bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, const CallContext &Context) { // Ok, we can in fact do the transformation for this call. // Do not remove the FrameSetup instruction, but adjust the parameters. // PEI will end up finalizing the handling of this. MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; MachineBasicBlock &MBB = *(FrameSetup->getParent()); FrameSetup->getOperand(1).setImm(Context.ExpectedDist); DebugLoc DL = FrameSetup->getDebugLoc(); // Now, iterate through the vector in reverse order, and replace the movs // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to // replace uses. for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) { MachineBasicBlock::iterator MOV = *Context.MovVector[Idx]; MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); MachineBasicBlock::iterator Push = nullptr; if (MOV->getOpcode() == X86::MOV32mi) { unsigned PushOpcode = X86::PUSHi32; // If the operand is a small (8-bit) immediate, we can use a // PUSH instruction with a shorter encoding. // Note that isImm() may fail even though this is a MOVmi, because // the operand can also be a symbol. if (PushOp.isImm()) { int64_t Val = PushOp.getImm(); if (isInt<8>(Val)) PushOpcode = X86::PUSH32i8; } Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) .addOperand(PushOp); } else { unsigned int Reg = PushOp.getReg(); // If PUSHrmm is not slow on this target, try to fold the source of the // push into the instruction. bool SlowPUSHrmm = STI->isAtom() || STI->isSLM(); // Check that this is legal to fold. Right now, we're extremely // conservative about that. MachineInstr *DefMov = nullptr; if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm)); unsigned NumOps = DefMov->getDesc().getNumOperands(); for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) Push->addOperand(DefMov->getOperand(i)); DefMov->eraseFromParent(); } else { Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r)) .addReg(Reg) .getInstr(); } } // For debugging, when using SP-based CFA, we need to adjust the CFA // offset after each push. // TODO: This is needed only if we require precise CFA. if (!TFL->hasFP(MF)) TFL->BuildCFI(MBB, std::next(Push), DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, 4)); MBB.erase(MOV); } // The stack-pointer copy is no longer used in the call sequences. // There should not be any other users, but we can't commit to that, so: if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) Context.SPCopy->eraseFromParent(); // Once we've done this, we need to make sure PEI doesn't assume a reserved // frame. X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); FuncInfo->setHasPushSequences(true); return true; }
void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, const CallContext &Context) { // Ok, we can in fact do the transformation for this call. // Do not remove the FrameSetup instruction, but adjust the parameters. // PEI will end up finalizing the handling of this. MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; MachineBasicBlock &MBB = *(FrameSetup->getParent()); TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist); DebugLoc DL = FrameSetup->getDebugLoc(); bool Is64Bit = STI->is64Bit(); // Now, iterate through the vector in reverse order, and replace the store to // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to // replace uses. for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) { MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx]; MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands); MachineBasicBlock::iterator Push = nullptr; unsigned PushOpcode; switch (Store->getOpcode()) { default: llvm_unreachable("Unexpected Opcode!"); case X86::AND16mi8: case X86::AND32mi8: case X86::AND64mi8: case X86::OR16mi8: case X86::OR32mi8: case X86::OR64mi8: case X86::MOV32mi: case X86::MOV64mi32: PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32; // If the operand is a small (8-bit) immediate, we can use a // PUSH instruction with a shorter encoding. // Note that isImm() may fail even though this is a MOVmi, because // the operand can also be a symbol. if (PushOp.isImm()) { int64_t Val = PushOp.getImm(); if (isInt<8>(Val)) PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8; } Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp); break; case X86::MOV32mr: case X86::MOV64mr: { unsigned int Reg = PushOp.getReg(); // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg // in preparation for the PUSH64. The upper 32 bits can be undef. if (Is64Bit && Store->getOpcode() == X86::MOV32mr) { unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass); Reg = MRI->createVirtualRegister(&X86::GR64RegClass); BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg); BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg) .addReg(UndefReg) .add(PushOp) .addImm(X86::sub_32bit); } // If PUSHrmm is not slow on this target, try to fold the source of the // push into the instruction. bool SlowPUSHrmm = STI->isAtom() || STI->isSLM(); // Check that this is legal to fold. Right now, we're extremely // conservative about that. MachineInstr *DefMov = nullptr; if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm; Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)); unsigned NumOps = DefMov->getDesc().getNumOperands(); for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) Push->addOperand(DefMov->getOperand(i)); DefMov->eraseFromParent(); } else { PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r; Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) .addReg(Reg) .getInstr(); } break; } } // For debugging, when using SP-based CFA, we need to adjust the CFA // offset after each push. // TODO: This is needed only if we require precise CFA. if (!TFL->hasFP(MF)) TFL->BuildCFI( MBB, std::next(Push), DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize)); MBB.erase(Store); } // The stack-pointer copy is no longer used in the call sequences. // There should not be any other users, but we can't commit to that, so: if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) Context.SPCopy->eraseFromParent(); // Once we've done this, we need to make sure PEI doesn't assume a reserved // frame. X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); FuncInfo->setHasPushSequences(true); }
bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) { // Check that this particular call sequence is amenable to the // transformation. const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>( MF.getSubtarget().getRegisterInfo()); unsigned StackPtr = RegInfo.getStackRegister(); int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); // We expect to enter this at the beginning of a call sequence assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); MachineBasicBlock::iterator FrameSetup = I++; // For globals in PIC mode, we can have some LEAs here. // Ignore them, they don't bother us. // TODO: Extend this to something that covers more cases. while (I->getOpcode() == X86::LEA32r) ++I; // We expect a copy instruction here. // TODO: The copy instruction is a lowering artifact. // We should also support a copy-less version, where the stack // pointer is used directly. if (!I->isCopy() || !I->getOperand(0).isReg()) return false; MachineBasicBlock::iterator SPCopy = I++; StackPtr = SPCopy->getOperand(0).getReg(); // Scan the call setup sequence for the pattern we're looking for. // We only handle a simple case - a sequence of MOV32mi or MOV32mr // instructions, that push a sequence of 32-bit values onto the stack, with // no gaps between them. SmallVector<MachineInstr*, 4> MovVector(4, nullptr); unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4; if (MaxAdjust > 4) MovVector.resize(MaxAdjust, nullptr); do { int Opcode = I->getOpcode(); if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr) break; // We only want movs of the form: // movl imm/r32, k(%esp) // If we run into something else, bail. // Note that AddrBaseReg may, counter to its name, not be a register, // but rather a frame index. // TODO: Support the fi case. This should probably work now that we // have the infrastructure to track the stack pointer within a call // sequence. if (!I->getOperand(X86::AddrBaseReg).isReg() || (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || !I->getOperand(X86::AddrScaleAmt).isImm() || (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || !I->getOperand(X86::AddrDisp).isImm()) return false; int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); assert(StackDisp >= 0 && "Negative stack displacement when passing parameters"); // We really don't want to consider the unaligned case. if (StackDisp % 4) return false; StackDisp /= 4; assert((size_t)StackDisp < MovVector.size() && "Function call has more parameters than the stack is adjusted for."); // If the same stack slot is being filled twice, something's fishy. if (MovVector[StackDisp] != nullptr) return false; MovVector[StackDisp] = I; ++I; } while (I != MBB.end()); // We now expect the end of the sequence - a call and a stack adjust. if (I == MBB.end()) return false; // For PCrel calls, we expect an additional COPY of the basereg. // If we find one, skip it. if (I->isCopy()) { if (I->getOperand(1).getReg() == MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg()) ++I; else return false; } if (!I->isCall()) return false; MachineBasicBlock::iterator Call = I; if ((++I)->getOpcode() != FrameDestroyOpcode) return false; // Now, go through the vector, and see that we don't have any gaps, // but only a series of 32-bit MOVs. int64_t ExpectedDist = 0; auto MMI = MovVector.begin(), MME = MovVector.end(); for (; MMI != MME; ++MMI, ExpectedDist += 4) if (*MMI == nullptr) break; // If the call had no parameters, do nothing if (!ExpectedDist) return false; // We are either at the last parameter, or a gap. // Make sure it's not a gap for (; MMI != MME; ++MMI) if (*MMI != nullptr) return false; // Ok, we can in fact do the transformation for this call. // Do not remove the FrameSetup instruction, but adjust the parameters. // PEI will end up finalizing the handling of this. FrameSetup->getOperand(1).setImm(ExpectedDist); DebugLoc DL = I->getDebugLoc(); // Now, iterate through the vector in reverse order, and replace the movs // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to // replace uses. for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) { MachineBasicBlock::iterator MOV = *MovVector[Idx]; MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); if (MOV->getOpcode() == X86::MOV32mi) { unsigned PushOpcode = X86::PUSHi32; // If the operand is a small (8-bit) immediate, we can use a // PUSH instruction with a shorter encoding. // Note that isImm() may fail even though this is a MOVmi, because // the operand can also be a symbol. if (PushOp.isImm()) { int64_t Val = PushOp.getImm(); if (isInt<8>(Val)) PushOpcode = X86::PUSH32i8; } BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp); } else { unsigned int Reg = PushOp.getReg(); // If PUSHrmm is not slow on this target, try to fold the source of the // push into the instruction. const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); bool SlowPUSHrmm = ST.isAtom() || ST.isSLM(); // Check that this is legal to fold. Right now, we're extremely // conservative about that. MachineInstr *DefMov = nullptr; if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm)); unsigned NumOps = DefMov->getDesc().getNumOperands(); for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) Push->addOperand(DefMov->getOperand(i)); DefMov->eraseFromParent(); } else { BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr(); } } MBB.erase(MOV); } // The stack-pointer copy is no longer used in the call sequences. // There should not be any other users, but we can't commit to that, so: if (MRI->use_empty(SPCopy->getOperand(0).getReg())) SPCopy->eraseFromParent(); // Once we've done this, we need to make sure PEI doesn't assume a reserved // frame. X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); FuncInfo->setHasPushSequences(true); return true; }