示例#1
0
void TerrainBlock::_renderBlock( SceneRenderState *state )
{
   PROFILE_SCOPE( TerrainBlock_RenderBlock );

   // Prevent rendering shadows if feature is disabled
   if ( !mCastShadows && state->isShadowPass() ) 
      return;
	  
   MatrixF worldViewXfm = state->getWorldViewMatrix();
   worldViewXfm.mul( getRenderTransform() );

   MatrixF worldViewProjXfm = state->getProjectionMatrix();
   worldViewProjXfm.mul( worldViewXfm );

   const MatrixF &objectXfm = getRenderWorldTransform();

   Point3F objCamPos = state->getDiffuseCameraPosition();
   objectXfm.mulP( objCamPos );

   // Get the shadow material.
   if ( !mDefaultMatInst )
      mDefaultMatInst = TerrainCellMaterial::getShadowMat();

   // Make sure we have a base material.
   if ( !mBaseMaterial )
   {
      mBaseMaterial = new TerrainCellMaterial();
      mBaseMaterial->init( this, 0, false, false, true );
   }

   // Did the detail layers change?
   if ( mDetailsDirty )
   {   
      _updateMaterials();
      mDetailsDirty = false;
   }

   // If the layer texture has been cleared or is 
   // dirty then update it.
   if ( mLayerTex.isNull() || mLayerTexDirty )
      _updateLayerTexture();

   // If the layer texture is dirty or we lost the base
   // texture then regenerate it.
   if ( mLayerTexDirty || mBaseTex.isNull() )
   {
      _updateBaseTexture( false );
      mLayerTexDirty = false;
   }   

   static Vector<TerrCell*> renderCells;
   renderCells.clear();

   mCell->cullCells( state,
                     objCamPos,
                     &renderCells );

   RenderPassManager *renderPass = state->getRenderPass();

   MatrixF *riObjectToWorldXfm = renderPass->allocUniqueXform( getRenderTransform() );

   const bool isColorDrawPass = state->isDiffusePass() || state->isReflectPass();

   // This is here for shadows mostly... it allows the
   // proper shadow material to be generated.
   BaseMatInstance *defaultMatInst = state->getOverrideMaterial( mDefaultMatInst );

   // Only pass and use the light manager if this is not a shadow pass.
   LightManager *lm = NULL;
   if ( isColorDrawPass )
      lm = LIGHTMGR;

   for ( U32 i=0; i < renderCells.size(); i++ )
   {
      TerrCell *cell = renderCells[i];

      // Ok this cell is fit to render.
      TerrainRenderInst *inst = renderPass->allocInst<TerrainRenderInst>();

      // Setup lights for this cell.
      if ( lm )
      {
         SphereF bounds = cell->getSphereBounds();
         getRenderTransform().mulP( bounds.center );

         LightQuery query;
         query.init( bounds );
		   query.getLights( inst->lights, 8 );
      }

      GFXVertexBufferHandleBase vertBuff;
      GFXPrimitiveBufferHandle  primBuff;

      cell->getRenderPrimitive( &inst->prim, &vertBuff, &primBuff );

      inst->mat = defaultMatInst;
      inst->vertBuff = vertBuff.getPointer();

      if ( primBuff.isValid() )
      {
         // Use the cell's custom primitive buffer
         inst->primBuff = primBuff.getPointer();
      }
      else
      {
         // Use the standard primitive buffer for this cell
         inst->primBuff = mPrimBuffer.getPointer();
      }

      inst->objectToWorldXfm = riObjectToWorldXfm;

      // If we're not drawing to the shadow map then we need
      // to include the normal rendering materials. 
      if ( isColorDrawPass )
      {         
         const SphereF &bounds = cell->getSphereBounds();         

         F32 sqDist = ( bounds.center - objCamPos ).lenSquared();         

         F32 radiusSq = mSquared( ( mMaxDetailDistance + bounds.radius ) * smDetailScale );

         // If this cell is near enough to get detail textures then
         // use the full detail mapping material.  Else we use the
         // simple base only material.
         if ( !state->isReflectPass() && sqDist < radiusSq )
            inst->cellMat = cell->getMaterial();
         else if ( state->isReflectPass() )
            inst->cellMat = mBaseMaterial->getReflectMat();
         else
            inst->cellMat = mBaseMaterial;
      }

      inst->defaultKey = (U32)cell->getMaterials();

      // Submit it for rendering.
      renderPass->addInst( inst );
   }

   // Trigger the debug rendering.
   if (  state->isDiffusePass() && 
         !renderCells.empty() && 
         smDebugRender )
   {      
      // Store the render cells for later.
      mDebugCells = renderCells;

      ObjectRenderInst *ri = state->getRenderPass()->allocInst<ObjectRenderInst>();
      ri->renderDelegate.bind( this, &TerrainBlock::_renderDebug );
      ri->type = RenderPassManager::RIT_Editor;
      state->getRenderPass()->addInst( ri );
   }
}
void OcclusionVolume::buildSilhouette( const SceneCameraState& cameraState, Vector< Point3F >& outPoints )
{
   // Extract the silhouette of the polyhedron.  This works differently
   // depending on whether we project orthogonally or in perspective.

   TempAlloc< U32 > indices( mPolyhedron.getNumPoints() );
   U32 numPoints;

   if( cameraState.getFrustum().isOrtho() )
   {
      // Transform the view direction into object space.

      Point3F osViewDir;
      getWorldTransform().mulV( cameraState.getViewDirection(), &osViewDir );

      // And extract the silhouette.

      SilhouetteExtractorOrtho< PolyhedronType > extractor( mPolyhedron );
      numPoints = extractor.extractSilhouette( osViewDir, indices, indices.size );
   }
   else
   {
      // Create a transform to go from view space to object space.

      MatrixF camView( true );
      camView.scale( Point3F( 1.0f / getScale().x, 1.0f / getScale().y, 1.0f / getScale().z ) );
      camView.mul( getRenderWorldTransform() );
      camView.mul( cameraState.getViewWorldMatrix() );

      // Do a perspective-correct silhouette extraction.

      numPoints = mSilhouetteExtractor.extractSilhouette(
         camView,
         indices, indices.size );
   }

   // If we haven't yet, transform the polyhedron's points
   // to world space.

   if( mTransformDirty )
   {
      const U32 numPoints = mPolyhedron.getNumPoints();
      const PolyhedronType::PointType* points = getPolyhedron().getPoints();

      mWSPoints.setSize( numPoints );
      for( U32 i = 0; i < numPoints; ++ i )
      {
         Point3F p = points[ i ];
         p.convolve( getScale() );
         getTransform().mulP( p, &mWSPoints[ i ] );
      }

      mTransformDirty = false;
   }

   // Now store the points.

   outPoints.setSize( numPoints );
   for( U32 i = 0; i < numPoints; ++ i )
      outPoints[ i ] = mWSPoints[ indices[ i ] ];
}
示例#3
0
void TSStatic::prepRenderImage( SceneRenderState* state )
{
   if( !mShapeInstance )
      return;

   Point3F cameraOffset;
   getRenderTransform().getColumn(3,&cameraOffset);
   cameraOffset -= state->getDiffuseCameraPosition();
   F32 dist = cameraOffset.len();
   if (dist < 0.01f)
      dist = 0.01f;

   F32 invScale = (1.0f/getMax(getMax(mObjScale.x,mObjScale.y),mObjScale.z));   

   if ( mForceDetail == -1 )
      mShapeInstance->setDetailFromDistance( state, dist * invScale );
   else
      mShapeInstance->setCurrentDetail( mForceDetail );

   if ( mShapeInstance->getCurrentDetail() < 0 )
      return;

   GFXTransformSaver saver;
   
   // Set up our TS render state.
   TSRenderState rdata;
   rdata.setSceneState( state );
   rdata.setFadeOverride( 1.0f );
   rdata.setOriginSort( mUseOriginSort );

   // If we have submesh culling enabled then prepare
   // the object space frustum to pass to the shape.
   Frustum culler;
   if ( mMeshCulling )
   {
      culler = state->getFrustum();
      MatrixF xfm( true );
      xfm.scale( Point3F::One / getScale() );
      xfm.mul( getRenderWorldTransform() );
      xfm.mul( culler.getTransform() );
      culler.setTransform( xfm );
      rdata.setCuller( &culler );
   }

   // We might have some forward lit materials
   // so pass down a query to gather lights.
   LightQuery query;
   query.init( getWorldSphere() );
   rdata.setLightQuery( &query );

   MatrixF mat = getRenderTransform();
   mat.scale( mObjScale );
   GFX->setWorldMatrix( mat );

   mShapeInstance->animate();
   mShapeInstance->render( rdata );

   if ( mRenderNormalScalar > 0 )
   {
      ObjectRenderInst *ri = state->getRenderPass()->allocInst<ObjectRenderInst>();
      ri->renderDelegate.bind( this, &TSStatic::_renderNormals );
      ri->type = RenderPassManager::RIT_Editor;
      state->getRenderPass()->addInst( ri );
   }
}