示例#1
0
  Function explicitRK(Function& f, const MX& tf, int order, int ne) {
    casadi_assert_message(ne>=1, "Parameter ne (number of elements must be at least 1), but got "
                          << ne << ".");
    casadi_assert_message(order==4, "Only RK order 4 is supported now.");
    casadi_assert_message(f.getNumInputs()==DAE_NUM_IN && f.getNumOutputs()==DAE_NUM_OUT,
                          "Supplied function must adhere to dae scheme.");
    casadi_assert_message(f.output(DAE_ALG).isEmpty() && f.input(DAE_Z).isEmpty(),
                          "Supplied function cannot have algebraic states.");
    casadi_assert_message(f.output(DAE_QUAD).isEmpty(),
                          "Supplied function cannot have quadrature states.");

    MX X = MX::sym("X", f.input(DAE_X).sparsity());
    MX P = MX::sym("P", f.input(DAE_P).sparsity());
    MX X0 = X;
    MX t = 0;
    MX dt = tf/ne;

    std::vector<double> b(order);
    b[0]=1.0/6;b[1]=1.0/3;b[2]=1.0/3;b[3]=1.0/6;

    std::vector<double> c(order);
    c[0]=0;c[1]=1.0/2;c[2]=1.0/2;c[3]=1;

    std::vector< std::vector<double> > A(order-1);
    A[0].resize(1);A[0][0]=1.0/2;
    A[1].resize(2);A[1][0]=0;A[1][1]=1.0/2;
    A[2].resize(3);A[2][0]=0;A[2][1]=0;A[2][2]=1;

    std::vector<MX> k(order);

    for (int i=0;i<ne;++i) {
      for (int j=0;j<order;++j) {
        MX XL = 0;
        for (int jj=0;jj<j;++jj) {
          XL+=k.at(jj)*A.at(j-1).at(jj);
        }
        //std::cout << "help: " << A.at(j-1) << ", " << c.at(j) << std::endl;
        k[j] = dt*f.call(daeIn("x", X+XL, "p", P, "t", t+dt*c.at(j)))[DAE_ODE];
      }

      for (int j=0;j<order;++j) {
        X += b.at(j)*k.at(j);

      }
      t+= dt;
    }

    MXFunction ret(integratorIn("x0", X0, "p", P), integratorOut("xf", X));

    return ret;
  }
示例#2
0
  Function implicitRK(Function& f, const std::string& impl, const Dictionary& impl_options,
                      const MX& tf, int order, const std::string& scheme, int ne) {
    casadi_assert_message(ne>=1, "Parameter ne (number of elements must be at least 1), "
                          "but got " << ne << ".");
    casadi_assert_message(order==4, "Only RK order 4 is supported now.");
    casadi_assert_message(f.getNumInputs()==DAE_NUM_IN && f.getNumOutputs()==DAE_NUM_OUT,
                          "Supplied function must adhere to dae scheme.");
    casadi_assert_message(f.output(DAE_QUAD).isEmpty(),
                          "Supplied function cannot have quadrature states.");

    // Obtain collocation points
    std::vector<double> tau_root = collocationPoints(order, "legendre");

    // Retrieve collocation interpolating matrices
    std::vector < std::vector <double> > C;
    std::vector < double > D;
    collocationInterpolators(tau_root, C, D);

    // Retrieve problem dimensions
    int nx = f.input(DAE_X).size();
    int nz = f.input(DAE_Z).size();
    int np = f.input(DAE_P).size();

    //Variables for one finite element
    MX X = MX::sym("X", nx);
    MX P = MX::sym("P", np);
    MX V = MX::sym("V", order*(nx+nz)); // Unknowns

    MX X0 = X;

    // Components of the unknowns that correspond to states at collocation points
    std::vector<MX> Xc;Xc.reserve(order);
    Xc.push_back(X0);

    // Components of the unknowns that correspond to algebraic states at collocation points
    std::vector<MX> Zc;Zc.reserve(order);

    // Splitting the unknowns
    std::vector<int> splitPositions = range(0, order*nx, nx);
    if (nz>0) {
      std::vector<int> Zc_pos = range(order*nx, order*nx+(order+1)*nz, nz);
      splitPositions.insert(splitPositions.end(), Zc_pos.begin(), Zc_pos.end());
    } else {
      splitPositions.push_back(order*nx);
    }
    std::vector<MX> Vs = vertsplit(V, splitPositions);

    // Extracting unknowns from Z
    for (int i=0;i<order;++i) {
      Xc.push_back(X0+Vs[i]);
    }
    if (nz>0) {
      for (int i=0;i<order;++i) {
        Zc.push_back(Vs[order+i]);
      }
    }

    // Get the collocation Equations (that define V)
    std::vector<MX> V_eq;

    // Local start time
    MX t0_l=MX::sym("t0");
    MX h = MX::sym("h");

    for (int j=1;j<order+1;++j) {
      // Expression for the state derivative at the collocation point
      MX xp_j = 0;
      for (int r=0;r<order+1;++r) {
        xp_j+= C[j][r]*Xc[r];
      }
      // Append collocation equations & algebraic constraints
      std::vector<MX> f_out;
      MX t_l = t0_l+tau_root[j]*h;
      if (nz>0) {
        f_out = f.call(daeIn("t", t_l, "x", Xc[j], "p", P, "z", Zc[j-1]));
      } else {
        f_out = f.call(daeIn("t", t_l, "x", Xc[j], "p", P));
      }
      V_eq.push_back(h*f_out[DAE_ODE]-xp_j);
      V_eq.push_back(f_out[DAE_ALG]);

    }

    // Root-finding function, implicitly defines V as a function of X0 and P
    std::vector<MX> vfcn_inputs;
    vfcn_inputs.push_back(V);
    vfcn_inputs.push_back(X);
    vfcn_inputs.push_back(P);
    vfcn_inputs.push_back(t0_l);
    vfcn_inputs.push_back(h);

    Function vfcn = MXFunction(vfcn_inputs, vertcat(V_eq));
    vfcn.init();

    try {
      // Attempt to convert to SXFunction to decrease overhead
      vfcn = SXFunction(vfcn);
      vfcn.init();
    } catch(CasadiException & e) {
      //
    }

    // Create a implicit function instance to solve the system of equations
    ImplicitFunction ifcn(impl, vfcn, Function(), LinearSolver());
    ifcn.setOption(impl_options);
    ifcn.init();

    // Get an expression for the state at the end of the finite element
    std::vector<MX> ifcn_call_in(5);
    ifcn_call_in[0] = MX::zeros(V.sparsity());
    std::copy(vfcn_inputs.begin()+1, vfcn_inputs.end(), ifcn_call_in.begin()+1);
    std::vector<MX> ifcn_call_out = ifcn.call(ifcn_call_in, true);
    Vs = vertsplit(ifcn_call_out[0], splitPositions);

    MX XF = 0;
    for (int i=0;i<order+1;++i) {
      XF += D[i]*(i==0? X : X + Vs[i-1]);
    }


    // Get the discrete time dynamics
    ifcn_call_in.erase(ifcn_call_in.begin());
    MXFunction F = MXFunction(ifcn_call_in, XF);
    F.init();

    // Loop over all finite elements
    MX h_ = tf/ne;
    MX t0_ = 0;

    for (int i=0;i<ne;++i) {
      std::vector<MX> F_in;
      F_in.push_back(X);
      F_in.push_back(P);
      F_in.push_back(t0_);
      F_in.push_back(h_);
      t0_+= h_;
      std::vector<MX> F_out = F.call(F_in);
      X = F_out[0];
    }

    // Create a ruturn function with Integrator signature
    MXFunction ret = MXFunction(integratorIn("x0", X0, "p", P), integratorOut("xf", X));
    ret.init();

    return ret;

  }
void DirectSingleShootingInternal::init(){
  // Initialize the base classes
  OCPSolverInternal::init();

  // Create an integrator instance
  integratorCreator integrator_creator = getOption("integrator");
  integrator_ = integrator_creator(ffcn_,FX());
  if(hasSetOption("integrator_options")){
    integrator_.setOption(getOption("integrator_options"));
  }

  // Set t0 and tf
  integrator_.setOption("t0",0);
  integrator_.setOption("tf",tf_/nk_);
  integrator_.init();
  
  // Path constraints present?
  bool path_constraints = nh_>0;
  
  // Count the total number of NLP variables
  int NV = np_ + // global parameters
           nx_ + // initial state
           nu_*nk_; // local control
           
  // Declare variable vector for the NLP
  // The structure is as follows:
  // np x 1  (parameters)
  // ------
  // nx x 1  (states at time i=0)
  // ------
  // nu x 1  (controls in interval i=0)
  // .....
  // nx x 1  (controls in interval i=nk-1)
  
  MX V = msym("V",NV);
  int offset = 0;

  // Global parameters
  MX P = V[Slice(0,np_)];
  offset += np_;

  // Initial state
  MX X0 = V[Slice(offset,offset+nx_)];
  offset += nx_;
  
  // Control for each shooting interval
  vector<MX> U(nk_);
  for(int k=0; k<nk_; ++k){ // interior nodes
    U[k] = V[range(offset,offset+nu_)];
    offset += nu_;
  }
  
  // Make sure that the size of the variable vector is consistent with the number of variables that we have referenced
  casadi_assert(offset==NV);

  // Current state
  MX X = X0;

  // Objective
  MX nlp_j = 0;

  // Constraints
  vector<MX> nlp_g;
  nlp_g.reserve(nk_*(path_constraints ? 2 : 1));
  
  // For all shooting nodes
  for(int k=0; k<nk_; ++k){
    // Integrate
    vector<MX> int_out = integrator_.call(integratorIn("x0",X,"p",vertcat(P,U[k])));

    // Store expression for state trajectory
    X = int_out[INTEGRATOR_XF];
    
    // Add constraints on the state
    nlp_g.push_back(X);

    // Add path constraints
    if(path_constraints){
      vector<MX> cfcn_out = cfcn_.call(daeIn("x",X,"p",U[k])); // TODO: Change signature of cfcn_: remove algebraic variable, add control
      nlp_g.push_back(cfcn_out.at(0));
    }
  }

  // Terminal constraints
  G_ = MXFunction(V,vertcat(nlp_g));
  G_.setOption("name","nlp_g");
  G_.init();
  
  // Objective function
  MX jk = mfcn_.call(mayerIn("x",X,"p",P)).at(0);
  nlp_j += jk;
  F_ = MXFunction(V,nlp_j);
  F_.setOption("name","nlp_j");
  
  // Get the NLP creator function
  NLPSolverCreator nlp_solver_creator = getOption("nlp_solver");
  
  // Allocate an NLP solver
  nlp_solver_ = nlp_solver_creator(F_,G_,FX(),FX());
  
  // Pass options
  if(hasSetOption("nlp_solver_options")){
    const Dictionary& nlp_solver_options = getOption("nlp_solver_options");
    nlp_solver_.setOption(nlp_solver_options);
  }
  
  // Initialize the solver
  nlp_solver_.init();
}