNumOperands();
        for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
          Push->addOperand(DefMov->getOperand(i));

        DefMov->eraseFromParent();
      } else {
        PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
                   .addReg(Reg)
                   .getInstr();
      }
      break;
    }
    }

    // For debugging, when using SP-based CFA, we need to adjust the CFA
    // offset after each push.
    // TODO: This is needed only if we require precise CFA.
    if (!TFL->hasFP(MF))
      TFL->BuildCFI(
          MBB, std::next(Push), DL,
          MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));

    MBB.erase(Store);
  }

  // The stack-pointer copy is no longer used in the call sequences.
  // There should not be any other users, but we can't commit to that, so:
  if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
    Context.SPCopy->eraseFromParent();

  // Once we've done this, we need to make sure PEI doesn't assume a reserved
  // frame.
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
  FuncInfo->setHasPushSequences(true);
}
bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
                                                MachineBasicBlock &MBB,
                                                MachineBasicBlock::iterator I) {

  // Check that this particular call sequence is amenable to the
  // transformation.
  const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
                                       MF.getSubtarget().getRegisterInfo());
  unsigned StackPtr = RegInfo.getStackRegister();
  int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();

  // We expect to enter this at the beginning of a call sequence
  assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
  MachineBasicBlock::iterator FrameSetup = I++;

  
  // For globals in PIC mode, we can have some LEAs here.
  // Ignore them, they don't bother us.
  // TODO: Extend this to something that covers more cases.
  while (I->getOpcode() == X86::LEA32r)
    ++I;
  
  // We expect a copy instruction here.
  // TODO: The copy instruction is a lowering artifact.
  //       We should also support a copy-less version, where the stack
  //       pointer is used directly.
  if (!I->isCopy() || !I->getOperand(0).isReg())
    return false;
  MachineBasicBlock::iterator SPCopy = I++;
  StackPtr = SPCopy->getOperand(0).getReg();

  // Scan the call setup sequence for the pattern we're looking for.
  // We only handle a simple case - a sequence of MOV32mi or MOV32mr
  // instructions, that push a sequence of 32-bit values onto the stack, with
  // no gaps between them.
  SmallVector<MachineInstr*, 4> MovVector(4, nullptr);
  unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
  if (MaxAdjust > 4)
    MovVector.resize(MaxAdjust, nullptr);

  do {
    int Opcode = I->getOpcode();
    if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
      break;

    // We only want movs of the form:
    // movl imm/r32, k(%esp)
    // If we run into something else, bail.
    // Note that AddrBaseReg may, counter to its name, not be a register,
    // but rather a frame index.
    // TODO: Support the fi case. This should probably work now that we
    // have the infrastructure to track the stack pointer within a call
    // sequence.
    if (!I->getOperand(X86::AddrBaseReg).isReg() ||
        (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
        !I->getOperand(X86::AddrScaleAmt).isImm() ||
        (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
        (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
        (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
        !I->getOperand(X86::AddrDisp).isImm())
      return false;

    int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
    assert(StackDisp >= 0 && "Negative stack displacement when passing parameters");

    // We really don't want to consider the unaligned case.
    if (StackDisp % 4)
      return false;
    StackDisp /= 4;

    assert((size_t)StackDisp < MovVector.size() &&
      "Function call has more parameters than the stack is adjusted for.");

    // If the same stack slot is being filled twice, something's fishy.
    if (MovVector[StackDisp] != nullptr)
      return false;
    MovVector[StackDisp] = I;

    ++I;
  } while (I != MBB.end());

  // We now expect the end of the sequence - a call and a stack adjust.
  if (I == MBB.end())
    return false;

  // For PCrel calls, we expect an additional COPY of the basereg.
  // If we find one, skip it.
  if (I->isCopy()) {
    if (I->getOperand(1).getReg() ==
      MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
      ++I;
    else
      return false;
  }

  if (!I->isCall())
    return false;
  MachineBasicBlock::iterator Call = I;
  if ((++I)->getOpcode() != FrameDestroyOpcode)
    return false;

  // Now, go through the vector, and see that we don't have any gaps,
  // but only a series of 32-bit MOVs.
  
  int64_t ExpectedDist = 0;
  auto MMI = MovVector.begin(), MME = MovVector.end();
  for (; MMI != MME; ++MMI, ExpectedDist += 4)
    if (*MMI == nullptr)
      break;
  
  // If the call had no parameters, do nothing
  if (!ExpectedDist)
    return false;

  // We are either at the last parameter, or a gap. 
  // Make sure it's not a gap
  for (; MMI != MME; ++MMI)
    if (*MMI != nullptr)
      return false;

  // Ok, we can in fact do the transformation for this call.
  // Do not remove the FrameSetup instruction, but adjust the parameters.
  // PEI will end up finalizing the handling of this.
  FrameSetup->getOperand(1).setImm(ExpectedDist);

  DebugLoc DL = I->getDebugLoc();
  // Now, iterate through the vector in reverse order, and replace the movs
  // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to 
  // replace uses.
  for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
    MachineBasicBlock::iterator MOV = *MovVector[Idx];
    MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
    if (MOV->getOpcode() == X86::MOV32mi) {
      unsigned PushOpcode = X86::PUSHi32;
      // If the operand is a small (8-bit) immediate, we can use a
      // PUSH instruction with a shorter encoding.
      // Note that isImm() may fail even though this is a MOVmi, because
      // the operand can also be a symbol.
      if (PushOp.isImm()) {
        int64_t Val = PushOp.getImm();
        if (isInt<8>(Val))
          PushOpcode = X86::PUSH32i8;
      }
      BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
    } else {
      unsigned int Reg = PushOp.getReg();

      // If PUSHrmm is not slow on this target, try to fold the source of the
      // push into the instruction.
      const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
      bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();

      // Check that this is legal to fold. Right now, we're extremely
      // conservative about that.
      MachineInstr *DefMov = nullptr;
      if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
        MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm));

        unsigned NumOps = DefMov->getDesc().getNumOperands();
        for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
          Push->addOperand(DefMov->getOperand(i));

        DefMov->eraseFromParent();
      } else {
        BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr();
      }
    }

    MBB.erase(MOV);
  }

  // The stack-pointer copy is no longer used in the call sequences.
  // There should not be any other users, but we can't commit to that, so:
  if (MRI->use_empty(SPCopy->getOperand(0).getReg()))
    SPCopy->eraseFromParent();

  // Once we've done this, we need to make sure PEI doesn't assume a reserved
  // frame.
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
  FuncInfo->setHasPushSequences(true);

  return true;
}