void mitk::ConnectomicsNetworkCreator::LinearExtensionUntilGreyMatter( std::vector<int> & indexVectorOfPointsToUse, TractType::Pointer singleTract, int & label, itk::Index<3> & mitkIndex ) { if( indexVectorOfPointsToUse.size() > singleTract->Size() ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_MORE_POINTS_THAN_PRESENT; return; } if( indexVectorOfPointsToUse.size() < 2 ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_ESTIMATING_LESS_THAN_2; return; } for( unsigned int index( 0 ); index < indexVectorOfPointsToUse.size(); index++ ) { if( indexVectorOfPointsToUse[ index ] < 0 ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_ESTIMATING_BEYOND_START; return; } if( (unsigned int)indexVectorOfPointsToUse[ index ] > singleTract->Size() ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_ESTIMATING_BEYOND_END; return; } } mitk::Point3D startPoint, endPoint; std::vector< double > differenceVector; differenceVector.resize( singleTract->front().Size() ); { // which points to use, currently only last two //TODO correct using all points int endPointIndex = indexVectorOfPointsToUse.size() - 1; int startPointIndex = indexVectorOfPointsToUse.size() - 2; // convert to segmentation coords mitk::Point3D startFiber, endFiber; for( unsigned int index = 0; index < singleTract->front().Size(); index++ ) { endFiber.SetElement( index, singleTract->GetElement( indexVectorOfPointsToUse[ endPointIndex ] ).GetElement( index ) ); startFiber.SetElement( index, singleTract->GetElement( indexVectorOfPointsToUse[ startPointIndex ] ).GetElement( index ) ); } FiberToSegmentationCoords( endFiber, endPoint ); FiberToSegmentationCoords( startFiber, startPoint ); // calculate straight line for( unsigned int index = 0; index < singleTract->front().Size(); index++ ) { differenceVector[ index ] = endPoint.GetElement( index ) - startPoint.GetElement( index ); } // normalizing direction vector double length( 0.0 ); double sum( 0.0 ); for( unsigned int index = 0; index < differenceVector.size() ; index++ ) { sum = sum + differenceVector[ index ] * differenceVector[ index ]; } length = std::sqrt( sum ); for( unsigned int index = 0; index < differenceVector.size() ; index++ ) { differenceVector[ index ] = differenceVector[ index ] / length; } // follow line until first non white matter label itk::Index<3> tempIndex; int tempLabel( label ); bool keepOn( true ); itk::ImageRegion<3> itkRegion = m_SegmentationItk->GetLargestPossibleRegion(); for( int parameter( 0 ) ; keepOn ; parameter++ ) { if( parameter > 1000 ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_DID_NOT_FIND_WHITE; break; } for( int index( 0 ); index < 3; index++ ) { tempIndex.SetElement( index, endPoint.GetElement( index ) + parameter * differenceVector[ index ] ); } if( itkRegion.IsInside( tempIndex ) ) { tempLabel = m_SegmentationItk->GetPixel( tempIndex ); } else { tempLabel = -1; } if( IsNonWhiteMatterLabel( tempLabel ) ) { if( tempLabel < 1 ) { keepOn = false; //MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_NOT_EXTEND_TO_WHITE; } else { label = tempLabel; mitkIndex = tempIndex; keepOn = false; } } } } }
void mitk::ConnectomicsNetworkCreator::RetractionUntilBrainMatter( bool retractFront, TractType::Pointer singleTract, int & label, itk::Index<3> & mitkIndex ) { int retractionStartIndex( singleTract->Size() - 1 ); int retractionStepIndexSize( -1 ); int retractionTerminationIndex( 0 ); if( retractFront ) { retractionStartIndex = 0; retractionStepIndexSize = 1; retractionTerminationIndex = singleTract->Size() - 1; } int currentRetractionIndex = retractionStartIndex; bool keepRetracting( true ); mitk::Point3D currentPoint, nextPoint; std::vector< double > differenceVector; differenceVector.resize( singleTract->front().Size() ); while( keepRetracting && ( currentRetractionIndex != retractionTerminationIndex ) ) { // convert to segmentation coords mitk::Point3D currentPointFiberCoord, nextPointFiberCoord; for( unsigned int index = 0; index < singleTract->front().Size(); index++ ) { currentPointFiberCoord.SetElement( index, singleTract->GetElement( currentRetractionIndex ).GetElement( index ) ); nextPointFiberCoord.SetElement( index, singleTract->GetElement( currentRetractionIndex + retractionStepIndexSize ).GetElement( index ) ); } FiberToSegmentationCoords( currentPointFiberCoord, currentPoint ); FiberToSegmentationCoords( nextPointFiberCoord, nextPoint ); // calculate straight line for( unsigned int index = 0; index < singleTract->front().Size(); index++ ) { differenceVector[ index ] = nextPoint.GetElement( index ) - currentPoint.GetElement( index ); } // calculate length of direction vector double length( 0.0 ); double sum( 0.0 ); for( unsigned int index = 0; index < differenceVector.size() ; index++ ) { sum = sum + differenceVector[ index ] * differenceVector[ index ]; } length = std::sqrt( sum ); // retract itk::Index<3> tempIndex; int tempLabel( label ); for( int parameter( 0 ) ; parameter < length ; parameter++ ) { for( int index( 0 ); index < 3; index++ ) { tempIndex.SetElement( index, currentPoint.GetElement( index ) + ( 1.0 + parameter ) / ( 1.0 + length ) * differenceVector[ index ] ); } tempLabel = m_SegmentationItk->GetPixel( tempIndex ); if( !IsBackgroundLabel( tempLabel ) ) { // check whether result is within the search space { mitk::Point3D endPoint, foundPointSegmentation, foundPointFiber; for( unsigned int index = 0; index < singleTract->front().Size(); index++ ) { // this is in fiber (world) coordinates endPoint.SetElement( index, singleTract->GetElement( retractionStartIndex ).GetElement( index ) ); } for( int index( 0 ); index < 3; index++ ) { foundPointSegmentation.SetElement( index, currentPoint.GetElement( index ) + ( 1.0 + parameter ) / ( 1.0 + length ) * differenceVector[ index ] ); } SegmentationToFiberCoords( foundPointSegmentation, foundPointFiber ); std::vector< double > finalDistance; finalDistance.resize( singleTract->front().Size() ); for( unsigned int index = 0; index < singleTract->front().Size(); index++ ) { finalDistance[ index ] = foundPointFiber.GetElement( index ) - endPoint.GetElement( index ); } // calculate length of direction vector double finalLength( 0.0 ); double finalSum( 0.0 ); for( unsigned int index = 0; index < finalDistance.size() ; index++ ) { finalSum = finalSum + finalDistance[ index ] * finalDistance[ index ]; } finalLength = std::sqrt( finalSum ); if( finalLength > m_EndPointSearchRadius ) { // the found point was not within the search space return; } } label = tempLabel; mitkIndex = tempIndex; return; } // hit next point without finding brain matter currentRetractionIndex = currentRetractionIndex + retractionStepIndexSize; if( ( currentRetractionIndex < 1 ) || ( (unsigned int)currentRetractionIndex > ( singleTract->Size() - 2 ) ) ) { keepRetracting = false; } } } }
void mitk::ConnectomicsNetworkCreator::RetractionUntilBrainMatter( bool retractFront, TractType::Pointer singleTract, int & label, mitk::Index3D & mitkIndex ) { int retractionStartIndex( singleTract->Size() - 1 ); int retractionStepIndexSize( -1 ); int retractionTerminationIndex( 0 ); if( retractFront ) { retractionStartIndex = 0; retractionStepIndexSize = 1; retractionTerminationIndex = singleTract->Size() - 1; } int currentRetractionIndex = retractionStartIndex; bool keepRetracting( true ); mitk::Point3D currentPoint, nextPoint; std::vector< double > differenceVector; differenceVector.resize( singleTract->front().Size() ); while( keepRetracting && ( currentRetractionIndex != retractionTerminationIndex ) ) { // convert to segmentation coords mitk::Point3D currentPointFiberCoord, nextPointFiberCoord; for( int index = 0; index < singleTract->front().Size(); index++ ) { currentPointFiberCoord.SetElement( index, singleTract->GetElement( currentRetractionIndex ).GetElement( index ) ); nextPointFiberCoord.SetElement( index, singleTract->GetElement( currentRetractionIndex + retractionStepIndexSize ).GetElement( index ) ); } FiberToSegmentationCoords( currentPointFiberCoord, currentPoint ); FiberToSegmentationCoords( nextPointFiberCoord, nextPoint ); // calculate straight line for( int index = 0; index < singleTract->front().Size(); index++ ) { differenceVector[ index ] = nextPoint.GetElement( index ) - currentPoint.GetElement( index ); } // calculate length of direction vector double length( 0.0 ); double sum( 0.0 ); for( int index = 0; index < differenceVector.size() ; index++ ) { sum = sum + differenceVector[ index ] * differenceVector[ index ]; } length = std::sqrt( sum ); // retract mitk::Index3D tempIndex; int tempLabel( label ); for( int parameter( 0 ) ; parameter < length ; parameter++ ) { for( int index( 0 ); index < 3; index++ ) { tempIndex.SetElement( index, currentPoint.GetElement( index ) + ( 1.0 + parameter ) / ( 1.0 + length ) * differenceVector[ index ] ); } tempLabel = m_Segmentation->GetPixelValueByIndex( tempIndex ); if( !IsBackgroundLabel( tempLabel ) ) { label = tempLabel; mitkIndex = tempIndex; return; } // hit next point without finding brain matter currentRetractionIndex = currentRetractionIndex + retractionStepIndexSize; if( ( currentRetractionIndex < 1 ) || ( currentRetractionIndex > ( singleTract->Size() - 2 ) ) ) { keepRetracting = false; } } } }