void eval_model_explicit(
    const Thyra::ModelEvaluator<Scalar> &model,
    Thyra::ModelEvaluatorBase::InArgs<Scalar> &basePoint,
    const VectorBase<Scalar>& x_in,
    const typename Thyra::ModelEvaluatorBase::InArgs<Scalar>::ScalarMag &t_in,
    const Ptr<VectorBase<Scalar> >& f_out
    )
{
  typedef Thyra::ModelEvaluatorBase MEB;
  MEB::InArgs<Scalar> inArgs = model.createInArgs();
  MEB::OutArgs<Scalar> outArgs = model.createOutArgs();
  inArgs.setArgs(basePoint);
  inArgs.set_x(Teuchos::rcp(&x_in,false));
  if (inArgs.supports(MEB::IN_ARG_t)) {
    inArgs.set_t(t_in);
  }
  // For model evaluators whose state function f(x, x_dot, t) describes
  // an implicit ODE, and which accept an optional x_dot input argument,
  // make sure the latter is set to null in order to request the evaluation
  // of a state function corresponding to the explicit ODE formulation
  // x_dot = f(x, t)
  if (inArgs.supports(MEB::IN_ARG_x_dot)) {
    inArgs.set_x_dot(Teuchos::null);
  }
  outArgs.set_f(Teuchos::rcp(&*f_out,false));
  model.evalModel(inArgs,outArgs);
}
Пример #2
0
RCP<Thyra::VectorBase<Scalar> > eval_f_t(
    const Thyra::ModelEvaluator<Scalar>& me,
    Scalar t
    ) {
  typedef Teuchos::ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;
  MEB::InArgs<Scalar> inArgs = me.createInArgs();
  inArgs.set_t(t);
  MEB::OutArgs<Scalar> outArgs = me.createOutArgs();
  RCP<Thyra::VectorBase<Scalar> > f_out = Thyra::createMember(me.get_f_space());
  V_S(outArg(*f_out),ST::zero());
  outArgs.set_f(f_out);
  me.evalModel(inArgs,outArgs);
  return f_out;
}
void eval_model_explicit(
    const Thyra::ModelEvaluator<Scalar> &model,
    Thyra::ModelEvaluatorBase::InArgs<Scalar> &basePoint,
    const VectorBase<Scalar>& x_in,
    const typename Thyra::ModelEvaluatorBase::InArgs<Scalar>::ScalarMag &t_in,
    const Ptr<VectorBase<Scalar> >& f_out
    )
{
  typedef Thyra::ModelEvaluatorBase MEB;
  MEB::InArgs<Scalar> inArgs = model.createInArgs();
  MEB::OutArgs<Scalar> outArgs = model.createOutArgs();
  inArgs.setArgs(basePoint);
  inArgs.set_x(Teuchos::rcp(&x_in,false));
  if (inArgs.supports(MEB::IN_ARG_t)) {
    inArgs.set_t(t_in);
  }
  outArgs.set_f(Teuchos::rcp(&*f_out,false));
  model.evalModel(inArgs,outArgs);
}
void DiagonalImplicitRKModelEvaluator<Scalar>::evalModelImpl(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs_stage,
  const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs_stage
  ) const
{

  typedef ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;

  TEUCHOS_TEST_FOR_EXCEPTION( !isInitialized_, std::logic_error,
      "Error!  initializeDIRKModel must be called before evalModel\n"
      );

  TEUCHOS_TEST_FOR_EXCEPTION( !setTimeStepPointCalled_, std::logic_error,
      "Error!  setTimeStepPoint must be called before evalModel"
      );

  TEUCHOS_TEST_FOR_EXCEPTION( currentStage_ == -1, std::logic_error,
      "Error!  setCurrentStage must be called before evalModel"
      );

  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_GEN_BEGIN(
    "Rythmos::DiagonalImplicitRKModelEvaluator",inArgs_stage,outArgs_stage,daeModel_
    );

  //
  // A) Unwrap the inArgs and outArgs 
  //

  const RCP<const Thyra::VectorBase<Scalar> > x_in = inArgs_stage.get_x();
  const RCP<Thyra::VectorBase<Scalar> > f_out = outArgs_stage.get_f();
  const RCP<Thyra::LinearOpBase<Scalar> > W_op_out = outArgs_stage.get_W_op();

  //
  // B) Assemble f_out and W_op_out for given stage
  //

  MEB::InArgs<Scalar> daeInArgs = daeModel_->createInArgs();
  MEB::OutArgs<Scalar> daeOutArgs = daeModel_->createOutArgs();
  const RCP<Thyra::VectorBase<Scalar> > x_i = createMember(daeModel_->get_x_space());
  daeInArgs.setArgs(basePoint_);
  
  // B.1) Setup the DAE's inArgs for stage f(currentStage_) ...
  V_V(stage_derivatives_->getNonconstVectorBlock(currentStage_).ptr(),*x_in);
  assembleIRKState( currentStage_, dirkButcherTableau_->A(), delta_t_, *x_old_, *stage_derivatives_, outArg(*x_i) );
  daeInArgs.set_x( x_i );
  daeInArgs.set_x_dot( x_in );
  daeInArgs.set_t( t_old_ + dirkButcherTableau_->c()(currentStage_) * delta_t_ );
  daeInArgs.set_alpha(ST::one());
  daeInArgs.set_beta( delta_t_ * dirkButcherTableau_->A()(currentStage_,currentStage_) );

  // B.2) Setup the DAE's outArgs for stage f(i) ...
  if (!is_null(f_out))
    daeOutArgs.set_f( f_out );
  if (!is_null(W_op_out))
    daeOutArgs.set_W_op(W_op_out);

  // B.3) Compute f_out(i) and/or W_op_out ...
  daeModel_->evalModel( daeInArgs, daeOutArgs );
  daeOutArgs.set_f(Teuchos::null);
  daeOutArgs.set_W_op(Teuchos::null);
  
  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END();
  
}
void TimeDiscretizedBackwardEulerModelEvaluator<Scalar>::evalModelImpl(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs_bar,
  const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs_bar
  ) const
{


  using Teuchos::rcp_dynamic_cast;
  typedef ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;
  typedef Thyra::VectorBase<Scalar> VB;
  typedef Thyra::ProductVectorBase<Scalar> PVB;
  typedef Thyra::BlockedLinearOpBase<Scalar> BLWB;

/*
  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_GEN_BEGIN(
    "Rythmos::ImplicitRKModelEvaluator",inArgs_bar,outArgs_bar,daeModel_
    );
*/

  TEST_FOR_EXCEPTION( delta_t_ <= 0.0, std::logic_error,
    "Error, you have not initialized this object correctly!" );

  //
  // A) Unwrap the inArgs and outArgs to get at product vectors and block op
  //

  const RCP<const PVB> x_bar = rcp_dynamic_cast<const PVB>(inArgs_bar.get_x(), true);
  const RCP<PVB> f_bar = rcp_dynamic_cast<PVB>(outArgs_bar.get_f(), true);
  RCP<BLWB> W_op_bar = rcp_dynamic_cast<BLWB>(outArgs_bar.get_W_op(), true);

  //
  // B) Assemble f_bar and W_op_bar by looping over stages
  //

  MEB::InArgs<Scalar> daeInArgs = daeModel_->createInArgs();
  MEB::OutArgs<Scalar> daeOutArgs = daeModel_->createOutArgs();
  const RCP<VB> x_dot_i = createMember(daeModel_->get_x_space());
  daeInArgs.setArgs(initCond_);
  
  Scalar t_i = initTime_; // ToDo: Define t_init!

  const Scalar oneOverDeltaT = 1.0/delta_t_;

  for ( int i = 0; i < numTimeSteps_; ++i ) {

    // B.1) Setup the DAE's inArgs for time step eqn f(i) ...
    const RCP<const Thyra::VectorBase<Scalar> >
      x_i = x_bar->getVectorBlock(i),
      x_im1 = ( i==0 ? initCond_.get_x() : x_bar->getVectorBlock(i-1) );
    V_VmV( x_dot_i.ptr(), *x_i, *x_im1 ); // x_dot_i = 1/dt * ( x[i] - x[i-1] )
    Vt_S( x_dot_i.ptr(), oneOverDeltaT ); // ... 
    daeInArgs.set_x_dot( x_dot_i );
    daeInArgs.set_x( x_i );
    daeInArgs.set_t( t_i );
    daeInArgs.set_alpha( oneOverDeltaT );
    daeInArgs.set_beta( 1.0 );

    // B.2) Setup the DAE's outArgs for f(i) and/or W(i,i) ...
    if (!is_null(f_bar))
      daeOutArgs.set_f( f_bar->getNonconstVectorBlock(i) );
    if (!is_null(W_op_bar))
      daeOutArgs.set_W_op(W_op_bar->getNonconstBlock(i,i).assert_not_null());

    // B.3) Compute f_bar(i) and/or W_op_bar(i,i) ...
    daeModel_->evalModel( daeInArgs, daeOutArgs );
    daeOutArgs.set_f(Teuchos::null);
    daeOutArgs.set_W_op(Teuchos::null);
    
    // B.4) Evaluate W_op_bar(i,i-1)
    if ( !is_null(W_op_bar) && i > 0 ) {
      daeInArgs.set_alpha( -oneOverDeltaT );
      daeInArgs.set_beta( 0.0 );
      daeOutArgs.set_W_op(W_op_bar->getNonconstBlock(i,i-1).assert_not_null());
      daeModel_->evalModel( daeInArgs, daeOutArgs );
      daeOutArgs.set_W_op(Teuchos::null);
    }

    //
    t_i += delta_t_;

  }

/*  
  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END();
*/

}
TEUCHOS_UNIT_TEST( Rythmos_ForwardSensitivityExplicitModelEvaluator, evalModel ) {
  typedef Thyra::ModelEvaluatorBase MEB;
  RCP<ForwardSensitivityExplicitModelEvaluator<double> > model =
    forwardSensitivityExplicitModelEvaluator<double>();
  RCP<SinCosModel> innerModel = sinCosModel(false);
  double a = 0.4;
  double f = 1.5;
  double L = 1.6;
  {
    RCP<ParameterList> pl = Teuchos::parameterList();
    pl->set("Accept model parameters",true);
    pl->set("Implicit model formulation",false);
    pl->set("Coeff a", a );
    pl->set("Coeff f", f );
    pl->set("Coeff L", L );
    innerModel->setParameterList(pl);
  }
  model->initializeStructure(innerModel, 0 );
  RCP<VectorBase<double> > x;
  MEB::InArgs<double> pointInArgs;  // Used to change the solution for re-evaluation
  RCP<StepperBase<double> > stepper; // Used for initializePointState
  {
    pointInArgs = innerModel->createInArgs();
    pointInArgs.set_t(0.1);
    x = Thyra::createMember(innerModel->get_x_space());
    {
      Thyra::DetachedVectorView<double> x_view( *x );
      x_view[0] = 2.0;
      x_view[1] = 3.0;
    }
    pointInArgs.set_x(x);
    RCP<VectorBase<double> > p0 = Thyra::createMember(innerModel->get_p_space(0));
    {
      Thyra::DetachedVectorView<double> p0_view( *p0 );
      p0_view[0] = a;
      p0_view[1] = f;
      p0_view[2] = L;
    }
    pointInArgs.set_p(0,p0);
    {
      // Create a stepper with these initial conditions to use to call
      // initializePointState on this ME:
      stepper = forwardEulerStepper<double>();
      stepper->setInitialCondition(pointInArgs);
      model->initializePointState(Teuchos::inOutArg(*stepper),false);
    }
  }
  MEB::InArgs<double> inArgs = model->createInArgs();
  RCP<VectorBase<double> > x_bar = Thyra::createMember(model->get_x_space());
  RCP<Thyra::DefaultMultiVectorProductVector<double> >
    s_bar = Teuchos::rcp_dynamic_cast<Thyra::DefaultMultiVectorProductVector<double> >(
      x_bar, true
      );
  RCP<Thyra::MultiVectorBase<double> >
    S = s_bar->getNonconstMultiVector();
  // Fill S with data
  {
    TEST_EQUALITY_CONST( S->domain()->dim(), 3 );
    TEST_EQUALITY_CONST( S->range()->dim(), 2 );
    RCP<VectorBase<double> > S0 = S->col(0);
    RCP<VectorBase<double> > S1 = S->col(1);
    RCP<VectorBase<double> > S2 = S->col(2);
    TEST_EQUALITY_CONST( S0->space()->dim(), 2 );
    TEST_EQUALITY_CONST( S1->space()->dim(), 2 );
    TEST_EQUALITY_CONST( S2->space()->dim(), 2 );
    Thyra::DetachedVectorView<double> S0_view( *S0 );
    S0_view[0] = 7.0;
    S0_view[1] = 8.0;
    Thyra::DetachedVectorView<double> S1_view( *S1 );
    S1_view[0] = 9.0;
    S1_view[1] = 10.0;
    Thyra::DetachedVectorView<double> S2_view( *S2 );
    S2_view[0] = 11.0;
    S2_view[1] = 12.0;
  }
  inArgs.set_x(x_bar);
  MEB::OutArgs<double> outArgs = model->createOutArgs();
  RCP<VectorBase<double> > f_bar = Thyra::createMember(model->get_f_space());
  RCP<Thyra::DefaultMultiVectorProductVector<double> >
    f_sens = Teuchos::rcp_dynamic_cast<Thyra::DefaultMultiVectorProductVector<double> >(
      f_bar, true
      );
  RCP<Thyra::MultiVectorBase<double> >
    F_sens = f_sens->getNonconstMultiVector().assert_not_null();

  V_S(Teuchos::outArg(*f_bar),0.0);
  outArgs.set_f(f_bar);
  
  inArgs.set_t(0.1);
  model->evalModel(inArgs,outArgs);

  // Verify F_sens = df/dx*S = df/dp
  // df/dx = [ 0             1 ]
  //         [ -(f/L)*(f/L)  0 ]
  // S =   [ 7   9  11 ]    x = [ 2 ]
  //       [ 8  10  12 ]        [ 3 ]
  // df/dp = [     0             0                   0              ]
  //         [ (f/L)*(f/L) 2*f/(L*L)*(a-x_0) -2*f*f/(L*L*L)*(a-x_0) ]
  // F_sens_0 = 
  // [            8               ]
  // [ -7*(f/L)*(f/L)+(f*f)/(L*L) ]
  // F_sens_1 = 
  // [            10                    ]
  // [ -9*(f/L)*(f/L)+2*f/(L*L)*(a-x_0) ]
  // F_sens_2 = 
  // [            12                         ]
  // [ -11*(f/L)*(f/L)-2*f*f/(L*L*L)*(a-x_0) ]
  // 
  double tol = 1.0e-10;
  {
    TEST_EQUALITY_CONST( F_sens->domain()->dim(), 3 );
    TEST_EQUALITY_CONST( F_sens->range()->dim(), 2 );
    RCP<VectorBase<double> > F_sens_0 = F_sens->col(0);
    RCP<VectorBase<double> > F_sens_1 = F_sens->col(1);
    RCP<VectorBase<double> > F_sens_2 = F_sens->col(2);
    TEST_EQUALITY_CONST( F_sens_0->space()->dim(), 2 );
    TEST_EQUALITY_CONST( F_sens_1->space()->dim(), 2 );
    TEST_EQUALITY_CONST( F_sens_2->space()->dim(), 2 );

    Thyra::DetachedVectorView<double> F_sens_0_view( *F_sens_0 );
    TEST_FLOATING_EQUALITY( F_sens_0_view[0], 8.0, tol );
    TEST_FLOATING_EQUALITY( F_sens_0_view[1], -7.0*(f/L)*(f/L)+(f*f)/(L*L), tol );

    Thyra::DetachedVectorView<double> F_sens_1_view( *F_sens_1 );
    TEST_FLOATING_EQUALITY( F_sens_1_view[0], 10.0, tol );
    TEST_FLOATING_EQUALITY( F_sens_1_view[1], -9*(f/L)*(f/L)+2*f/(L*L)*(a-2.0), tol );

    Thyra::DetachedVectorView<double> F_sens_2_view( *F_sens_2 );
    TEST_FLOATING_EQUALITY( F_sens_2_view[0], 12.0, tol );
    TEST_FLOATING_EQUALITY( F_sens_2_view[1], -11*(f/L)*(f/L)-2*f*f/(L*L*L)*(a-2.0), tol );
  }

  // Now change x and evaluate again.
  {
    Thyra::DetachedVectorView<double> x_view( *x );
    x_view[0] = 20.0;
    x_view[1] = 21.0;
  }
  // We need to call initializePointState again due to the vector
  // being cloned inside.
  stepper->setInitialCondition(pointInArgs);
  model->initializePointState(Teuchos::inOutArg(*stepper),false);

  model->evalModel(inArgs,outArgs);
  {
    TEST_EQUALITY_CONST( F_sens->domain()->dim(), 3 );
    TEST_EQUALITY_CONST( F_sens->range()->dim(), 2 );
    RCP<VectorBase<double> > F_sens_0 = F_sens->col(0);
    RCP<VectorBase<double> > F_sens_1 = F_sens->col(1);
    RCP<VectorBase<double> > F_sens_2 = F_sens->col(2);
    TEST_EQUALITY_CONST( F_sens_0->space()->dim(), 2 );
    TEST_EQUALITY_CONST( F_sens_1->space()->dim(), 2 );
    TEST_EQUALITY_CONST( F_sens_2->space()->dim(), 2 );

    Thyra::DetachedVectorView<double> F_sens_0_view( *F_sens_0 );
    TEST_FLOATING_EQUALITY( F_sens_0_view[0], 8.0, tol );
    TEST_FLOATING_EQUALITY( F_sens_0_view[1], -7.0*(f/L)*(f/L)+(f*f)/(L*L), tol );

    Thyra::DetachedVectorView<double> F_sens_1_view( *F_sens_1 );
    TEST_FLOATING_EQUALITY( F_sens_1_view[0], 10.0, tol );
    TEST_FLOATING_EQUALITY( F_sens_1_view[1], -9*(f/L)*(f/L)+2*f/(L*L)*(a-20.0), tol );

    Thyra::DetachedVectorView<double> F_sens_2_view( *F_sens_2 );
    TEST_FLOATING_EQUALITY( F_sens_2_view[0], 12.0, tol );
    TEST_FLOATING_EQUALITY( F_sens_2_view[1], -11*(f/L)*(f/L)-2*f*f/(L*L*L)*(a-20.0), tol );
  }

}
void ImplicitRKModelEvaluator<Scalar>::evalModelImpl(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs_bar,
  const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs_bar
  ) const
{

  using Teuchos::rcp_dynamic_cast;
  typedef ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;
  typedef Thyra::VectorBase<Scalar> VB;
  typedef Thyra::ProductVectorBase<Scalar> PVB;
  typedef Thyra::BlockedLinearOpBase<Scalar> BLWB;

  TEST_FOR_EXCEPTION( !isInitialized_, std::logic_error,
      "Error!  initializeIRKModel must be called before evalModel\n"
      );

  TEST_FOR_EXCEPTION( !setTimeStepPointCalled_, std::logic_error,
      "Error!  setTimeStepPoint must be called before evalModel"
      );

  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_GEN_BEGIN(
    "Rythmos::ImplicitRKModelEvaluator",inArgs_bar,outArgs_bar,daeModel_
    );

  //
  // A) Unwrap the inArgs and outArgs to get at product vectors and block op
  //

  const RCP<const PVB> x_bar = rcp_dynamic_cast<const PVB>(inArgs_bar.get_x(), true);
  const RCP<PVB> f_bar = rcp_dynamic_cast<PVB>(outArgs_bar.get_f(), true);
  const RCP<BLWB> W_op_bar = rcp_dynamic_cast<BLWB>(outArgs_bar.get_W_op(), true);

  //
  // B) Assemble f_bar and W_op_bar by looping over stages
  //

  MEB::InArgs<Scalar> daeInArgs = daeModel_->createInArgs();
  MEB::OutArgs<Scalar> daeOutArgs = daeModel_->createOutArgs();
  const RCP<VB> x_i = createMember(daeModel_->get_x_space());
  daeInArgs.setArgs(basePoint_);
  
  const int numStages = irkButcherTableau_->numStages();

  for ( int i = 0; i < numStages; ++i ) {

    // B.1) Setup the DAE's inArgs for stage f(i) ...
    assembleIRKState( i, irkButcherTableau_->A(), delta_t_, *x_old_, *x_bar, outArg(*x_i) );
    daeInArgs.set_x( x_i );
    daeInArgs.set_x_dot( x_bar->getVectorBlock(i) );
    daeInArgs.set_t( t_old_ + irkButcherTableau_->c()(i) * delta_t_ );
    Scalar alpha = ST::zero();
    if (i == 0) {
      alpha = ST::one();
    } else {
      alpha = ST::zero();
    }
    Scalar beta = delta_t_ * irkButcherTableau_->A()(i,0);
    daeInArgs.set_alpha( alpha );
    daeInArgs.set_beta( beta );

    // B.2) Setup the DAE's outArgs for stage f(i) ...
    if (!is_null(f_bar))
      daeOutArgs.set_f( f_bar->getNonconstVectorBlock(i) );
    if (!is_null(W_op_bar)) {
      daeOutArgs.set_W_op(W_op_bar->getNonconstBlock(i,0));
    }

    // B.3) Compute f_bar(i) and/or W_op_bar(i,0) ...
    daeModel_->evalModel( daeInArgs, daeOutArgs );
    daeOutArgs.set_f(Teuchos::null);
    daeOutArgs.set_W_op(Teuchos::null);
    
    // B.4) Evaluate the rest of the W_op_bar(i,j=1...numStages-1) ...
    if (!is_null(W_op_bar)) {
      for ( int j = 1; j < numStages; ++j ) {
        alpha = ST::zero();
        if (i == j) {
          alpha = ST::one();
        } else {
          alpha = ST::zero();
        }
        beta = delta_t_ * irkButcherTableau_->A()(i,j);
        daeInArgs.set_alpha( alpha );
        daeInArgs.set_beta( beta );
        daeOutArgs.set_W_op(W_op_bar->getNonconstBlock(i,j));
        daeModel_->evalModel( daeInArgs, daeOutArgs );
        daeOutArgs.set_W_op(Teuchos::null);
      }
    }

  }
  
  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END();
  
}