示例#1
0
dd_MatrixPtr FromEigen (const cref_matrix_t& input)
{
    if (dd_debug)
    {
        std::cout << "from eigen input " << input << std::endl;
    }
    dd_debug = false;
    dd_MatrixPtr M=NULL;
    dd_rowrange i;
    dd_colrange j;
    dd_rowrange m_input = (dd_rowrange)(input.rows());
    dd_colrange d_input = (dd_colrange)(7);
    dd_RepresentationType rep=dd_Generator;
    mytype value;
    dd_NumberType NT = dd_Real;;
    dd_init(value);

    M=dd_CreateMatrix(m_input, d_input);
    M->representation=rep;
    M->numbtype=NT;

    for (i = 1; i <= input.rows(); i++)
    {
        dd_set_d(value, 0);
        dd_set(M->matrix[i-1][0],value);
        for (j = 2; j <= d_input; j++)
        {
          dd_set_d(value, input(i-1,j-2));
          dd_set(M->matrix[i-1][j-1],value);
        }
    }
  dd_clear(value);
  return M;
}
示例#2
0
文件: cddmlio.c 项目: hnxiao/mcdd
void dd_MLSetMatrixWithString(dd_rowrange m, dd_colrange d, char line[], dd_MatrixPtr M)
{
   dd_rowrange i=0;
   dd_colrange j=0;
   char *next,*copy;
   const char ct[]=", {}\n";  /* allows separators ","," ","{","}". */
   mytype value;
   double dval;

   dd_init(value);
   copy=(char *)malloc(strlen(line) + 4048); /* some extra space as buffer.  Somehow linux version needs this */
   strcpy(copy,line);
   next=strtok(copy,ct);
   i=0; j=0;
   do {
#if defined GMPRATIONAL
      dd_sread_rational_value(next, value);
#else
      dval=atof(next);
      dd_set_d(value,dval);
#endif
      dd_WriteNumber(stderr,value);
      dd_set(M->matrix[i][j],value);
      j++;
      if (j == d) {
         i++; j=0;
      }
  } while ((next=strtok(NULL,ct))!=NULL);
  free(copy);
  dd_clear(value);
  return;
}
示例#3
0
文件: redund.c 项目: cran/rcdd
SEXP redundant(SEXP m, SEXP h)
{
    GetRNGstate();
    if (! isString(m))
        error("'m' must be character");
    if (! isMatrix(m))
        error("'m' must be matrix");
    if (! isLogical(h))
        error("'h' must be logical");
    if (LENGTH(h) != 1)
        error("'h' must be scalar");

    SEXP m_dim;
    PROTECT(m_dim = getAttrib(m, R_DimSymbol));
    int nrow = INTEGER(m_dim)[0];
    int ncol = INTEGER(m_dim)[1];
    UNPROTECT(1);

#ifdef WOOF
    printf("nrow = %d\n", nrow);
    printf("ncol = %d\n", ncol);
#endif /* WOOF */

    if (nrow < 2)
        error("less than 2 rows, cannot be redundant");
    if (ncol <= 2)
        error("no cols in m[ , - c(1, 2)]");

    for (int i = 0; i < nrow; i++) {
        const char *foo = CHAR(STRING_ELT(m, i));
        if (strlen(foo) != 1)
            error("column one of 'm' not zero-or-one valued");
        if (! (foo[0] == '0' || foo[0] == '1'))
            error("column one of 'm' not zero-or-one valued");
    }
    if (! LOGICAL(h)[0])
        for (int i = nrow; i < 2 * nrow; i++) {
            const char *foo = CHAR(STRING_ELT(m, i));
            if (strlen(foo) != 1)
                error("column two of 'm' not zero-or-one valued");
            if (! (foo[0] == '0' || foo[0] == '1'))
                error("column two of 'm' not zero-or-one valued");
        }

    dd_set_global_constants();

    /* note actual type of "value" is mpq_t (defined in cddmp.h) */
    mytype value;
    dd_init(value);

    dd_MatrixPtr mf = dd_CreateMatrix(nrow, ncol - 1);
    /* note our matrix has one more column than Fukuda's */

    /* representation */
    if(LOGICAL(h)[0])
        mf->representation = dd_Inequality;
    else
        mf->representation = dd_Generator;

    mf->numbtype = dd_Rational;

    /* linearity */
    for (int i = 0; i < nrow; i++) {
        const char *foo = CHAR(STRING_ELT(m, i));
        if (foo[0] == '1')
            set_addelem(mf->linset, i + 1);
        /* note conversion from zero-origin to one-origin indexing */
    }

    /* matrix */
    for (int j = 1, k = nrow; j < ncol; j++)
        for (int i = 0; i < nrow; i++, k++) {
            const char *rat_str = CHAR(STRING_ELT(m, k));
            if (mpq_set_str(value, rat_str, 10) == -1)
                ERROR_WITH_CLEANUP_3("error converting string to GMP rational");
            mpq_canonicalize(value);
            dd_set(mf->matrix[i][j - 1], value);
            /* note our matrix has one more column than Fukuda's */
        }

    dd_rowset impl_linset, redset;
    dd_rowindex newpos;
    dd_ErrorType err = dd_NoError;

    dd_MatrixCanonicalize(&mf, &impl_linset, &redset, &newpos, &err);

    if (err != dd_NoError) {
        rr_WriteErrorMessages(err);
        ERROR_WITH_CLEANUP_6("failed");
    }

    int mrow = mf->rowsize;
    int mcol = mf->colsize;

    if (mcol + 1 != ncol)
        ERROR_WITH_CLEANUP_6("Cannot happen!  computed matrix has"
            " wrong number of columns");

#ifdef WOOF
    printf("mrow = %d\n", mrow);
    printf("mcol = %d\n", mcol);
#endif /* WOOF */

    SEXP bar;
    PROTECT(bar = allocMatrix(STRSXP, mrow, ncol));

    /* linearity output */
    for (int i = 0; i < mrow; i++)
        if (set_member(i + 1, mf->linset))
            SET_STRING_ELT(bar, i, mkChar("1"));
        else
            SET_STRING_ELT(bar, i, mkChar("0"));
    /* note conversion from zero-origin to one-origin indexing */

    /* matrix output */
    for (int j = 1, k = mrow; j < ncol; j++)
        for (int i = 0; i < mrow; i++, k++) {
            dd_set(value, mf->matrix[i][j - 1]);
            /* note our matrix has one more column than Fukuda's */
            char *zstr = NULL;
            zstr = mpq_get_str(zstr, 10, value);
            SET_STRING_ELT(bar, k, mkChar(zstr));
            free(zstr);
        }

    if (mf->representation == dd_Inequality) {
        SEXP attr_name, attr_value;
        PROTECT(attr_name = ScalarString(mkChar("representation")));
        PROTECT(attr_value = ScalarString(mkChar("H")));
        setAttrib(bar, attr_name, attr_value);
        UNPROTECT(2);
    }
    if (mf->representation == dd_Generator) {
        SEXP attr_name, attr_value;
        PROTECT(attr_name = ScalarString(mkChar("representation")));
        PROTECT(attr_value = ScalarString(mkChar("V")));
        setAttrib(bar, attr_name, attr_value);
        UNPROTECT(2);
    }

    int impl_size = set_card(impl_linset);
    int red_size = set_card(redset);

    int nresult = 1;
    int iresult = 1;

    SEXP baz = NULL;
    if (impl_size > 0) {
        PROTECT(baz = rr_set_fwrite(impl_linset));
        nresult++;
    }

    SEXP qux = NULL;
    if (red_size > 0) {
        PROTECT(qux = rr_set_fwrite(redset));
        nresult++;
    }

    SEXP fred = NULL;
    {
        PROTECT(fred = allocVector(INTSXP, nrow));
        for (int i = 1; i <= nrow; i++)
            INTEGER(fred)[i - 1] = newpos[i];
        nresult++;
    }

#ifdef WOOF
    fprintf(stderr, "impl_size = %d\n", impl_size);
    fprintf(stderr, "red_size = %d\n", red_size);
    fprintf(stderr, "nresult = %d\n", nresult);
    if (baz)
        fprintf(stderr, "LENGTH(baz) = %d\n", LENGTH(baz));
    if (qux)
        fprintf(stderr, "LENGTH(qux) = %d\n", LENGTH(qux));
#endif /* WOOF */

    SEXP result, resultnames;
    PROTECT(result = allocVector(VECSXP, nresult));
    PROTECT(resultnames = allocVector(STRSXP, nresult));

    SET_STRING_ELT(resultnames, 0, mkChar("output"));
    SET_VECTOR_ELT(result, 0, bar);
    if (baz) {
        SET_STRING_ELT(resultnames, iresult, mkChar("implied.linearity"));
        SET_VECTOR_ELT(result, iresult, baz);
        iresult++;
    }
    if (qux) {
        SET_STRING_ELT(resultnames, iresult, mkChar("redundant"));
        SET_VECTOR_ELT(result, iresult, qux);
        iresult++;
    }
    {
        SET_STRING_ELT(resultnames, iresult, mkChar("new.position"));
        SET_VECTOR_ELT(result, iresult, fred);
        iresult++;
    }
    namesgets(result, resultnames);

    set_free(redset);
    set_free(impl_linset);
    free(newpos);
    dd_FreeMatrix(mf);
    dd_clear(value);
    dd_free_global_constants();

    PutRNGstate();
    UNPROTECT(nresult + 2);
    return result;
}
示例#4
0
文件: allfaces.c 项目: cjgeyer/rcdd
SEXP allfaces(SEXP hrep)
{
    GetRNGstate();
    if (! isMatrix(hrep))
        error("'hrep' must be matrix");
    if (! isString(hrep))
        error("'hrep' must be character");

    SEXP hrep_dim;
    PROTECT(hrep_dim = getAttrib(hrep, R_DimSymbol));
    int nrow = INTEGER(hrep_dim)[0];
    int ncol = INTEGER(hrep_dim)[1];
    UNPROTECT(1);

    if (nrow <= 0)
        error("no rows in 'hrep'");
    if (ncol <= 3)
        error("three or fewer cols in hrep");

    for (int i = 0; i < nrow; ++i) {
        const char *foo = CHAR(STRING_ELT(hrep, i));
        if (strlen(foo) != 1)
            error("column one of 'hrep' not zero-or-one valued");
        if (! (foo[0] == '0' || foo[0] == '1'))
            error("column one of 'hrep' not zero-or-one valued");
    }

    dd_set_global_constants();

    /* note actual type of "value" is mpq_t (defined in cddmp.h) */
    mytype value;
    dd_init(value);

    dd_MatrixPtr mf = dd_CreateMatrix(nrow, ncol - 1);
    /* note our matrix has one more column than Fukuda's */

    mf->representation = dd_Inequality;
    mf->numbtype = dd_Rational;

    /* linearity */
    for (int i = 0; i < nrow; ++i) {
        const char *foo = CHAR(STRING_ELT(hrep, i));
        if (foo[0] == '1')
            set_addelem(mf->linset, i + 1);
        /* note conversion from zero-origin to one-origin indexing */
    }

    /* matrix */
    for (int j = 1, k = nrow; j < ncol; ++j)
        for (int i = 0; i < nrow; ++i, ++k) {
            const char *rat_str = CHAR(STRING_ELT(hrep, k));
            if (mpq_set_str(value, rat_str, 10) == -1) {
                dd_FreeMatrix(mf);
                dd_clear(value);
                dd_free_global_constants();
                error("error converting string to GMP rational");
            }
            mpq_canonicalize(value);
            dd_set(mf->matrix[i][j - 1], value);
            /* note our matrix has one more column than Fukuda's */
        }

    SEXP result;
    PROTECT(result = FaceEnum(mf));

    dd_FreeMatrix(mf);
    dd_clear(value);
    dd_free_global_constants();

    if (result == R_NilValue)
        error("failed");

    PutRNGstate();

    UNPROTECT(1);
    return result;
}
示例#5
0
文件: allfaces.c 项目: cjgeyer/rcdd
static dd_ErrorType FaceEnumHelper(dd_MatrixPtr M, dd_rowset R, dd_rowset S)
{
    dd_ErrorType err;
    dd_rowset LL, ImL, RR, SS, Lbasis;
    dd_rowrange iprev = 0;
    dd_colrange dim;
    dd_LPSolutionPtr lps = NULL;

    set_initialize(&LL, M->rowsize);
    set_initialize(&RR, M->rowsize);
    set_initialize(&SS, M->rowsize);
    set_copy(LL, M->linset);
    set_copy(RR, R);
    set_copy(SS, S);

    /* note actual type of "value" is mpq_t (defined in cddmp.h) */
    mytype value;
    dd_init(value);

    err = dd_NoError;
    dd_boolean foo = dd_ExistsRestrictedFace(M, R, S, &err);
    if (err != dd_NoError) {
#ifdef MOO
        fprintf(stderr, "err from dd_ExistsRestrictedFace\n");
        fprintf(stderr, "err = %d\n", err);
#endif /* MOO */
        set_free(LL);
        set_free(RR);
        set_free(SS);
        dd_clear(value);
        return err;
    }

    if (foo) {

        set_uni(M->linset, M->linset, R);

        err = dd_NoError;
        dd_FindRelativeInterior(M, &ImL, &Lbasis, &lps, &err);
        if (err != dd_NoError) {
#ifdef MOO
            fprintf(stderr, "err from dd_FindRelativeInterior\n");
            fprintf(stderr, "err = %d\n", err);
#endif /* MOO */
            dd_FreeLPSolution(lps);
            set_free(ImL);
            set_free(Lbasis);
            set_free(LL);
            set_free(RR);
            set_free(SS);
            dd_clear(value);
            return err;
        }

        dim = M->colsize - set_card(Lbasis) - 1;
        set_uni(M->linset, M->linset, ImL);

        SEXP mydim, myactive, myrip;
        PROTECT(mydim = ScalarInteger(dim));
        PROTECT(myactive = rr_set_fwrite(M->linset));
        int myd = (lps->d) - 2;
        PROTECT(myrip = allocVector(STRSXP, myd));
        for (int j = 1; j <= myd; j++) {
            dd_set(value, lps->sol[j]);
            char *zstr = NULL;
            zstr = mpq_get_str(zstr, 10, value);
            SET_STRING_ELT(myrip, j - 1, mkChar(zstr));
            free(zstr);
        }
        REPROTECT(dimlist = CONS(mydim, dimlist), dimidx);
        REPROTECT(riplist = CONS(myrip, riplist), ripidx);
        REPROTECT(activelist = CONS(myactive, activelist), activeidx);
        UNPROTECT(3);

        dd_FreeLPSolution(lps);
        set_free(ImL);
        set_free(Lbasis);
   
        if (dim > 0) {
            for (int i = 1; i <= M->rowsize; i++) {
                if ((! set_member(i, M->linset)) && (! set_member(i, S))) {
                    set_addelem(RR, i);
                    if (iprev) {
                        set_delelem(RR, iprev);
                        set_delelem(M->linset, iprev);
                        set_addelem(SS, iprev);
                    }
                    iprev = i;

                    err = FaceEnumHelper(M, RR, SS);
                    if (err != dd_NoError) {
#ifdef MOO
                        fprintf(stderr, "err from FaceEnumHelper\n");
                        fprintf(stderr, "err = %d\n", err);
#endif /* MOO */
                        set_copy(M->linset, LL);
                        set_free(LL);
                        set_free(RR);
                        set_free(SS);
                        dd_clear(value);
                        return err;
                    }
                }
            }
        }
    }

    set_copy(M->linset, LL);
    set_free(LL);
    set_free(RR);
    set_free(SS);
    dd_clear(value);
    return dd_NoError;
}
示例#6
0
dd_MatrixPtr dd_BlockElimination(dd_MatrixPtr M, dd_colset delset, dd_ErrorType *error)
/* Eliminate the variables (columns) delset by
   the Block Elimination with dd_DoubleDescription algorithm.

   Given (where y is to be eliminated):
   c1 + A1 x + B1 y >= 0
   c2 + A2 x + B2 y =  0

   1. First construct the dual system:  z1^T B1 + z2^T B2 = 0, z1 >= 0.
   2. Compute the generators of the dual.
   3. Then take the linear combination of the original system with each generator.
   4. Remove redundant inequalies.

*/
{
  dd_MatrixPtr Mdual=NULL, Mproj=NULL, Gdual=NULL;
  dd_rowrange i,h,m,mproj,mdual,linsize;
  dd_colrange j,k,d,dproj,ddual,delsize;
  dd_colindex delindex;
  mytype temp,prod;
  dd_PolyhedraPtr dualpoly;
  dd_ErrorType err=dd_NoError;
  dd_boolean localdebug=dd_FALSE;

  *error=dd_NoError;
  m= M->rowsize;
  d= M->colsize;
  delindex=(long*)calloc(d+1,sizeof(long));
  dd_init(temp);
  dd_init(prod);

  k=0; delsize=0;
  for (j=1; j<=d; j++){
    if (set_member(j, delset)){
      k++;  delsize++;
      delindex[k]=j;  /* stores the kth deletion column index */
    }
  }
  if (localdebug) dd_WriteMatrix(stdout, M);

  linsize=set_card(M->linset);
  ddual=m+1;
  mdual=delsize + m - linsize;  /* #equalitions + dimension of z1 */

  /* setup the dual matrix */
  Mdual=dd_CreateMatrix(mdual, ddual);
  Mdual->representation=dd_Inequality;
  for (i = 1; i <= delsize; i++){
    set_addelem(Mdual->linset,i);  /* equality */
    for (j = 1; j <= m; j++) {
      dd_set(Mdual->matrix[i-1][j], M->matrix[j-1][delindex[i]-1]);
    }
  } 

  k=0;
  for (i = 1; i <= m; i++){
    if (!set_member(i, M->linset)){
      /* set nonnegativity for the dual variable associated with
         each non-linearity inequality. */
      k++;
      dd_set(Mdual->matrix[delsize+k-1][i], dd_one);  
    }
  } 
  
  /* 2. Compute the generators of the dual system. */
  dualpoly=dd_DDMatrix2Poly(Mdual, &err);
  Gdual=dd_CopyGenerators(dualpoly);

  /* 3. Take the linear combination of the original system with each generator.  */
  dproj=d-delsize;
  mproj=Gdual->rowsize;
  Mproj=dd_CreateMatrix(mproj, dproj);
  Mproj->representation=dd_Inequality;
  set_copy(Mproj->linset, Gdual->linset);

  for (i=1; i<=mproj; i++){
    k=0;
    for (j=1; j<=d; j++){
      if (!set_member(j, delset)){
        k++;  /* new index of the variable x_j  */
        dd_set(prod, dd_purezero);
        for (h = 1; h <= m; h++){
          dd_mul(temp,M->matrix[h-1][j-1],Gdual->matrix[i-1][h]); 
          dd_add(prod,prod,temp);
        }
        dd_set(Mproj->matrix[i-1][k-1],prod);
      }
    }
  }
  if (localdebug) printf("Size of the projection system: %ld x %ld\n", mproj, dproj);
  
  dd_FreePolyhedra(dualpoly);
  free(delindex);
  dd_clear(temp);
  dd_clear(prod);
  dd_FreeMatrix(Mdual);
  dd_FreeMatrix(Gdual);
  return Mproj;
}
示例#7
0
dd_MatrixPtr dd_FourierElimination(dd_MatrixPtr M,dd_ErrorType *error)
/* Eliminate the last variable (column) from the given H-matrix using 
   the standard Fourier Elimination.
 */
{
  dd_MatrixPtr Mnew=NULL;
  dd_rowrange i,inew,ip,in,iz,m,mpos=0,mneg=0,mzero=0,mnew;
  dd_colrange j,d,dnew;
  dd_rowindex posrowindex, negrowindex,zerorowindex;
  mytype temp1,temp2;
  dd_boolean localdebug=dd_FALSE;

  *error=dd_NoError;
  m= M->rowsize;
  d= M->colsize;
  if (d<=1){
    *error=dd_ColIndexOutOfRange;
    if (localdebug) {
      printf("The number of column is too small: %ld for Fourier's Elimination.\n",d);
    }
    goto _L99;
  }

  if (M->representation==dd_Generator){
    *error=dd_NotAvailForV;
    if (localdebug) {
      printf("Fourier's Elimination cannot be applied to a V-polyhedron.\n");
    }
    goto _L99;
  }

  if (set_card(M->linset)>0){
    *error=dd_CannotHandleLinearity;
    if (localdebug) {
      printf("The Fourier Elimination function does not handle equality in this version.\n");
    }
    goto _L99;
  }

  /* Create temporary spaces to be removed at the end of this function */
  posrowindex=(long*)calloc(m+1,sizeof(long));
  negrowindex=(long*)calloc(m+1,sizeof(long));
  zerorowindex=(long*)calloc(m+1,sizeof(long));
  dd_init(temp1);
  dd_init(temp2);

  for (i = 1; i <= m; i++) {
    if (dd_Positive(M->matrix[i-1][d-1])){
      mpos++;
      posrowindex[mpos]=i;
    } else if (dd_Negative(M->matrix[i-1][d-1])) {
      mneg++;
      negrowindex[mneg]=i;
    } else {
      mzero++;
      zerorowindex[mzero]=i;
    }
  }  /*of i*/

  if (localdebug) {
    dd_WriteMatrix(stdout, M);
    printf("No of  (+  -  0) rows = (%ld, %ld, %ld)\n", mpos,mneg, mzero);
  }

  /* The present code generates so many redundant inequalities and thus
     is quite useless, except for very small examples
  */
  mnew=mzero+mpos*mneg;  /* the total number of rows after elimination */
  dnew=d-1;

  Mnew=dd_CreateMatrix(mnew, dnew);
  dd_CopyArow(Mnew->rowvec, M->rowvec, dnew);
/*  set_copy(Mnew->linset,M->linset);  */
  Mnew->numbtype=M->numbtype;
  Mnew->representation=M->representation;
  Mnew->objective=M->objective;


  /* Copy the inequalities independent of x_d to the top of the new matrix. */
  for (iz = 1; iz <= mzero; iz++){
    for (j = 1; j <= dnew; j++) {
      dd_set(Mnew->matrix[iz-1][j-1], M->matrix[zerorowindex[iz]-1][j-1]);
    }
  } 

  /* Create the new inequalities by combining x_d positive and negative ones. */
  inew=mzero;  /* the index of the last x_d zero inequality */
  for (ip = 1; ip <= mpos; ip++){
    for (in = 1; in <= mneg; in++){
      inew++;
      dd_neg(temp1, M->matrix[negrowindex[in]-1][d-1]);
      for (j = 1; j <= dnew; j++) {
        dd_LinearComb(temp2,M->matrix[posrowindex[ip]-1][j-1],temp1,\
          M->matrix[negrowindex[in]-1][j-1],\
          M->matrix[posrowindex[ip]-1][d-1]);
        dd_set(Mnew->matrix[inew-1][j-1],temp2);
      }
      dd_Normalize(dnew,Mnew->matrix[inew-1]);
    }
  } 


  free(posrowindex);
  free(negrowindex);
  free(zerorowindex);
  dd_clear(temp1);
  dd_clear(temp2);

 _L99:
  return Mnew;
}
示例#8
0
文件: linearity.c 项目: cjgeyer/rcdd
SEXP impliedLinearity(SEXP m, SEXP h)
{
    GetRNGstate();
    if (! isMatrix(m))
        error("'m' must be matrix");
    if (! isLogical(h))
        error("'h' must be logical");

    if (LENGTH(h) != 1)
        error("'h' must be scalar");

    if (! isString(m))
        error("'m' must be character");

    SEXP m_dim;
    PROTECT(m_dim = getAttrib(m, R_DimSymbol));
    int nrow = INTEGER(m_dim)[0];
    int ncol = INTEGER(m_dim)[1];
    UNPROTECT(1);

    if (nrow <= 1)
        error("no use if only one row");
    if (ncol <= 3)
        error("no use if only one col");

    for (int i = 0; i < nrow; i++) {
        const char *foo = CHAR(STRING_ELT(m, i));
        if (strlen(foo) != 1)
            error("column one of 'm' not zero-or-one valued");
        if (! (foo[0] == '0' || foo[0] == '1'))
            error("column one of 'm' not zero-or-one valued");
    }
    if (! LOGICAL(h)[0])
        for (int i = nrow; i < 2 * nrow; i++) {
            const char *foo = CHAR(STRING_ELT(m, i));
            if (strlen(foo) != 1)
                error("column two of 'm' not zero-or-one valued");
            if (! (foo[0] == '0' || foo[0] == '1'))
                error("column two of 'm' not zero-or-one valued");
        }

    dd_set_global_constants();

    /* note actual type of "value" is mpq_t (defined in cddmp.h) */
    mytype value;
    dd_init(value);

    dd_MatrixPtr mf = dd_CreateMatrix(nrow, ncol - 1);
    /* note our matrix has one more column than Fukuda's */

    /* representation */
    if(LOGICAL(h)[0])
        mf->representation = dd_Inequality;
    else
        mf->representation = dd_Generator;

    mf->numbtype = dd_Rational;

    /* linearity */
    for (int i = 0; i < nrow; i++) {
        const char *foo = CHAR(STRING_ELT(m, i));
        if (foo[0] == '1')
            set_addelem(mf->linset, i + 1);
        /* note conversion from zero-origin to one-origin indexing */
    }

    /* matrix */
    for (int j = 1, k = nrow; j < ncol; j++)
        for (int i = 0; i < nrow; i++, k++) {
            const char *rat_str = CHAR(STRING_ELT(m, k));
            if (mpq_set_str(value, rat_str, 10) == -1) {
                dd_FreeMatrix(mf);
                dd_clear(value);
                dd_free_global_constants();
                error("error converting string to GMP rational");
            }
            mpq_canonicalize(value);
            dd_set(mf->matrix[i][j - 1], value);
            /* note our matrix has one more column than Fukuda's */
        }

    dd_ErrorType err = dd_NoError;
    dd_rowset out = dd_ImplicitLinearityRows(mf, &err);

    if (err != dd_NoError) {
        rr_WriteErrorMessages(err);
        set_free(out);
        dd_FreeMatrix(mf);
        dd_clear(value);
        dd_free_global_constants();
        error("failed");
    }

    SEXP foo;
    PROTECT(foo = rr_set_fwrite(out));

    set_free(out);
    dd_FreeMatrix(mf);
    dd_clear(value);
    dd_free_global_constants();

    PutRNGstate();

    UNPROTECT(1);
    return foo;
}