bool aci_queue_peek_from_isr(aci_queue_t *aci_q, hal_aci_data_t *p_data) { ble_assert(NULL != aci_q); ble_assert(NULL != p_data); if (aci_queue_is_empty_from_isr(aci_q)) { return false; } memcpy((uint8_t *)p_data, (uint8_t *)&(aci_q->aci_data[aci_q->head % ACI_QUEUE_SIZE]), sizeof(hal_aci_data_t)); return true; }
bool aci_queue_dequeue(aci_queue_t *aci_q, hal_aci_data_t *p_data) { ble_assert(NULL != aci_q); ble_assert(NULL != p_data); if (aci_queue_is_empty(aci_q)) { return false; } memcpy((uint8_t *)p_data, (uint8_t *)&(aci_q->aci_data[aci_q->head]), sizeof(hal_aci_data_t)); aci_q->head = (aci_q->head + 1) % ACI_QUEUE_SIZE; return true; }
bool aci_queue_is_full(aci_queue_t *aci_q) { uint8_t next; bool state; ble_assert(NULL != aci_q); //This should be done in a critical section noInterrupts(); next = (aci_q->tail + 1) % ACI_QUEUE_SIZE; if (next == aci_q->head) { state = true; } else { state = false; } interrupts(); //end return state; }
bool aci_queue_is_full_from_isr(aci_queue_t *aci_q) { const uint8_t next = (aci_q->tail + 1) % ACI_QUEUE_SIZE; ble_assert(NULL != aci_q); return next == aci_q->head; }
bool aci_queue_enqueue_from_isr(aci_queue_t *aci_q, hal_aci_data_t *p_data) { const uint8_t length = p_data->buffer[0]; ble_assert(NULL != aci_q); ble_assert(NULL != p_data); if (aci_queue_is_full_from_isr(aci_q)) { return false; } aci_q->aci_data[aci_q->tail % ACI_QUEUE_SIZE].status_byte = 0; memcpy((uint8_t *)&(aci_q->aci_data[aci_q->tail % ACI_QUEUE_SIZE].buffer[0]), (uint8_t *)&p_data->buffer[0], length + 1); ++aci_q->tail; return true; }
void aci_queue_init(aci_queue_t *aci_q) { uint8_t loop; ble_assert(NULL != aci_q); aci_q->head = 0; aci_q->tail = 0; for(loop=0; loop<ACI_QUEUE_SIZE; loop++) { aci_q->aci_data[loop].buffer[0] = 0x00; aci_q->aci_data[loop].buffer[1] = 0x00; } }
bool aci_queue_is_full(aci_queue_t *aci_q) { bool state; ble_assert(NULL != aci_q); //This should be done in a critical section noInterrupts(); state = (aci_q->tail == aci_q->head + ACI_QUEUE_SIZE); interrupts(); //end return state; }
bool aci_queue_is_empty(aci_queue_t *aci_q) { bool state = false; ble_assert(NULL != aci_q); //Critical section noInterrupts(); if (aci_q->head == aci_q->tail) { state = true; } interrupts(); return state; }
bool aci_queue_is_empty(aci_queue_t *aci_q) { bool state = false; ble_assert(NULL != aci_q); //Critical section __disable_irq(); uint8_t head = aci_q->head; uint8_t tail = aci_q->tail; if (head == tail) { state = true; } __enable_irq(); return state; }
bool aci_queue_is_full(aci_queue_t *aci_q) { bool state = false; ble_assert(NULL != aci_q); //This should be done in a critical section __disable_irq(); uint8_t tail = aci_q->tail; uint8_t head = aci_q->head; if(tail == (head + ACI_QUEUE_SIZE)) { state = true; } __enable_irq(); //end return state; }
bool aci_queue_is_full(aci_queue_t *aci_q) { bool state; ble_assert(NULL != aci_q); #ifdef HAL_ACI_TL_INTERRUPT //This should be done in a critical section noInterrupts(); #endif state = (aci_q->tail == aci_q->head + ACI_QUEUE_SIZE); #ifdef HAL_ACI_TL_INTERRUPT interrupts(); //end #endif return state; }
bool aci_queue_is_empty(aci_queue_t *aci_q) { bool state = false; ble_assert(NULL != aci_q); #ifdef HAL_ACI_TL_INTERRUPT //Critical section noInterrupts(); #endif if (aci_q->head == aci_q->tail) { state = true; } #ifdef HAL_ACI_TL_INTERRUPT interrupts(); #endif return state; }
bool aci_queue_is_full_from_isr(aci_queue_t *aci_q) { ble_assert(NULL != aci_q); return (aci_q->tail == (aci_q->head + ACI_QUEUE_SIZE)); }
bool aci_queue_is_empty_from_isr(aci_queue_t *aci_q) { ble_assert(NULL != aci_q); return aci_q->head == aci_q->tail; }