/**
   Add two ECC points
   @param P        The point to add
   @param Q        The point to add
   @param R        [out] The destination of the double
   @param modulus  The modulus of the field the ECC curve is in
   @param mp       The "b" value from montgomery_setup()
   @return CRYPT_OK on success
*/
int ltc_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp)
{
   void  *t1, *t2, *x, *y, *z;
   int    err;

   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(Q       != NULL);
   LTC_ARGCHK(R       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(mp      != NULL);

   if ((err = mp_init_multi(&t1, &t2, &x, &y, &z, NULL)) != CRYPT_OK) {
      return err;
   }
   
   /* should we dbl instead? */
   if ((err = mp_sub(modulus, Q->y, t1)) != CRYPT_OK)                          { goto done; }

   if ( (mp_cmp(P->x, Q->x) == LTC_MP_EQ) && 
        (Q->z != NULL && mp_cmp(P->z, Q->z) == LTC_MP_EQ) &&
        (mp_cmp(P->y, Q->y) == LTC_MP_EQ || mp_cmp(P->y, t1) == LTC_MP_EQ)) {
        mp_clear_multi(t1, t2, x, y, z, NULL);
        return ltc_ecc_projective_dbl_point(P, R, modulus, mp);
   }

   if ((err = mp_copy(P->x, x)) != CRYPT_OK)                                   { goto done; }
   if ((err = mp_copy(P->y, y)) != CRYPT_OK)                                   { goto done; }
   if ((err = mp_copy(P->z, z)) != CRYPT_OK)                                   { goto done; }

   /* if Z is one then these are no-operations */
   if (Q->z != NULL) {
      /* T1 = Z' * Z' */
      if ((err = mp_sqr(Q->z, t1)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)           { goto done; }
      /* X = X * T1 */
      if ((err = mp_mul(t1, x, x)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)            { goto done; }
      /* T1 = Z' * T1 */
      if ((err = mp_mul(Q->z, t1, t1)) != CRYPT_OK)                            { goto done; }
      if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)           { goto done; }
      /* Y = Y * T1 */
      if ((err = mp_mul(t1, y, y)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_montgomery_reduce(y, modulus, mp)) != CRYPT_OK)            { goto done; }
   }

   /* T1 = Z*Z */
   if ((err = mp_sqr(z, t1)) != CRYPT_OK)                                      { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* T2 = X' * T1 */
   if ((err = mp_mul(Q->x, t1, t2)) != CRYPT_OK)                               { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* T1 = Z * T1 */
   if ((err = mp_mul(z, t1, t1)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* T1 = Y' * T1 */
   if ((err = mp_mul(Q->y, t1, t1)) != CRYPT_OK)                               { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }

   /* Y = Y - T1 */
   if ((err = mp_sub(y, t1, y)) != CRYPT_OK)                                   { goto done; }
   if (mp_cmp_d(y, 0) == LTC_MP_LT) {
      if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
   }
   /* T1 = 2T1 */
   if ((err = mp_add(t1, t1, t1)) != CRYPT_OK)                                 { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                         { goto done; }
   }
   /* T1 = Y + T1 */
   if ((err = mp_add(t1, y, t1)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                         { goto done; }
   }
   /* X = X - T2 */
   if ((err = mp_sub(x, t2, x)) != CRYPT_OK)                                   { goto done; }
   if (mp_cmp_d(x, 0) == LTC_MP_LT) {
      if ((err = mp_add(x, modulus, x)) != CRYPT_OK)                           { goto done; }
   }
   /* T2 = 2T2 */
   if ((err = mp_add(t2, t2, t2)) != CRYPT_OK)                                 { goto done; }
   if (mp_cmp(t2, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
   }
   /* T2 = X + T2 */
   if ((err = mp_add(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp(t2, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
   }

   /* if Z' != 1 */
   if (Q->z != NULL) {
      /* Z = Z * Z' */
      if ((err = mp_mul(z, Q->z, z)) != CRYPT_OK)                              { goto done; }
      if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK)            { goto done; }
   }

   /* Z = Z * X */
   if ((err = mp_mul(z, x, z)) != CRYPT_OK)                                    { goto done; }
   if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK)               { goto done; }

   /* T1 = T1 * X  */
   if ((err = mp_mul(t1, x, t1)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* X = X * X */
   if ((err = mp_sqr(x, x)) != CRYPT_OK)                                       { goto done; }
   if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* T2 = T2 * x */
   if ((err = mp_mul(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* T1 = T1 * X  */
   if ((err = mp_mul(t1, x, t1)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
 
   /* X = Y*Y */
   if ((err = mp_sqr(y, x)) != CRYPT_OK)                                       { goto done; }
   if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* X = X - T2 */
   if ((err = mp_sub(x, t2, x)) != CRYPT_OK)                                   { goto done; }
   if (mp_cmp_d(x, 0) == LTC_MP_LT) {
      if ((err = mp_add(x, modulus, x)) != CRYPT_OK)                           { goto done; }
   }

   /* T2 = T2 - X */
   if ((err = mp_sub(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
   } 
   /* T2 = T2 - X */
   if ((err = mp_sub(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
   }
   /* T2 = T2 * Y */
   if ((err = mp_mul(t2, y, t2)) != CRYPT_OK)                                  { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
   /* Y = T2 - T1 */
   if ((err = mp_sub(t2, t1, y)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp_d(y, 0) == LTC_MP_LT) {
      if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
   }
   /* Y = Y/2 */
   if (mp_isodd(y)) {
      if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
   }
   if ((err = mp_div_2(y, y)) != CRYPT_OK)                                     { goto done; }

   if ((err = mp_copy(x, R->x)) != CRYPT_OK)                                   { goto done; }
   if ((err = mp_copy(y, R->y)) != CRYPT_OK)                                   { goto done; }
   if ((err = mp_copy(z, R->z)) != CRYPT_OK)                                   { goto done; }

   err = CRYPT_OK;
done:
   mp_clear_multi(t1, t2, x, y, z, NULL);
   return err;
}
int katja_make_key(prng_state *prng, int wprng, int size, katja_key *key)
{
   void *p, *q, *tmp1, *tmp2;
   int    err;
  
   LTC_ARGCHK(key != NULL);
   LTC_ARGCHK(ltc_mp.name != NULL);

   if ((size < (MIN_KAT_SIZE/8)) || (size > (MAX_KAT_SIZE/8))) {
      return CRYPT_INVALID_KEYSIZE;
   }

   if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
      return err;
   }

   if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, NULL)) != CRYPT_OK) {
      return err;
   }

   /* divide size by three  */
   size   = (((size << 3) / 3) + 7) >> 3;

   /* make prime "q" (we negate size to make q == 3 mod 4) */
   if ((err = rand_prime(q, -size, prng, wprng)) != CRYPT_OK)      { goto done; }
   if ((err = mp_sub_d(q, 1, tmp1)) != CRYPT_OK)                   { goto done; }

   /* make prime "p" */
   do {
      if ((err = rand_prime(p, size+1, prng, wprng)) != CRYPT_OK)  { goto done; }
      if ((err = mp_gcd(p, tmp1, tmp2)) != CRYPT_OK)               { goto done; }
   } while (mp_cmp_d(tmp2, 1) != LTC_MP_EQ);

   /* make key */
   if ((err = mp_init_multi(&key->d, &key->N, &key->dQ, &key->dP,
                     &key->qP, &key->p, &key->q, &key->pq, NULL)) != CRYPT_OK) {
      goto error;
   }

   /* n=p^2q and 1/n mod pq */
   if ((err = mp_copy( p,  key->p)) != CRYPT_OK)                       { goto error2; }
   if ((err = mp_copy( q,  key->q)) != CRYPT_OK)                       { goto error2; }
   if ((err = mp_mul(key->p, key->q, key->pq)) != CRYPT_OK)            { goto error2; } /* tmp1 = pq  */
   if ((err = mp_mul(key->pq, key->p, key->N)) != CRYPT_OK)            { goto error2; } /* N = p^2q   */  
   if ((err = mp_sub_d( p, 1,  tmp1)) != CRYPT_OK)                     { goto error2; } /* tmp1 = q-1 */
   if ((err = mp_sub_d( q, 1,  tmp2)) != CRYPT_OK)                     { goto error2; } /* tmp2 = p-1 */
   if ((err = mp_lcm(tmp1, tmp2, key->d)) != CRYPT_OK)                 { goto error2; } /* tmp1 = lcd(p-1,q-1) */
   if ((err = mp_invmod( key->N,  key->d,  key->d)) != CRYPT_OK)       { goto error2; } /* key->d = 1/N mod pq */

   /* optimize for CRT now */
   /* find d mod q-1 and d mod p-1 */
   if ((err = mp_mod( key->d,  tmp1,  key->dP)) != CRYPT_OK)           { goto error2; } /* dP = d mod p-1 */
   if ((err = mp_mod( key->d,  tmp2,  key->dQ)) != CRYPT_OK)           { goto error2; } /* dQ = d mod q-1 */
   if ((err = mp_invmod( q,  p,  key->qP)) != CRYPT_OK)                { goto error2; } /* qP = 1/q mod p */

   /* set key type (in this case it's CRT optimized) */
   key->type = PK_PRIVATE;

   /* return ok and free temps */
   err       = CRYPT_OK;
   goto done;
error2:
   mp_clear_multi( key->d,  key->N,  key->dQ,  key->dP,  key->qP,  key->p,  key->q, key->pq, NULL);
error:
done:
   mp_clear_multi( tmp2,  tmp1,  p,  q, NULL);
   return err;
}
示例#3
0
文件: dsa.c 项目: agnov8/wolfssl
int wc_DsaSign(const byte* digest, byte* out, DsaKey* key, WC_RNG* rng)
{
    mp_int k, kInv, r, s, H;
    int    ret, sz;
    byte   buffer[DSA_HALF_SIZE];

    sz = min((int)sizeof(buffer), mp_unsigned_bin_size(&key->q));

    /* generate k */
    ret = wc_RNG_GenerateBlock(rng, buffer, sz);
    if (ret != 0)
        return ret;

    buffer[0] |= 0x0C;

    if (mp_init_multi(&k, &kInv, &r, &s, &H, 0) != MP_OKAY)
        return MP_INIT_E;

    if (mp_read_unsigned_bin(&k, buffer, sz) != MP_OKAY)
        ret = MP_READ_E;

    if (ret == 0 && mp_cmp_d(&k, 1) != MP_GT)
        ret = MP_CMP_E;

    /* inverse k mod q */
    if (ret == 0 && mp_invmod(&k, &key->q, &kInv) != MP_OKAY)
        ret = MP_INVMOD_E;

    /* generate r, r = (g exp k mod p) mod q */
    if (ret == 0 && mp_exptmod(&key->g, &k, &key->p, &r) != MP_OKAY)
        ret = MP_EXPTMOD_E;

    if (ret == 0 && mp_mod(&r, &key->q, &r) != MP_OKAY)
        ret = MP_MOD_E;

    /* generate H from sha digest */
    if (ret == 0 && mp_read_unsigned_bin(&H, digest,SHA_DIGEST_SIZE) != MP_OKAY)
        ret = MP_READ_E;

    /* generate s, s = (kInv * (H + x*r)) % q */
    if (ret == 0 && mp_mul(&key->x, &r, &s) != MP_OKAY)
        ret = MP_MUL_E;

    if (ret == 0 && mp_add(&s, &H, &s) != MP_OKAY)
        ret = MP_ADD_E;

    if (ret == 0 && mp_mulmod(&s, &kInv, &key->q, &s) != MP_OKAY)
        ret = MP_MULMOD_E;

    /* write out */
    if (ret == 0)  {
        int rSz = mp_unsigned_bin_size(&r);
        int sSz = mp_unsigned_bin_size(&s);

        if (rSz == DSA_HALF_SIZE - 1) {
            out[0] = 0;
            out++;
        }

        if (mp_to_unsigned_bin(&r, out) != MP_OKAY)
            ret = MP_TO_E;
        else {
            if (sSz == DSA_HALF_SIZE - 1) {
                out[rSz] = 0;
                out++;
            }    
            ret = mp_to_unsigned_bin(&s, out + rSz);
        }
    }

    mp_clear(&H);
    mp_clear(&s);
    mp_clear(&r);
    mp_clear(&kInv);
    mp_clear(&k);

    return ret;
}
示例#4
0
int main(void)
{
    int n, tmp;
    mp_int a, b, c, d, e;
    clock_t t1;
    char buf[4096];

    mp_init(&a);
    mp_init(&b);
    mp_init(&c);
    mp_init(&d);
    mp_init(&e);


    /* initial (2^n - 1)^2 testing, makes sure the comba multiplier works [it has the new carry code] */
    /*
       mp_set(&a, 1);
       for (n = 1; n < 8192; n++) {
           mp_mul(&a, &a, &c);
           printf("mul\n");
           mp_to64(&a, buf);
           printf("%s\n%s\n", buf, buf);
           mp_to64(&c, buf);
           printf("%s\n", buf);

           mp_add_d(&a, 1, &a);
           mp_mul_2(&a, &a);
           mp_sub_d(&a, 1, &a);
       }
    */

    rng = fopen("/dev/urandom", "rb");
    if (rng == NULL) {
        rng = fopen("/dev/random", "rb");
        if (rng == NULL) {
            fprintf(stderr, "\nWarning:  stdin used as random source\n\n");
            rng = stdin;
        }
    }

    t1 = clock();
    for (;;) {
#if 0
        if (clock() - t1 > CLOCKS_PER_SEC) {
            sleep(2);
            t1 = clock();
        }
#endif
        n = fgetc(rng) % 16;
        if (n == 0) {
            /* add tests */
            rand_num(&a);
            rand_num(&b);
            mp_add(&a, &b, &c);
            printf("add\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
            mp_to64(&c, buf);
            printf("%s\n", buf);
        } else if (n == 1) {
            /* sub tests */
            rand_num(&a);
            rand_num(&b);
            mp_sub(&a, &b, &c);
            printf("sub\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
            mp_to64(&c, buf);
            printf("%s\n", buf);
        } else if (n == 2) {
            /* mul tests */
            rand_num(&a);
            rand_num(&b);
            mp_mul(&a, &b, &c);
            printf("mul\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
            mp_to64(&c, buf);
            printf("%s\n", buf);
        } else if (n == 3) {
            /* div tests */
            rand_num(&a);
            rand_num(&b);
            mp_div(&a, &b, &c, &d);
            printf("div\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
            mp_to64(&c, buf);
            printf("%s\n", buf);
            mp_to64(&d, buf);
            printf("%s\n", buf);
        } else if (n == 4) {
            /* sqr tests */
            rand_num(&a);
            mp_sqr(&a, &b);
            printf("sqr\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
        } else if (n == 5) {
            /* mul_2d test */
            rand_num(&a);
            mp_copy(&a, &b);
            n = fgetc(rng) & 63;
            mp_mul_2d(&b, n, &b);
            mp_to64(&a, buf);
            printf("mul2d\n");
            printf("%s\n", buf);
            printf("%d\n", n);
            mp_to64(&b, buf);
            printf("%s\n", buf);
        } else if (n == 6) {
            /* div_2d test */
            rand_num(&a);
            mp_copy(&a, &b);
            n = fgetc(rng) & 63;
            mp_div_2d(&b, n, &b, NULL);
            mp_to64(&a, buf);
            printf("div2d\n");
            printf("%s\n", buf);
            printf("%d\n", n);
            mp_to64(&b, buf);
            printf("%s\n", buf);
        } else if (n == 7) {
            /* gcd test */
            rand_num(&a);
            rand_num(&b);
            a.sign = MP_ZPOS;
            b.sign = MP_ZPOS;
            mp_gcd(&a, &b, &c);
            printf("gcd\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
            mp_to64(&c, buf);
            printf("%s\n", buf);
        } else if (n == 8) {
            /* lcm test */
            rand_num(&a);
            rand_num(&b);
            a.sign = MP_ZPOS;
            b.sign = MP_ZPOS;
            mp_lcm(&a, &b, &c);
            printf("lcm\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
            mp_to64(&c, buf);
            printf("%s\n", buf);
        } else if (n == 9) {
            /* exptmod test */
            rand_num2(&a);
            rand_num2(&b);
            rand_num2(&c);
            a.sign = b.sign = c.sign = 0;
            c.dp[0] |= 1;
//      if (c.used <= 4) continue;
//      if (mp_cmp(&a, &c) != MP_LT) continue;
//      if (mp_cmp(&b, &c) != MP_LT) continue;
            mp_exptmod(&a, &b, &c, &d);
            printf("expt\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
            mp_to64(&c, buf);
            printf("%s\n", buf);
            mp_to64(&d, buf);
            printf("%s\n", buf);
        } else if (n == 10) {
            /* invmod test */
            rand_num2(&a);
            rand_num2(&b);
            b.dp[0] |= 1;
            b.sign = MP_ZPOS;
            a.sign = MP_ZPOS;
            mp_gcd(&a, &b, &c);
            if (mp_cmp_d(&c, 1) != 0) continue;
            if (mp_cmp_d(&b, 1) == 0) continue;
            mp_invmod(&a, &b, &c);
            printf("invmod\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
            mp_to64(&c, buf);
            printf("%s\n", buf);
        } else if (n == 11) {
            rand_num(&a);
            mp_mul_2(&a, &a);
            mp_div_2(&a, &b);
            printf("div2\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
        } else if (n == 12) {
            rand_num(&a);
            mp_mul_2(&a, &b);
            printf("mul2\n");
            mp_to64(&a, buf);
            printf("%s\n", buf);
            mp_to64(&b, buf);
            printf("%s\n", buf);
        } else if (n == 13) {
            rand_num(&a);
            tmp = abs(rand()) & THE_MASK;
            mp_add_d(&a, tmp, &b);
            printf("add_d\n");
            mp_to64(&a, buf);
            printf("%s\n%d\n", buf, tmp);
            mp_to64(&b, buf);
            printf("%s\n", buf);
        } else if (n == 14) {
            rand_num(&a);
            tmp = abs(rand()) & THE_MASK;
            mp_sub_d(&a, tmp, &b);
            printf("sub_d\n");
            mp_to64(&a, buf);
            printf("%s\n%d\n", buf, tmp);
            mp_to64(&b, buf);
            printf("%s\n", buf);
        } else if (n == 15) {
            rand_num(&a);
            tmp = abs(rand()) & THE_MASK;
            mp_mul_d(&a, tmp, &b);
            printf("mul_d\n");
            mp_to64(&a, buf);
            printf("%s\n%d\n", buf, tmp);
            mp_to64(&b, buf);
            printf("%s\n", buf);
        }
    }
    fclose(rng);
    return 0;
}
示例#5
0
int main(int argc, char *argv[])
{
  mp_int   a;
  mp_digit np = prime_tab_size; /* from mpprime.h */
  int      res = 0;

  g_prog = argv[0];

  if(argc < 2) {
    fprintf(stderr, "Usage: %s <a>, where <a> is a decimal integer\n"
	    "Use '0x' prefix for a hexadecimal value\n", g_prog);
    return 1;
  }

  /* Read number of tests from environment, if present */
  {
    char *tmp;

    if((tmp = getenv("RM_TESTS")) != NULL) {
      if((g_tests = atoi(tmp)) <= 0)
	g_tests = RM_TESTS;
    }
  }

  mp_init(&a);
  if(argv[1][0] == '0' && argv[1][1] == 'x')
    mp_read_radix(&a, argv[1] + 2, 16);
  else
    mp_read_radix(&a, argv[1], 10);

  if(mp_cmp_d(&a, MINIMUM) <= 0) {
    fprintf(stderr, "%s: please use a value greater than %d\n", 
	    g_prog, MINIMUM);
    mp_clear(&a);
    return 1;
  }

  /* Test for divisibility by small primes */
  if(mpp_divis_primes(&a, &np) != MP_NO) {
    printf("Not prime (divisible by small prime %d)\n", np);
    res = 2;
    goto CLEANUP;
  }

  /* Test with Fermat's test, using 2 as a witness */
  if(mpp_fermat(&a, 2) != MP_YES) {
    printf("Not prime (failed Fermat test)\n");
    res = 2;
    goto CLEANUP;
  }
 
  /* Test with Rabin-Miller probabilistic test */
  if(mpp_pprime(&a, g_tests) == MP_NO) {
      printf("Not prime (failed pseudoprime test)\n");
      res = 2;
      goto CLEANUP;
  }

  printf("Probably prime, 1 in 4^%d chance of false positive\n", g_tests);

CLEANUP:
  mp_clear(&a);
  
  return res;

}
示例#6
0
/**
   Create an RSA key
   @param prng     An active PRNG state
   @param wprng    The index of the PRNG desired
   @param size     The size of the modulus (key size) desired (octets)
   @param e        The "e" value (public key).  e==65537 is a good choice
   @param key      [out] Destination of a newly created private key pair
   @return CRYPT_OK if successful, upon error all allocated ram is freed
*/
int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key)
{
    void *p, *q, *tmp1, *tmp2, *tmp3;
    int    err;

    LTC_ARGCHK(ltc_mp.name != NULL);
    LTC_ARGCHK(key         != NULL);

    if ((size < (MIN_RSA_SIZE/8)) || (size > (MAX_RSA_SIZE/8))) {
        return CRYPT_INVALID_KEYSIZE;
    }

    if ((e < 3) || ((e & 1) == 0)) {
        return CRYPT_INVALID_ARG;
    }

    if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
        return err;
    }

    if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != CRYPT_OK) {
        return err;
    }

    /* make primes p and q (optimization provided by Wayne Scott) */
    if ((err = mp_set_int(tmp3, e)) != CRYPT_OK)                      {
        goto errkey;    /* tmp3 = e */
    }

    /* make prime "p" */
    do {
        if ((err = rand_prime( p, size/2, prng, wprng)) != CRYPT_OK)  {
            goto errkey;
        }
        if ((err = mp_sub_d( p, 1,  tmp1)) != CRYPT_OK)               {
            goto errkey;    /* tmp1 = p-1 */
        }
        if ((err = mp_gcd( tmp1,  tmp3,  tmp2)) != CRYPT_OK)          {
            goto errkey;    /* tmp2 = gcd(p-1, e) */
        }
    } while (mp_cmp_d( tmp2, 1) != 0);                                                  /* while e divides p-1 */

    /* make prime "q" */
    do {
        if ((err = rand_prime( q, size/2, prng, wprng)) != CRYPT_OK)  {
            goto errkey;
        }
        if ((err = mp_sub_d( q, 1,  tmp1)) != CRYPT_OK)               {
            goto errkey;    /* tmp1 = q-1 */
        }
        if ((err = mp_gcd( tmp1,  tmp3,  tmp2)) != CRYPT_OK)          {
            goto errkey;    /* tmp2 = gcd(q-1, e) */
        }
    } while (mp_cmp_d( tmp2, 1) != 0);                                                 /* while e divides q-1 */

    /* tmp1 = lcm(p-1, q-1) */
    if ((err = mp_sub_d( p, 1,  tmp2)) != CRYPT_OK)                   {
        goto errkey;    /* tmp2 = p-1 */
    }
    /* tmp1 = q-1 (previous do/while loop) */
    if ((err = mp_lcm( tmp1,  tmp2,  tmp1)) != CRYPT_OK)              {
        goto errkey;    /* tmp1 = lcm(p-1, q-1) */
    }

    /* make key */
    if ((err = mp_init_multi(&key->e, &key->d, &key->N, &key->dQ, &key->dP, &key->qP, &key->p, &key->q, NULL)) != CRYPT_OK) {
        goto errkey;
    }

    if ((err = mp_set_int( key->e, e)) != CRYPT_OK)                     {
        goto errkey;    /* key->e =  e */
    }
    if ((err = mp_invmod( key->e,  tmp1,  key->d)) != CRYPT_OK)         {
        goto errkey;    /* key->d = 1/e mod lcm(p-1,q-1) */
    }
    if ((err = mp_mul( p,  q,  key->N)) != CRYPT_OK)                    {
        goto errkey;    /* key->N = pq */
    }

    /* optimize for CRT now */
    /* find d mod q-1 and d mod p-1 */
    if ((err = mp_sub_d( p, 1,  tmp1)) != CRYPT_OK)                     {
        goto errkey;    /* tmp1 = q-1 */
    }
    if ((err = mp_sub_d( q, 1,  tmp2)) != CRYPT_OK)                     {
        goto errkey;    /* tmp2 = p-1 */
    }
    if ((err = mp_mod( key->d,  tmp1,  key->dP)) != CRYPT_OK)           {
        goto errkey;    /* dP = d mod p-1 */
    }
    if ((err = mp_mod( key->d,  tmp2,  key->dQ)) != CRYPT_OK)           {
        goto errkey;    /* dQ = d mod q-1 */
    }
    if ((err = mp_invmod( q,  p,  key->qP)) != CRYPT_OK)                {
        goto errkey;    /* qP = 1/q mod p */
    }

    if ((err = mp_copy( p,  key->p)) != CRYPT_OK)                       {
        goto errkey;
    }
    if ((err = mp_copy( q,  key->q)) != CRYPT_OK)                       {
        goto errkey;
    }

    /* set key type (in this case it's CRT optimized) */
    key->type = PK_PRIVATE;

    /* return ok and free temps */
    err       = CRYPT_OK;
    goto cleanup;
errkey:
    mp_clear_multi(key->d, key->e, key->N, key->dQ, key->dP, key->qP, key->p, key->q, NULL);
cleanup:
    mp_clear_multi(tmp3, tmp2, tmp1, p, q, NULL);
    return err;
}
示例#7
0
/** 
   Create an RSA key
   @param prng     An active PRNG state
   @param wprng    The index of the PRNG desired
   @param size     The size of the modulus (key size) desired (octets)
   @param e        The "e" value (public key).  e==65537 is a good choice
   @param key      [out] Destination of a newly created private key pair
   @return CRYPT_OK if successful, upon error all allocated ram is freed
*/
int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key)
{
   mp_int p, q, tmp1, tmp2, tmp3;
   int    err;

   LTC_ARGCHK(key != NULL);

   if ((size < (MIN_RSA_SIZE/8)) || (size > (MAX_RSA_SIZE/8))) {
      return CRYPT_INVALID_KEYSIZE;
   }

   if ((e < 3) || ((e & 1) == 0)) {
      return CRYPT_INVALID_ARG;
   }

   if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
      return err;
   }

   if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != MP_OKAY) {
      return mpi_to_ltc_error(err);
   }

   /* make primes p and q (optimization provided by Wayne Scott) */
   if ((err = mp_set_int(&tmp3, e)) != MP_OKAY) { goto error; }            /* tmp3 = e */

   /* make prime "p" */
   do {
       if ((err = rand_prime(&p, size*4, prng, wprng)) != CRYPT_OK) { goto done; }
       if ((err = mp_sub_d(&p, 1, &tmp1)) != MP_OKAY)               { goto error; }  /* tmp1 = p-1 */
       if ((err = mp_gcd(&tmp1, &tmp3, &tmp2)) != MP_OKAY)          { goto error; }  /* tmp2 = gcd(p-1, e) */
   } while (mp_cmp_d(&tmp2, 1) != 0);                                                /* while e divides p-1 */

   /* make prime "q" */
   do {
       if ((err = rand_prime(&q, size*4, prng, wprng)) != CRYPT_OK) { goto done; }
       if ((err = mp_sub_d(&q, 1, &tmp1)) != MP_OKAY)               { goto error; } /* tmp1 = q-1 */
       if ((err = mp_gcd(&tmp1, &tmp3, &tmp2)) != MP_OKAY)          { goto error; } /* tmp2 = gcd(q-1, e) */
   } while (mp_cmp_d(&tmp2, 1) != 0);                                               /* while e divides q-1 */

   /* tmp1 = lcm(p-1, q-1) */
   if ((err = mp_sub_d(&p, 1, &tmp2)) != MP_OKAY)                  { goto error; } /* tmp2 = p-1 */
                                                                   /* tmp1 = q-1 (previous do/while loop) */
   if ((err = mp_lcm(&tmp1, &tmp2, &tmp1)) != MP_OKAY)             { goto error; } /* tmp1 = lcm(p-1, q-1) */

   /* make key */
   if ((err = mp_init_multi(&key->e, &key->d, &key->N, &key->dQ, &key->dP,
                     &key->qP, &key->p, &key->q, NULL)) != MP_OKAY) {
      goto error;
   }

   if ((err = mp_set_int(&key->e, e)) != MP_OKAY)                     { goto error2; } /* key->e =  e */
   if ((err = mp_invmod(&key->e, &tmp1, &key->d)) != MP_OKAY)         { goto error2; } /* key->d = 1/e mod lcm(p-1,q-1) */
   if ((err = mp_mul(&p, &q, &key->N)) != MP_OKAY)                    { goto error2; } /* key->N = pq */

   /* optimize for CRT now */
   /* find d mod q-1 and d mod p-1 */
   if ((err = mp_sub_d(&p, 1, &tmp1)) != MP_OKAY)                     { goto error2; } /* tmp1 = q-1 */
   if ((err = mp_sub_d(&q, 1, &tmp2)) != MP_OKAY)                     { goto error2; } /* tmp2 = p-1 */
   if ((err = mp_mod(&key->d, &tmp1, &key->dP)) != MP_OKAY)           { goto error2; } /* dP = d mod p-1 */
   if ((err = mp_mod(&key->d, &tmp2, &key->dQ)) != MP_OKAY)           { goto error2; } /* dQ = d mod q-1 */
   if ((err = mp_invmod(&q, &p, &key->qP)) != MP_OKAY)                { goto error2; } /* qP = 1/q mod p */

   if ((err = mp_copy(&p, &key->p)) != MP_OKAY)                       { goto error2; }
   if ((err = mp_copy(&q, &key->q)) != MP_OKAY)                       { goto error2; }

   /* shrink ram required  */
   if ((err = mp_shrink(&key->e)) != MP_OKAY)                         { goto error2; }
   if ((err = mp_shrink(&key->d)) != MP_OKAY)                         { goto error2; }
   if ((err = mp_shrink(&key->N)) != MP_OKAY)                         { goto error2; }
   if ((err = mp_shrink(&key->dQ)) != MP_OKAY)                        { goto error2; }
   if ((err = mp_shrink(&key->dP)) != MP_OKAY)                        { goto error2; }
   if ((err = mp_shrink(&key->qP)) != MP_OKAY)                        { goto error2; }
   if ((err = mp_shrink(&key->p)) != MP_OKAY)                         { goto error2; }
   if ((err = mp_shrink(&key->q)) != MP_OKAY)                         { goto error2; }

   /* set key type (in this case it's CRT optimized) */
   key->type = PK_PRIVATE;

   /* return ok and free temps */
   err       = CRYPT_OK;
   goto done;
error2:
   mp_clear_multi(&key->d, &key->e, &key->N, &key->dQ, &key->dP,
                  &key->qP, &key->p, &key->q, NULL);
error:
   err = mpi_to_ltc_error(err);
done:
   mp_clear_multi(&tmp3, &tmp2, &tmp1, &p, &q, NULL);
   return err;
}
示例#8
0
/* makes a prime of at least k bits */
int
pprime (int k, int li, mp_int * p, mp_int * q)
{
  mp_int  a, b, c, n, x, y, z, v;
  int     res, ii;
  static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };

  /* single digit ? */
  if (k <= (int) DIGIT_BIT) {
    mp_set (p, prime_digit ());
    return MP_OKAY;
  }

  if ((res = mp_init (&c)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&v)) != MP_OKAY) {
    goto LBL_C;
  }

  /* product of first 50 primes */
  if ((res =
       mp_read_radix (&v,
		      "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
		      10)) != MP_OKAY) {
    goto LBL_V;
  }

  if ((res = mp_init (&a)) != MP_OKAY) {
    goto LBL_V;
  }

  /* set the prime */
  mp_set (&a, prime_digit ());

  if ((res = mp_init (&b)) != MP_OKAY) {
    goto LBL_A;
  }

  if ((res = mp_init (&n)) != MP_OKAY) {
    goto LBL_B;
  }

  if ((res = mp_init (&x)) != MP_OKAY) {
    goto LBL_N;
  }

  if ((res = mp_init (&y)) != MP_OKAY) {
    goto LBL_X;
  }

  if ((res = mp_init (&z)) != MP_OKAY) {
    goto LBL_Y;
  }

  /* now loop making the single digit */
  while (mp_count_bits (&a) < k) {
    fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
    fflush (stderr);
  top:
    mp_set (&b, prime_digit ());

    /* now compute z = a * b * 2 */
    if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) {	/* z = a * b */
      goto LBL_Z;
    }

    if ((res = mp_copy (&z, &c)) != MP_OKAY) {	/* c = a * b */
      goto LBL_Z;
    }

    if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) {	/* z = 2 * a * b */
      goto LBL_Z;
    }

    /* n = z + 1 */
    if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) {	/* n = z + 1 */
      goto LBL_Z;
    }

    /* check (n, v) == 1 */
    if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) {	/* y = (n, v) */
      goto LBL_Z;
    }

    if (mp_cmp_d (&y, 1) != MP_EQ)
      goto top;

    /* now try base x=bases[ii]  */
    for (ii = 0; ii < li; ii++) {
      mp_set (&x, bases[ii]);

      /* compute x^a mod n */
      if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) {	/* y = x^a mod n */
	goto LBL_Z;
      }

      /* if y == 1 loop */
      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* now x^2a mod n */
      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2a mod n */
	goto LBL_Z;
      }

      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* compute x^b mod n */
      if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) {	/* y = x^b mod n */
	goto LBL_Z;
      }

      /* if y == 1 loop */
      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* now x^2b mod n */
      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2b mod n */
	goto LBL_Z;
      }

      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* compute x^c mod n == x^ab mod n */
      if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) {	/* y = x^ab mod n */
	goto LBL_Z;
      }

      /* if y == 1 loop */
      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* now compute (x^c mod n)^2 */
      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2ab mod n */
	goto LBL_Z;
      }

      /* y should be 1 */
      if (mp_cmp_d (&y, 1) != MP_EQ)
	continue;
      break;
    }

    /* no bases worked? */
    if (ii == li)
      goto top;

{
   char buf[4096];

   mp_toradix(&n, buf, 10);
   printf("Certificate of primality for:\n%s\n\n", buf);
   mp_toradix(&a, buf, 10);
   printf("A == \n%s\n\n", buf);
   mp_toradix(&b, buf, 10);
   printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
   printf("----------------------------------------------------------------\n");
}

    /* a = n */
    mp_copy (&n, &a);
  }

  /* get q to be the order of the large prime subgroup */
  mp_sub_d (&n, 1, q);
  mp_div_2 (q, q);
  mp_div (q, &b, q, NULL);

  mp_exch (&n, p);

  res = MP_OKAY;
LBL_Z:mp_clear (&z);
LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_N:mp_clear (&n);
LBL_B:mp_clear (&b);
LBL_A:mp_clear (&a);
LBL_V:mp_clear (&v);
LBL_C:mp_clear (&c);
  return res;
}
示例#9
0
文件: demo.c 项目: randombit/hacrypto
int main(void)
{
    mp_int a, b, c, d, e, f;
    unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n,
             gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n, t;
    unsigned rr;
    int i, n, err, cnt, ix, old_kara_m, old_kara_s;
    mp_digit mp;


    mp_init(&a);
    mp_init(&b);
    mp_init(&c);
    mp_init(&d);
    mp_init(&e);
    mp_init(&f);

    srand(time(NULL));

#if 0
    // test montgomery
    printf("Testing montgomery...\n");
    for (i = 1; i < 10; i++) {
        printf("Testing digit size: %d\n", i);
        for (n = 0; n < 1000; n++) {
            mp_rand(&a, i);
            a.dp[0] |= 1;

            // let's see if R is right
            mp_montgomery_calc_normalization(&b, &a);
            mp_montgomery_setup(&a, &mp);

            // now test a random reduction
            for (ix = 0; ix < 100; ix++) {
                mp_rand(&c, 1 + abs(rand()) % (2*i));
                mp_copy(&c, &d);
                mp_copy(&c, &e);

                mp_mod(&d, &a, &d);
                mp_montgomery_reduce(&c, &a, mp);
                mp_mulmod(&c, &b, &a, &c);

                if (mp_cmp(&c, &d) != MP_EQ) {
                    printf("d = e mod a, c = e MOD a\n");
                    mp_todecimal(&a, buf);
                    printf("a = %s\n", buf);
                    mp_todecimal(&e, buf);
                    printf("e = %s\n", buf);
                    mp_todecimal(&d, buf);
                    printf("d = %s\n", buf);
                    mp_todecimal(&c, buf);
                    printf("c = %s\n", buf);
                    printf("compare no compare!\n");
                    exit(EXIT_FAILURE);
                }
            }
        }
    }
    printf("done\n");

    // test mp_get_int
    printf("Testing: mp_get_int\n");
    for (i = 0; i < 1000; ++i) {
        t = ((unsigned long) rand() * rand() + 1) & 0xFFFFFFFF;
        mp_set_int(&a, t);
        if (t != mp_get_int(&a)) {
            printf("mp_get_int() bad result!\n");
            return 1;
        }
    }
    mp_set_int(&a, 0);
    if (mp_get_int(&a) != 0) {
        printf("mp_get_int() bad result!\n");
        return 1;
    }
    mp_set_int(&a, 0xffffffff);
    if (mp_get_int(&a) != 0xffffffff) {
        printf("mp_get_int() bad result!\n");
        return 1;
    }
    // test mp_sqrt
    printf("Testing: mp_sqrt\n");
    for (i = 0; i < 1000; ++i) {
        printf("%6d\r", i);
        fflush(stdout);
        n = (rand() & 15) + 1;
        mp_rand(&a, n);
        if (mp_sqrt(&a, &b) != MP_OKAY) {
            printf("mp_sqrt() error!\n");
            return 1;
        }
        mp_n_root(&a, 2, &a);
        if (mp_cmp_mag(&b, &a) != MP_EQ) {
            printf("mp_sqrt() bad result!\n");
            return 1;
        }
    }

    printf("\nTesting: mp_is_square\n");
    for (i = 0; i < 1000; ++i) {
        printf("%6d\r", i);
        fflush(stdout);

        /* test mp_is_square false negatives */
        n = (rand() & 7) + 1;
        mp_rand(&a, n);
        mp_sqr(&a, &a);
        if (mp_is_square(&a, &n) != MP_OKAY) {
            printf("fn:mp_is_square() error!\n");
            return 1;
        }
        if (n == 0) {
            printf("fn:mp_is_square() bad result!\n");
            return 1;
        }

        /* test for false positives */
        mp_add_d(&a, 1, &a);
        if (mp_is_square(&a, &n) != MP_OKAY) {
            printf("fp:mp_is_square() error!\n");
            return 1;
        }
        if (n == 1) {
            printf("fp:mp_is_square() bad result!\n");
            return 1;
        }

    }
    printf("\n\n");

    /* test for size */
    for (ix = 10; ix < 128; ix++) {
        printf("Testing (not safe-prime): %9d bits    \r", ix);
        fflush(stdout);
        err =
            mp_prime_random_ex(&a, 8, ix,
                               (rand() & 1) ? LTM_PRIME_2MSB_OFF :
                               LTM_PRIME_2MSB_ON, myrng, NULL);
        if (err != MP_OKAY) {
            printf("failed with err code %d\n", err);
            return EXIT_FAILURE;
        }
        if (mp_count_bits(&a) != ix) {
            printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
            return EXIT_FAILURE;
        }
    }

    for (ix = 16; ix < 128; ix++) {
        printf("Testing (   safe-prime): %9d bits    \r", ix);
        fflush(stdout);
        err =
            mp_prime_random_ex(&a, 8, ix,
                               ((rand() & 1) ? LTM_PRIME_2MSB_OFF :
                                LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE, myrng,
                               NULL);
        if (err != MP_OKAY) {
            printf("failed with err code %d\n", err);
            return EXIT_FAILURE;
        }
        if (mp_count_bits(&a) != ix) {
            printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
            return EXIT_FAILURE;
        }
        /* let's see if it's really a safe prime */
        mp_sub_d(&a, 1, &a);
        mp_div_2(&a, &a);
        mp_prime_is_prime(&a, 8, &cnt);
        if (cnt != MP_YES) {
            printf("sub is not prime!\n");
            return EXIT_FAILURE;
        }
    }

    printf("\n\n");

    mp_read_radix(&a, "123456", 10);
    mp_toradix_n(&a, buf, 10, 3);
    printf("a == %s\n", buf);
    mp_toradix_n(&a, buf, 10, 4);
    printf("a == %s\n", buf);
    mp_toradix_n(&a, buf, 10, 30);
    printf("a == %s\n", buf);


#if 0
    for (;;) {
        fgets(buf, sizeof(buf), stdin);
        mp_read_radix(&a, buf, 10);
        mp_prime_next_prime(&a, 5, 1);
        mp_toradix(&a, buf, 10);
        printf("%s, %lu\n", buf, a.dp[0] & 3);
    }
#endif

    /* test mp_cnt_lsb */
    printf("testing mp_cnt_lsb...\n");
    mp_set(&a, 1);
    for (ix = 0; ix < 1024; ix++) {
        if (mp_cnt_lsb(&a) != ix) {
            printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a));
            return 0;
        }
        mp_mul_2(&a, &a);
    }

    /* test mp_reduce_2k */
    printf("Testing mp_reduce_2k...\n");
    for (cnt = 3; cnt <= 128; ++cnt) {
        mp_digit tmp;

        mp_2expt(&a, cnt);
        mp_sub_d(&a, 2, &a);	/* a = 2**cnt - 2 */


        printf("\nTesting %4d bits", cnt);
        printf("(%d)", mp_reduce_is_2k(&a));
        mp_reduce_2k_setup(&a, &tmp);
        printf("(%d)", tmp);
        for (ix = 0; ix < 1000; ix++) {
            if (!(ix & 127)) {
                printf(".");
                fflush(stdout);
            }
            mp_rand(&b, (cnt / DIGIT_BIT + 1) * 2);
            mp_copy(&c, &b);
            mp_mod(&c, &a, &c);
            mp_reduce_2k(&b, &a, 2);
            if (mp_cmp(&c, &b)) {
                printf("FAILED\n");
                exit(0);
            }
        }
    }

    /* test mp_div_3  */
    printf("Testing mp_div_3...\n");
    mp_set(&d, 3);
    for (cnt = 0; cnt < 10000;) {
        mp_digit r1, r2;

        if (!(++cnt & 127))
            printf("%9d\r", cnt);
        mp_rand(&a, abs(rand()) % 128 + 1);
        mp_div(&a, &d, &b, &e);
        mp_div_3(&a, &c, &r2);

        if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) {
            printf("\n\nmp_div_3 => Failure\n");
        }
    }
    printf("\n\nPassed div_3 testing\n");

    /* test the DR reduction */
    printf("testing mp_dr_reduce...\n");
    for (cnt = 2; cnt < 32; cnt++) {
        printf("%d digit modulus\n", cnt);
        mp_grow(&a, cnt);
        mp_zero(&a);
        for (ix = 1; ix < cnt; ix++) {
            a.dp[ix] = MP_MASK;
        }
        a.used = cnt;
        a.dp[0] = 3;

        mp_rand(&b, cnt - 1);
        mp_copy(&b, &c);

        rr = 0;
        do {
            if (!(rr & 127)) {
                printf("%9lu\r", rr);
                fflush(stdout);
            }
            mp_sqr(&b, &b);
            mp_add_d(&b, 1, &b);
            mp_copy(&b, &c);

            mp_mod(&b, &a, &b);
            mp_dr_reduce(&c, &a, (((mp_digit) 1) << DIGIT_BIT) - a.dp[0]);

            if (mp_cmp(&b, &c) != MP_EQ) {
                printf("Failed on trial %lu\n", rr);
                exit(-1);

            }
        } while (++rr < 500);
        printf("Passed DR test for %d digits\n", cnt);
    }

#endif

    /* test the mp_reduce_2k_l code */
#if 0
#if 0
    /* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */
    mp_2expt(&a, 1024);
    mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16);
    mp_sub(&a, &b, &a);
#elif 1
    /*  p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F  */
    mp_2expt(&a, 2048);
    mp_read_radix(&b,
                  "1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F",
                  16);
    mp_sub(&a, &b, &a);
#endif

    mp_todecimal(&a, buf);
    printf("p==%s\n", buf);
    /* now mp_reduce_is_2k_l() should return */
    if (mp_reduce_is_2k_l(&a) != 1) {
        printf("mp_reduce_is_2k_l() return 0, should be 1\n");
        return EXIT_FAILURE;
    }
    mp_reduce_2k_setup_l(&a, &d);
    /* now do a million square+1 to see if it varies */
    mp_rand(&b, 64);
    mp_mod(&b, &a, &b);
    mp_copy(&b, &c);
    printf("testing mp_reduce_2k_l...");
    fflush(stdout);
    for (cnt = 0; cnt < (1UL << 20); cnt++) {
        mp_sqr(&b, &b);
        mp_add_d(&b, 1, &b);
        mp_reduce_2k_l(&b, &a, &d);
        mp_sqr(&c, &c);
        mp_add_d(&c, 1, &c);
        mp_mod(&c, &a, &c);
        if (mp_cmp(&b, &c) != MP_EQ) {
            printf("mp_reduce_2k_l() failed at step %lu\n", cnt);
            mp_tohex(&b, buf);
            printf("b == %s\n", buf);
            mp_tohex(&c, buf);
            printf("c == %s\n", buf);
            return EXIT_FAILURE;
        }
    }
    printf("...Passed\n");
#endif

    div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
                                           sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n =
                                                   sub_d_n = 0;

    /* force KARA and TOOM to enable despite cutoffs */
    KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 8;
    TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 16;

    for (;;) {
        /* randomly clear and re-init one variable, this has the affect of triming the alloc space */
        switch (abs(rand()) % 7) {
        case 0:
            mp_clear(&a);
            mp_init(&a);
            break;
        case 1:
            mp_clear(&b);
            mp_init(&b);
            break;
        case 2:
            mp_clear(&c);
            mp_init(&c);
            break;
        case 3:
            mp_clear(&d);
            mp_init(&d);
            break;
        case 4:
            mp_clear(&e);
            mp_init(&e);
            break;
        case 5:
            mp_clear(&f);
            mp_init(&f);
            break;
        case 6:
            break;			/* don't clear any */
        }


        printf
        ("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ",
         add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n,
         expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n);
        fgets(cmd, 4095, stdin);
        cmd[strlen(cmd) - 1] = 0;
        printf("%s  ]\r", cmd);
        fflush(stdout);
        if (!strcmp(cmd, "mul2d")) {
            ++mul2d_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            sscanf(buf, "%d", &rr);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);

            mp_mul_2d(&a, rr, &a);
            a.sign = b.sign;
            if (mp_cmp(&a, &b) != MP_EQ) {
                printf("mul2d failed, rr == %d\n", rr);
                draw(&a);
                draw(&b);
                return 0;
            }
        } else if (!strcmp(cmd, "div2d")) {
            ++div2d_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            sscanf(buf, "%d", &rr);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);

            mp_div_2d(&a, rr, &a, &e);
            a.sign = b.sign;
            if (a.used == b.used && a.used == 0) {
                a.sign = b.sign = MP_ZPOS;
            }
            if (mp_cmp(&a, &b) != MP_EQ) {
                printf("div2d failed, rr == %d\n", rr);
                draw(&a);
                draw(&b);
                return 0;
            }
        } else if (!strcmp(cmd, "add")) {
            ++add_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&c, buf, 64);
            mp_copy(&a, &d);
            mp_add(&d, &b, &d);
            if (mp_cmp(&c, &d) != MP_EQ) {
                printf("add %lu failure!\n", add_n);
                draw(&a);
                draw(&b);
                draw(&c);
                draw(&d);
                return 0;
            }

            /* test the sign/unsigned storage functions */

            rr = mp_signed_bin_size(&c);
            mp_to_signed_bin(&c, (unsigned char *) cmd);
            memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
            mp_read_signed_bin(&d, (unsigned char *) cmd, rr);
            if (mp_cmp(&c, &d) != MP_EQ) {
                printf("mp_signed_bin failure!\n");
                draw(&c);
                draw(&d);
                return 0;
            }


            rr = mp_unsigned_bin_size(&c);
            mp_to_unsigned_bin(&c, (unsigned char *) cmd);
            memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
            mp_read_unsigned_bin(&d, (unsigned char *) cmd, rr);
            if (mp_cmp_mag(&c, &d) != MP_EQ) {
                printf("mp_unsigned_bin failure!\n");
                draw(&c);
                draw(&d);
                return 0;
            }

        } else if (!strcmp(cmd, "sub")) {
            ++sub_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&c, buf, 64);
            mp_copy(&a, &d);
            mp_sub(&d, &b, &d);
            if (mp_cmp(&c, &d) != MP_EQ) {
                printf("sub %lu failure!\n", sub_n);
                draw(&a);
                draw(&b);
                draw(&c);
                draw(&d);
                return 0;
            }
        } else if (!strcmp(cmd, "mul")) {
            ++mul_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&c, buf, 64);
            mp_copy(&a, &d);
            mp_mul(&d, &b, &d);
            if (mp_cmp(&c, &d) != MP_EQ) {
                printf("mul %lu failure!\n", mul_n);
                draw(&a);
                draw(&b);
                draw(&c);
                draw(&d);
                return 0;
            }
        } else if (!strcmp(cmd, "div")) {
            ++div_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&c, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&d, buf, 64);

            mp_div(&a, &b, &e, &f);
            if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) {
                printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e),
                       mp_cmp(&d, &f));
                draw(&a);
                draw(&b);
                draw(&c);
                draw(&d);
                draw(&e);
                draw(&f);
                return 0;
            }

        } else if (!strcmp(cmd, "sqr")) {
            ++sqr_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            mp_copy(&a, &c);
            mp_sqr(&c, &c);
            if (mp_cmp(&b, &c) != MP_EQ) {
                printf("sqr %lu failure!\n", sqr_n);
                draw(&a);
                draw(&b);
                draw(&c);
                return 0;
            }
        } else if (!strcmp(cmd, "gcd")) {
            ++gcd_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&c, buf, 64);
            mp_copy(&a, &d);
            mp_gcd(&d, &b, &d);
            d.sign = c.sign;
            if (mp_cmp(&c, &d) != MP_EQ) {
                printf("gcd %lu failure!\n", gcd_n);
                draw(&a);
                draw(&b);
                draw(&c);
                draw(&d);
                return 0;
            }
        } else if (!strcmp(cmd, "lcm")) {
            ++lcm_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&c, buf, 64);
            mp_copy(&a, &d);
            mp_lcm(&d, &b, &d);
            d.sign = c.sign;
            if (mp_cmp(&c, &d) != MP_EQ) {
                printf("lcm %lu failure!\n", lcm_n);
                draw(&a);
                draw(&b);
                draw(&c);
                draw(&d);
                return 0;
            }
        } else if (!strcmp(cmd, "expt")) {
            ++expt_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&c, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&d, buf, 64);
            mp_copy(&a, &e);
            mp_exptmod(&e, &b, &c, &e);
            if (mp_cmp(&d, &e) != MP_EQ) {
                printf("expt %lu failure!\n", expt_n);
                draw(&a);
                draw(&b);
                draw(&c);
                draw(&d);
                draw(&e);
                return 0;
            }
        } else if (!strcmp(cmd, "invmod")) {
            ++inv_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&c, buf, 64);
            mp_invmod(&a, &b, &d);
            mp_mulmod(&d, &a, &b, &e);
            if (mp_cmp_d(&e, 1) != MP_EQ) {
                printf("inv [wrong value from MPI?!] failure\n");
                draw(&a);
                draw(&b);
                draw(&c);
                draw(&d);
                mp_gcd(&a, &b, &e);
                draw(&e);
                return 0;
            }

        } else if (!strcmp(cmd, "div2")) {
            ++div2_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            mp_div_2(&a, &c);
            if (mp_cmp(&c, &b) != MP_EQ) {
                printf("div_2 %lu failure\n", div2_n);
                draw(&a);
                draw(&b);
                draw(&c);
                return 0;
            }
        } else if (!strcmp(cmd, "mul2")) {
            ++mul2_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            mp_mul_2(&a, &c);
            if (mp_cmp(&c, &b) != MP_EQ) {
                printf("mul_2 %lu failure\n", mul2_n);
                draw(&a);
                draw(&b);
                draw(&c);
                return 0;
            }
        } else if (!strcmp(cmd, "add_d")) {
            ++add_d_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            sscanf(buf, "%d", &ix);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            mp_add_d(&a, ix, &c);
            if (mp_cmp(&b, &c) != MP_EQ) {
                printf("add_d %lu failure\n", add_d_n);
                draw(&a);
                draw(&b);
                draw(&c);
                printf("d == %d\n", ix);
                return 0;
            }
        } else if (!strcmp(cmd, "sub_d")) {
            ++sub_d_n;
            fgets(buf, 4095, stdin);
            mp_read_radix(&a, buf, 64);
            fgets(buf, 4095, stdin);
            sscanf(buf, "%d", &ix);
            fgets(buf, 4095, stdin);
            mp_read_radix(&b, buf, 64);
            mp_sub_d(&a, ix, &c);
            if (mp_cmp(&b, &c) != MP_EQ) {
                printf("sub_d %lu failure\n", sub_d_n);
                draw(&a);
                draw(&b);
                draw(&c);
                printf("d == %d\n", ix);
                return 0;
            }
        }
    }
    return 0;
}
示例#10
0
/**
  Import an RSAPublicKey or RSAPrivateKey [two-prime only, only support >= 1024-bit keys, defined in LTC_PKCS #1 v2.1]
  @param in      The packet to import from
  @param inlen   It's length (octets)
  @param key     [out] Destination for newly imported key
  @return CRYPT_OK if successful, upon error allocated memory is freed
*/
int rsa_import(const unsigned char *in, unsigned long inlen, rsa_key *key)
{
   int           err;
   void         *zero;
   unsigned char *tmpbuf;
   unsigned long  t, x, y, z, tmpoid[16];
   ltc_asn1_list ssl_pubkey_hashoid[2];
   ltc_asn1_list ssl_pubkey[2];

   LTC_ARGCHK(in          != NULL);
   LTC_ARGCHK(key         != NULL);
   LTC_ARGCHK(ltc_mp.name != NULL);

   /* init key */
   if ((err = mp_init_multi(&key->e, &key->d, &key->N, &key->dQ, 
                            &key->dP, &key->qP, &key->p, &key->q, NULL)) != CRYPT_OK) {
      return err;
   }

   /* see if the OpenSSL DER format RSA public key will work */
   tmpbuf = XCALLOC(1, MAX_RSA_SIZE*8);
   if (tmpbuf == NULL) {
       err = CRYPT_MEM;
       goto LBL_ERR;
   }

   /* this includes the internal hash ID and optional params (NULL in this case) */
   LTC_SET_ASN1(ssl_pubkey_hashoid, 0, LTC_ASN1_OBJECT_IDENTIFIER, tmpoid,                sizeof(tmpoid)/sizeof(tmpoid[0]));   
   LTC_SET_ASN1(ssl_pubkey_hashoid, 1, LTC_ASN1_NULL,              NULL,                  0);

   /* the actual format of the SSL DER key is odd, it stores a RSAPublicKey in a **BIT** string ... so we have to extract it
      then proceed to convert bit to octet 
    */
   LTC_SET_ASN1(ssl_pubkey, 0,         LTC_ASN1_SEQUENCE,          &ssl_pubkey_hashoid,   2);
   LTC_SET_ASN1(ssl_pubkey, 1,         LTC_ASN1_BIT_STRING,        tmpbuf,                MAX_RSA_SIZE*8);

   if (der_decode_sequence(in, inlen,
                           ssl_pubkey, 2UL) == CRYPT_OK) {

      /* ok now we have to reassemble the BIT STRING to an OCTET STRING.  Thanks OpenSSL... */
      for (t = y = z = x = 0; x < ssl_pubkey[1].size; x++) {
          y = (y << 1) | tmpbuf[x];
          if (++z == 8) {
             tmpbuf[t++] = (unsigned char)y;
             y           = 0;
             z           = 0;
          }
      }

      /* now it should be SEQUENCE { INTEGER, INTEGER } */
      if ((err = der_decode_sequence_multi(tmpbuf, t,
                                           LTC_ASN1_INTEGER, 1UL, key->N, 
                                           LTC_ASN1_INTEGER, 1UL, key->e, 
                                           LTC_ASN1_EOL,     0UL, NULL)) != CRYPT_OK) {
         XFREE(tmpbuf);
         goto LBL_ERR;
      }
      XFREE(tmpbuf);
      key->type = PK_PUBLIC;
      return CRYPT_OK;
   }
   XFREE(tmpbuf);

   /* not SSL public key, try to match against LTC_PKCS #1 standards */
   if ((err = der_decode_sequence_multi(in, inlen, 
                                  LTC_ASN1_INTEGER, 1UL, key->N, 
                                  LTC_ASN1_EOL,     0UL, NULL)) != CRYPT_OK) {
      goto LBL_ERR;
   }

   if (mp_cmp_d(key->N, 0) == LTC_MP_EQ) {
      if ((err = mp_init(&zero)) != CRYPT_OK) { 
         goto LBL_ERR;
      }
      /* it's a private key */
      if ((err = der_decode_sequence_multi(in, inlen, 
                          LTC_ASN1_INTEGER, 1UL, zero, 
                          LTC_ASN1_INTEGER, 1UL, key->N, 
                          LTC_ASN1_INTEGER, 1UL, key->e,
                          LTC_ASN1_INTEGER, 1UL, key->d, 
                          LTC_ASN1_INTEGER, 1UL, key->p, 
                          LTC_ASN1_INTEGER, 1UL, key->q, 
                          LTC_ASN1_INTEGER, 1UL, key->dP,
                          LTC_ASN1_INTEGER, 1UL, key->dQ, 
                          LTC_ASN1_INTEGER, 1UL, key->qP, 
                          LTC_ASN1_EOL,     0UL, NULL)) != CRYPT_OK) {
         mp_clear(zero);
         goto LBL_ERR;
      }
      mp_clear(zero);
      key->type = PK_PRIVATE;
   } else if (mp_cmp_d(key->N, 1) == LTC_MP_EQ) {
      /* we don't support multi-prime RSA */
      err = CRYPT_PK_INVALID_TYPE;
      goto LBL_ERR;
   } else {
      /* it's a public key and we lack e */
      if ((err = der_decode_sequence_multi(in, inlen, 
                                     LTC_ASN1_INTEGER, 1UL, key->N, 
                                     LTC_ASN1_INTEGER, 1UL, key->e, 
                                     LTC_ASN1_EOL,     0UL, NULL)) != CRYPT_OK) {
         goto LBL_ERR;
      }
      key->type = PK_PUBLIC;
   }
   return CRYPT_OK;
LBL_ERR:
   mp_clear_multi(key->d,  key->e, key->N, key->dQ, key->dP, key->qP, key->p, key->q, NULL);
   return err;
}
示例#11
0
SECStatus
RSA_PrivateKeyCheck(RSAPrivateKey *key)
{
    mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    MP_DIGITS(&n)    = 0;
    MP_DIGITS(&psub1)= 0;
    MP_DIGITS(&qsub1)= 0;
    MP_DIGITS(&e)    = 0;
    MP_DIGITS(&d)    = 0;
    MP_DIGITS(&d_p)  = 0;
    MP_DIGITS(&d_q)  = 0;
    MP_DIGITS(&qInv) = 0;
    MP_DIGITS(&res)  = 0;
    CHECK_MPI_OK( mp_init(&n)    );
    CHECK_MPI_OK( mp_init(&p)    );
    CHECK_MPI_OK( mp_init(&q)    );
    CHECK_MPI_OK( mp_init(&psub1));
    CHECK_MPI_OK( mp_init(&qsub1));
    CHECK_MPI_OK( mp_init(&e)    );
    CHECK_MPI_OK( mp_init(&d)    );
    CHECK_MPI_OK( mp_init(&d_p)  );
    CHECK_MPI_OK( mp_init(&d_q)  );
    CHECK_MPI_OK( mp_init(&qInv) );
    CHECK_MPI_OK( mp_init(&res)  );
    SECITEM_TO_MPINT(key->modulus,         &n);
    SECITEM_TO_MPINT(key->prime1,          &p);
    SECITEM_TO_MPINT(key->prime2,          &q);
    SECITEM_TO_MPINT(key->publicExponent,  &e);
    SECITEM_TO_MPINT(key->privateExponent, &d);
    SECITEM_TO_MPINT(key->exponent1,       &d_p);
    SECITEM_TO_MPINT(key->exponent2,       &d_q);
    SECITEM_TO_MPINT(key->coefficient,     &qInv);
    /* p > q  */
    if (mp_cmp(&p, &q) <= 0) {
	/* mind the p's and q's (and d_p's and d_q's) */
	SECItem tmp;
	mp_exch(&p, &q);
	mp_exch(&d_p,&d_q);
	tmp = key->prime1;
	key->prime1 = key->prime2;
	key->prime2 = tmp;
	tmp = key->exponent1;
	key->exponent1 = key->exponent2;
	key->exponent2 = tmp;
    }
#define VERIFY_MPI_EQUAL(m1, m2) \
    if (mp_cmp(m1, m2) != 0) {   \
	rv = SECFailure;         \
	goto cleanup;            \
    }
#define VERIFY_MPI_EQUAL_1(m)    \
    if (mp_cmp_d(m, 1) != 0) {   \
	rv = SECFailure;         \
	goto cleanup;            \
    }
    /*
     * The following errors cannot be recovered from.
     */
    /* n == p * q */
    CHECK_MPI_OK( mp_mul(&p, &q, &res) );
    VERIFY_MPI_EQUAL(&res, &n);
    /* gcd(e, p-1) == 1 */
    CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) );
    CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) );
    VERIFY_MPI_EQUAL_1(&res);
    /* gcd(e, q-1) == 1 */
    CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) );
    CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) );
    VERIFY_MPI_EQUAL_1(&res);
    /* d*e == 1 mod p-1 */
    CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) );
    VERIFY_MPI_EQUAL_1(&res);
    /* d*e == 1 mod q-1 */
    CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) );
    VERIFY_MPI_EQUAL_1(&res);
    /*
     * The following errors can be recovered from.
     */
    /* d_p == d mod p-1 */
    CHECK_MPI_OK( mp_mod(&d, &psub1, &res) );
    if (mp_cmp(&d_p, &res) != 0) {
	/* swap in the correct value */
	CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent1) );
    }
    /* d_q == d mod q-1 */
    CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) );
    if (mp_cmp(&d_q, &res) != 0) {
	/* swap in the correct value */
	CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent2) );
    }
    /* q * q**-1 == 1 mod p */
    CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) );
    if (mp_cmp_d(&res, 1) != 0) {
	/* compute the correct value */
	CHECK_MPI_OK( mp_invmod(&q, &p, &qInv) );
	CHECK_SEC_OK( swap_in_key_value(key->arena, &qInv, &key->coefficient) );
    }
cleanup:
    mp_clear(&n);
    mp_clear(&p);
    mp_clear(&q);
    mp_clear(&psub1);
    mp_clear(&qsub1);
    mp_clear(&e);
    mp_clear(&d);
    mp_clear(&d_p);
    mp_clear(&d_q);
    mp_clear(&qInv);
    mp_clear(&res);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}
示例#12
0
/**
  Sign a hash with DSA
  @param in       The hash to sign
  @param inlen    The length of the hash to sign
  @param r        The "r" integer of the signature (caller must initialize with mp_init() first)
  @param s        The "s" integer of the signature (caller must initialize with mp_init() first)
  @param prng     An active PRNG state
  @param wprng    The index of the PRNG desired
  @param key      A private DSA key
  @return CRYPT_OK if successful
*/
int dsa_sign_hash_raw(const unsigned char *in,  unsigned long inlen,
                                   void   *r,   void *s,
                               prng_state *prng, int wprng, dsa_key *key)
{
   void         *k, *kinv, *tmp;
   unsigned char *buf;
   int            err, qbits;

   LTC_ARGCHK(in  != NULL);
   LTC_ARGCHK(r   != NULL);
   LTC_ARGCHK(s   != NULL);
   LTC_ARGCHK(key != NULL);

   if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
      return err;
   }
   if (key->type != PK_PRIVATE) {
      return CRYPT_PK_NOT_PRIVATE;
   }

   /* check group order size  */
   if (key->qord >= LTC_MDSA_MAX_GROUP) {
      return CRYPT_INVALID_ARG;
   }

   buf = XMALLOC(LTC_MDSA_MAX_GROUP);
   if (buf == NULL) {
      return CRYPT_MEM;
   }

   /* Init our temps */
   if ((err = mp_init_multi(&k, &kinv, &tmp, NULL)) != CRYPT_OK)                       { goto ERRBUF; }

   qbits = mp_count_bits(key->q);
retry:

   do {
      /* gen random k */
      if ((err = rand_bn_bits(k, qbits, prng, wprng)) != CRYPT_OK)                     { goto error; }

      /* k should be from range: 1 <= k <= q-1 (see FIPS 186-4 B.2.2) */
      if (mp_cmp_d(k, 0) != LTC_MP_GT || mp_cmp(k, key->q) != LTC_MP_LT)               { goto retry; }

      /* test gcd */
      if ((err = mp_gcd(k, key->q, tmp)) != CRYPT_OK)                                  { goto error; }
   } while (mp_cmp_d(tmp, 1) != LTC_MP_EQ);

   /* now find 1/k mod q */
   if ((err = mp_invmod(k, key->q, kinv)) != CRYPT_OK)                                 { goto error; }

   /* now find r = g^k mod p mod q */
   if ((err = mp_exptmod(key->g, k, key->p, r)) != CRYPT_OK)                           { goto error; }
   if ((err = mp_mod(r, key->q, r)) != CRYPT_OK)                                       { goto error; }

   if (mp_iszero(r) == LTC_MP_YES)                                                     { goto retry; }

   /* FIPS 186-4 4.6: use leftmost min(bitlen(q), bitlen(hash)) bits of 'hash'*/
   inlen = MIN(inlen, (unsigned long)(key->qord));

   /* now find s = (in + xr)/k mod q */
   if ((err = mp_read_unsigned_bin(tmp, (unsigned char *)in, inlen)) != CRYPT_OK)      { goto error; }
   if ((err = mp_mul(key->x, r, s)) != CRYPT_OK)                                       { goto error; }
   if ((err = mp_add(s, tmp, s)) != CRYPT_OK)                                          { goto error; }
   if ((err = mp_mulmod(s, kinv, key->q, s)) != CRYPT_OK)                              { goto error; }

   if (mp_iszero(s) == LTC_MP_YES)                                                     { goto retry; }

   err = CRYPT_OK;
error:
   mp_clear_multi(k, kinv, tmp, NULL);
ERRBUF:
#ifdef LTC_CLEAN_STACK
   zeromem(buf, LTC_MDSA_MAX_GROUP);
#endif
   XFREE(buf);
   return err;
}
示例#13
0
/**
  Create a DSA key
  @param prng          An active PRNG state
  @param wprng         The index of the PRNG desired
  @param group_size    Size of the multiplicative group (octets)
  @param modulus_size  Size of the modulus (octets)
  @param key           [out] Where to store the created key
  @return CRYPT_OK if successful, upon error this function will free all allocated memory
*/
int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
{
   mp_int         tmp, tmp2;
   int            err, res;
   unsigned char *buf;

   LTC_ARGCHK(key  != NULL);

   /* check prng */
   if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
      return err;
   }

   /* check size */
   if (group_size >= MDSA_MAX_GROUP || group_size <= 15 || 
       group_size >= modulus_size || (modulus_size - group_size) >= MDSA_DELTA) {
      return CRYPT_INVALID_ARG;
   }

   /* allocate ram */
   buf = XMALLOC(MDSA_DELTA);
   if (buf == NULL) {
      return CRYPT_MEM;
   }

   /* init mp_ints  */
   if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != MP_OKAY) {
      err = mpi_to_ltc_error(err);
      goto LBL_ERR;
   }

   /* make our prime q */
   if ((err = rand_prime(&key->q, group_size*8, prng, wprng)) != CRYPT_OK)             { goto LBL_ERR; }

   /* double q  */
   if ((err = mp_mul_2(&key->q, &tmp)) != MP_OKAY)                                     { goto error; }

   /* now make a random string and multply it against q */
   if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) {
      err = CRYPT_ERROR_READPRNG;
      goto LBL_ERR;
   }

   /* force magnitude */
   buf[0] = 1;

   /* force even */
   buf[modulus_size - group_size] &= ~1;

   if ((err = mp_read_unsigned_bin(&tmp2, buf, modulus_size - group_size+1)) != MP_OKAY) { goto error; }
   if ((err = mp_mul(&key->q, &tmp2, &key->p)) != MP_OKAY)                             { goto error; }
   if ((err = mp_add_d(&key->p, 1, &key->p)) != MP_OKAY)                               { goto error; }
   
   /* now loop until p is prime */
   for (;;) {
       if ((err = is_prime(&key->p, &res)) != CRYPT_OK)                                { goto LBL_ERR; }
       if (res == MP_YES) break;

       /* add 2q to p and 2 to tmp2 */
       if ((err = mp_add(&tmp, &key->p, &key->p)) != MP_OKAY)                          { goto error; }
       if ((err = mp_add_d(&tmp2, 2, &tmp2)) != MP_OKAY)                               { goto error; }
   }

   /* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */
   mp_set(&key->g, 1);

   do {
      if ((err = mp_add_d(&key->g, 1, &key->g)) != MP_OKAY)                            { goto error; }
      if ((err = mp_exptmod(&key->g, &tmp2, &key->p, &tmp)) != MP_OKAY)                { goto error; }
   } while (mp_cmp_d(&tmp, 1) == MP_EQ);

   /* at this point tmp generates a group of order q mod p */
   mp_exch(&tmp, &key->g);

   /* so now we have our DH structure, generator g, order q, modulus p 
      Now we need a random exponent [mod q] and it's power g^x mod p 
    */
   do {
      if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) {
         err = CRYPT_ERROR_READPRNG;
         goto LBL_ERR;
      }
      if ((err = mp_read_unsigned_bin(&key->x, buf, group_size)) != MP_OKAY)           { goto error; }
   } while (mp_cmp_d(&key->x, 1) != MP_GT);
   if ((err = mp_exptmod(&key->g, &key->x, &key->p, &key->y)) != MP_OKAY)              { goto error; }
   
   key->type = PK_PRIVATE;
   key->qord = group_size;

   /* shrink the ram required */
   if ((err = mp_shrink(&key->g)) != MP_OKAY)                                          { goto error; }
   if ((err = mp_shrink(&key->p)) != MP_OKAY)                                          { goto error; }
   if ((err = mp_shrink(&key->q)) != MP_OKAY)                                          { goto error; }
   if ((err = mp_shrink(&key->x)) != MP_OKAY)                                          { goto error; }
   if ((err = mp_shrink(&key->y)) != MP_OKAY)                                          { goto error; }

#ifdef LTC_CLEAN_STACK
   zeromem(buf, MDSA_DELTA);
#endif

   err = CRYPT_OK;
   goto done;
error: 
    err = mpi_to_ltc_error(err);
LBL_ERR: 
    mp_clear_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL);
done: 
    mp_clear_multi(&tmp, &tmp2, NULL);

    XFREE(buf);
    return err;
}
/*
    Strong Lucas-Selfridge test.
    returns MP_YES if it is a strong L-S prime, MP_NO if it is composite

    Code ported from  Thomas Ray Nicely's implementation of the BPSW test
    at http://www.trnicely.net/misc/bpsw.html

    Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
    Released into the public domain by the author, who disclaims any legal
    liability arising from its use

    The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
    Additional comments marked "CZ" (without the quotes) are by the code-portist.

    (If that name sounds familiar, he is the guy who found the fdiv bug in the
     Pentium (P5x, I think) Intel processor)
*/
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
{
   /* CZ TODO: choose better variable names! */
   mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
   /* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */
   int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
   int e;
   int isset;

   *result = MP_NO;

   /*
   Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
   such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
   indicates that, if N is not a perfect square, D will "nearly
   always" be "small." Just in case, an overflow trap for D is
   included.
   */

   if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
                          NULL)) != MP_OKAY) {
      return e;
   }

   D = 5;
   sign = 1;

   for (;;) {
      Ds   = sign * D;
      sign = -sign;
      if ((e = mp_set_long(&Dz, (unsigned long)D)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* if 1 < GCD < N then N is composite with factor "D", and
         Jacobi(D,N) is technically undefined (but often returned
         as zero). */
      if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) {
         goto LBL_LS_ERR;
      }
      if (Ds < 0) {
         Dz.sign = MP_NEG;
      }
      if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }

      if (J == -1) {
         break;
      }
      D += 2;

      if (D > (INT_MAX - 2)) {
         e = MP_VAL;
         goto LBL_LS_ERR;
      }
   }

   P = 1;              /* Selfridge's choice */
   Q = (1 - Ds) / 4;   /* Required so D = P*P - 4*Q */

   /* NOTE: The conditions (a) N does not divide Q, and
      (b) D is square-free or not a perfect square, are included by
      some authors; e.g., "Prime numbers and computer methods for
      factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
      p. 130. For this particular application of Lucas sequences,
      these conditions were found to be immaterial. */

   /* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
      odd positive integer d and positive integer s for which
      N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
      The strong Lucas-Selfridge test then returns N as a strong
      Lucas probable prime (slprp) if any of the following
      conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
      V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
      (all equalities mod N). Thus d is the highest index of U that
      must be computed (since V_2m is independent of U), compared
      to U_{N+1} for the standard Lucas-Selfridge test; and no
      index of V beyond (N+1)/2 is required, just as in the
      standard Lucas-Selfridge test. However, the quantity Q^d must
      be computed for use (if necessary) in the latter stages of
      the test. The result is that the strong Lucas-Selfridge test
      has a running time only slightly greater (order of 10 %) than
      that of the standard Lucas-Selfridge test, while producing
      only (roughly) 30 % as many pseudoprimes (and every strong
      Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
      the evidence indicates that the strong Lucas-Selfridge test is
      more effective than the standard Lucas-Selfridge test, and a
      Baillie-PSW test based on the strong Lucas-Selfridge test
      should be more reliable. */

   if ((e = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }
   s = mp_cnt_lsb(&Np1);

   /* CZ
    * This should round towards zero because
    * Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
    * and mp_div_2d() is equivalent. Additionally:
    * dividing an even number by two does not produce
    * any leftovers.
    */
   if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }
   /* We must now compute U_d and V_d. Since d is odd, the accumulated
      values U and V are initialized to U_1 and V_1 (if the target
      index were even, U and V would be initialized instead to U_0=0
      and V_0=2). The values of U_2m and V_2m are also initialized to
      U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
      U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
      (1, 2, 3, ...) of t are on (the zero bit having been accounted
      for in the initialization of U and V), these values are then
      combined with the previous totals for U and V, using the
      composition formulas for addition of indices. */

   mp_set(&Uz, 1uL);    /* U=U_1 */
   mp_set(&Vz, (mp_digit)P);    /* V=V_1 */
   mp_set(&U2mz, 1uL);  /* U_1 */
   mp_set(&V2mz, (mp_digit)P);  /* V_1 */

   if (Q < 0) {
      Q = -Q;
      if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Initializes calculation of Q^d */
      if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      Qmz.sign = MP_NEG;
      Q2mz.sign = MP_NEG;
      Qkdz.sign = MP_NEG;
      Q = -Q;
   } else {
      if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Initializes calculation of Q^d */
      if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
   }

   Nbits = mp_count_bits(&Dz);
   for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
      /* Formulas for doubling of indices (carried out mod N). Note that
       * the indices denoted as "2m" are actually powers of 2, specifically
       * 2^(ul-1) beginning each loop and 2^ul ending each loop.
       *
       * U_2m = U_m*V_m
       * V_2m = V_m*V_m - 2*Q^m
       */

      if ((e = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Must calculate powers of Q for use in V_2m, also for Q^d later */
      if ((e = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* prevents overflow */ /* CZ  still necessary without a fixed prealloc'd mem.? */
      if ((e = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }

      if ((isset = mp_get_bit(&Dz, u)) == MP_VAL) {
         e = isset;
         goto LBL_LS_ERR;
      }
      if (isset == MP_YES) {
         /* Formulas for addition of indices (carried out mod N);
          *
          * U_(m+n) = (U_m*V_n + U_n*V_m)/2
          * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
          *
          * Be careful with division by 2 (mod N)!
          */

         if ((e = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = s_mp_mul_si(&T4z, (long)Ds, &T4z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if (mp_isodd(&Uz) != MP_NO) {
            if ((e = mp_add(&Uz, a, &Uz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         /* CZ
          * This should round towards negative infinity because
          * Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
          * But mp_div_2() does not do so, it is truncating instead.
          */
         if ((e = mp_div_2(&Uz, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((Uz.sign == MP_NEG) && (mp_isodd(&Uz) != MP_NO)) {
            if ((e = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((e = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if (mp_isodd(&Vz) != MP_NO) {
            if ((e = mp_add(&Vz, a, &Vz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((e = mp_div_2(&Vz, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((Vz.sign == MP_NEG) && (mp_isodd(&Vz) != MP_NO)) {
            if ((e = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((e = mp_mod(&Uz, a, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         /* Calculating Q^d for later use */
         if ((e = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
      }
   }

   /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
      strong Lucas pseudoprime. */
   if ((mp_iszero(&Uz) != MP_NO) || (mp_iszero(&Vz) != MP_NO)) {
      *result = MP_YES;
      goto LBL_LS_ERR;
   }

   /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
      1995/6) omits the condition V0 on p.142, but includes it on
      p. 130. The condition is NECESSARY; otherwise the test will
      return false negatives---e.g., the primes 29 and 2000029 will be
      returned as composite. */

   /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
      by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
      these are congruent to 0 mod N, then N is a prime or a strong
      Lucas pseudoprime. */

   /* Initialize 2*Q^(d*2^r) for V_2m */
   if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }

   for (r = 1; r < s; r++) {
      if ((e = mp_sqr(&Vz, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if (mp_iszero(&Vz) != MP_NO) {
         *result = MP_YES;
         goto LBL_LS_ERR;
      }
      /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
      if (r < (s - 1)) {
         if ((e = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
      }
   }
LBL_LS_ERR:
   mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL);
   return e;
}
/**
  Encrypt a symmetric key with DSA
  @param in         The symmetric key you want to encrypt
  @param inlen      The length of the key to encrypt (octets)
  @param out        [out] The destination for the ciphertext
  @param outlen     [in/out] The max size and resulting size of the ciphertext
  @param prng       An active PRNG state
  @param wprng      The index of the PRNG you wish to use 
  @param hash       The index of the hash you want to use 
  @param key        The DSA key you want to encrypt to
  @return CRYPT_OK if successful
*/
int dsa_encrypt_key(const unsigned char *in,   unsigned long inlen,
                          unsigned char *out,  unsigned long *outlen, 
                          prng_state *prng, int wprng, int hash, 
                          dsa_key *key)
{
    unsigned char *expt, *skey;
    void          *g_pub, *g_priv;
    unsigned long  x, y;
    int            err, qbits;

    LTC_ARGCHK(in      != NULL);
    LTC_ARGCHK(out     != NULL);
    LTC_ARGCHK(outlen  != NULL);
    LTC_ARGCHK(key     != NULL);

    /* check that wprng/cipher/hash are not invalid */
    if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
       return err;
    }

    if ((err = hash_is_valid(hash)) != CRYPT_OK) {
       return err;
    }

    if (inlen > hash_descriptor[hash]->hashsize) {
       return CRYPT_INVALID_HASH;
    }

    /* make a random key and export the public copy */
    if ((err = mp_init_multi(&g_pub, &g_priv, NULL)) != CRYPT_OK) {
       return err;
    }
   
    expt       = XMALLOC(mp_unsigned_bin_size(key->p) + 1);
    skey       = XMALLOC(MAXBLOCKSIZE);
    if (expt == NULL  || skey == NULL) {
       if (expt != NULL) {
          XFREE(expt);
       }
       if (skey != NULL) {
          XFREE(skey);
       }
       mp_clear_multi(g_pub, g_priv, NULL);
       return CRYPT_MEM;
    }
    
    /* make a random g_priv, g_pub = g^x pair */
    qbits = mp_count_bits(key->q);
    do {
      if ((err = rand_bn_bits(g_priv, qbits, prng, wprng)) != CRYPT_OK) {
        goto LBL_ERR;
      }
      /* private key x should be from range: 1 <= x <= q-1 (see FIPS 186-4 B.1.2) */
    } while (mp_cmp_d(g_priv, 0) != LTC_MP_GT || mp_cmp(g_priv, key->q) != LTC_MP_LT);

    /* compute y */
    if ((err = mp_exptmod(key->g, g_priv, key->p, g_pub)) != CRYPT_OK) {
       goto LBL_ERR;
    }
    
    /* make random key */
    x        = mp_unsigned_bin_size(key->p) + 1;
    if ((err = dsa_shared_secret(g_priv, key->y, key, expt, &x)) != CRYPT_OK) {
       goto LBL_ERR;
    }

    y = MAXBLOCKSIZE;
    if ((err = hash_memory(hash, expt, x, skey, &y)) != CRYPT_OK) {
       goto LBL_ERR;
    }
    
    /* Encrypt key */
    for (x = 0; x < inlen; x++) {
      skey[x] ^= in[x];
    }

    err = der_encode_sequence_multi(out, outlen,
                                    LTC_ASN1_OBJECT_IDENTIFIER,  hash_descriptor[hash]->OIDlen,   hash_descriptor[hash]->OID,
                                    LTC_ASN1_INTEGER,            1UL,                            g_pub,
                                    LTC_ASN1_OCTET_STRING,       inlen,                          skey,
                                    LTC_ASN1_EOL,                0UL,                            NULL);

LBL_ERR:
#ifdef LTC_CLEAN_STACK
    /* clean up */
    zeromem(expt,   mp_unsigned_bin_size(key->p) + 1);
    zeromem(skey,   MAXBLOCKSIZE);
#endif

    XFREE(skey);
    XFREE(expt);
    
    mp_clear_multi(g_pub, g_priv, NULL);
    return err;
}
/* computes the modular inverse via binary extended euclidean algorithm, 
 * that is c = 1/a mod b 
 *
 * Based on mp_invmod except this is optimized for the case where b is 
 * odd as per HAC Note 14.64 on pp. 610
 */
int
fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, B, D;
  int     res, neg;

  /* 2. [modified] if a,b are both even then return an error!
   *
   * That is if gcd(a,b) = 2**k * q then obviously there is no inverse.
   */
  if (mp_iseven (a) == 1 && mp_iseven (b) == 1) {
    return MP_VAL;
  }

  /* init all our temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x == modulus, y == value to invert */
  if ((res = mp_copy (b, &x)) != MP_OKAY) {
    goto __ERR;
  }

  /* we need y = |a| */
  if ((res = mp_abs (a, &y)) != MP_OKAY) {
    goto __ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto __ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto __ERR;
  }
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto __ERR;
    }
    /* 4.2 if B is odd then */
    if (mp_isodd (&B) == 1) {
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
        goto __ERR;
      }
    }
    /* B = B/2 */
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto __ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto __ERR;
    }
    /* 5.2 if D is odd then */
    if (mp_isodd (&D) == 1) {
      /* D = (D-x)/2 */
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
        goto __ERR;
      }
    }
    /* D = D/2 */
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto __ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto __ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto __ERR;
    }
  } else {
    /* v - v - u, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto __ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto __ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0) {
    goto top;
  }

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto __ERR;
  }

  /* b is now the inverse */
  neg = a->sign;
  while (D.sign == MP_NEG) {
    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
      goto __ERR;
    }
  }
  mp_exch (&D, c);
  c->sign = neg;
  res = MP_OKAY;

__ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
  return res;
}
示例#17
0
/**
   Verify a DSA key for validity
   @param key   The key to verify
   @param stat  [out]  Result of test, 1==valid, 0==invalid
   @return CRYPT_OK if successful
*/
int dsa_verify_key(dsa_key * key, int *stat)
{
    mp_int tmp, tmp2;
    int res, err;

    LTC_ARGCHK(key != NULL);
    LTC_ARGCHK(stat != NULL);

    /* default to an invalid key */
    *stat = 0;

    /* first make sure key->q and key->p are prime */
    if ((err = mp_prime_is_prime(&key->q, 8, &res)) != CRYPT_OK) {
        return err;
    }
    if (res == 0) {
        return CRYPT_OK;
    }

    if ((err = mp_prime_is_prime(&key->p, 8, &res)) != CRYPT_OK) {
        return err;
    }
    if (res == 0) {
        return CRYPT_OK;
    }

    /* now make sure that g is not -1, 0 or 1 and <p */
    if (mp_cmp_d(&key->g, 0) == LTC_MP_EQ
            || mp_cmp_d(&key->g, 1) == LTC_MP_EQ) {
        return CRYPT_OK;
    }
    if ((err = mp_init_multi(&tmp, &tmp2, NULL)) != CRYPT_OK) {
        return err;
    }
    if ((err = mp_sub_d(&key->p, 1, &tmp)) != CRYPT_OK) {
        goto error;
    }
    if (mp_cmp(&tmp, &key->g) == LTC_MP_EQ
            || mp_cmp(&key->g, &key->p) != LTC_MP_LT) {
        err = CRYPT_OK;
        goto error;
    }

    /* 1 < y < p-1 */
    if (!
            (mp_cmp_d(&key->y, 1) == LTC_MP_GT
             && mp_cmp(&key->y, &tmp) == LTC_MP_LT)) {
        err = CRYPT_OK;
        goto error;
    }

    /* now we have to make sure that g^q = 1, and that p-1/q gives 0 remainder */
    if ((err = mp_div(&tmp, &key->q, &tmp, &tmp2)) != CRYPT_OK) {
        goto error;
    }
    if (mp_iszero(&tmp2) != LTC_MP_YES) {
        err = CRYPT_OK;
        goto error;
    }

    if ((err = mp_exptmod(&key->g, &key->q, &key->p, &tmp)) != CRYPT_OK) {
        goto error;
    }
    if (mp_cmp_d(&tmp, 1) != LTC_MP_EQ) {
        err = CRYPT_OK;
        goto error;
    }

    /* now we have to make sure that y^q = 1, this makes sure y \in g^x mod p */
    if ((err = mp_exptmod(&key->y, &key->q, &key->p, &tmp)) != CRYPT_OK) {
        goto error;
    }
    if (mp_cmp_d(&tmp, 1) != LTC_MP_EQ) {
        err = CRYPT_OK;
        goto error;
    }

    /* at this point we are out of tests ;-( */
    err = CRYPT_OK;
    *stat = 1;
error:
    mp_clear_multi(&tmp, &tmp2, NULL);
    return err;
}
示例#18
0
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
 * HAC pp. 73 Algorithm 2.149
 */
int mp_jacobi (mp_int * a, mp_int * p, int *c)
{
  mp_int  a1, p1;
  int     k, s, r, res;
  mp_digit residue;

  /* if p <= 0 return MP_VAL */
  if (mp_cmp_d(p, 0) != MP_GT) {
     return MP_VAL;
  }

  /* step 1.  if a == 0, return 0 */
  if (mp_iszero (a) == 1) {
    *c = 0;
    return MP_OKAY;
  }

  /* step 2.  if a == 1, return 1 */
  if (mp_cmp_d (a, 1) == MP_EQ) {
    *c = 1;
    return MP_OKAY;
  }

  /* default */
  s = 0;

  /* step 3.  write a = a1 * 2**k  */
  if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&p1)) != MP_OKAY) {
    goto LBL_A1;
  }

  /* divide out larger power of two */
  k = mp_cnt_lsb(&a1);
  if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
     goto LBL_P1;
  }

  /* step 4.  if e is even set s=1 */
  if ((k & 1) == 0) {
    s = 1;
  } else {
    /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
    residue = p->dp[0] & 7;

    if (residue == 1 || residue == 7) {
      s = 1;
    } else if (residue == 3 || residue == 5) {
      s = -1;
    }
  }

  /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
  if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
    s = -s;
  }

  /* if a1 == 1 we're done */
  if (mp_cmp_d (&a1, 1) == MP_EQ) {
    *c = s;
  } else {
    /* n1 = n mod a1 */
    if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
      goto LBL_P1;
    }
    if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
      goto LBL_P1;
    }
    *c = s * r;
  }

  /* done */
  res = MP_OKAY;
LBL_P1:mp_clear (&p1);
LBL_A1:mp_clear (&a1);
  return res;
}
int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
{
  mp_int  n1, y, r;
  int     s, j, err;

  /* default */
  *result = MP_NO;

  /* ensure b > 1 */
  if (mp_cmp_d(b, 1) != MP_GT) {
     return MP_VAL;
  }     

  /* get n1 = a - 1 */
  if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
    return err;
  }
  if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
    goto LBL_N1;
  }

  /* set 2**s * r = n1 */
  if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
    goto LBL_N1;
  }

  /* count the number of least significant bits
   * which are zero
   */
  s = mp_cnt_lsb(&r);

  /* now divide n - 1 by 2**s */
  if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
    goto LBL_R;
  }

  /* compute y = b**r mod a */
  if ((err = mp_init (&y)) != MP_OKAY) {
    goto LBL_R;
  }
  if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
    goto LBL_Y;
  }

  /* if y != 1 and y != n1 do */
  if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
    j = 1;
    /* while j <= s-1 and y != n1 */
    while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
      if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
         goto LBL_Y;
      }

      /* if y == 1 then composite */
      if (mp_cmp_d (&y, 1) == MP_EQ) {
         goto LBL_Y;
      }

      ++j;
    }

    /* if y != n1 then composite */
    if (mp_cmp (&y, &n1) != MP_EQ) {
      goto LBL_Y;
    }
  }

  /* probably prime now */
  *result = MP_YES;
LBL_Y:mp_clear (&y);
LBL_R:mp_clear (&r);
LBL_N1:mp_clear (&n1);
  return err;
}
示例#20
0
/* reduces x mod m, assumes 0 < x < m**2, mu is
 * precomputed via mp_reduce_setup.
 * From HAC pp.604 Algorithm 14.42
 */
int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
{
   mp_int  q;
   int     res, um = m->used;

   /* q = x */
   if ((res = mp_init_copy(&q, x)) != MP_OKAY) {
      return res;
   }

   /* q1 = x / b**(k-1)  */
   mp_rshd(&q, um - 1);

   /* according to HAC this optimization is ok */
   if ((mp_digit)um > ((mp_digit)1 << (MP_DIGIT_BIT - 1))) {
      if ((res = mp_mul(&q, mu, &q)) != MP_OKAY) {
         goto CLEANUP;
      }
   } else {
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
      if ((res = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
         goto CLEANUP;
      }
#elif defined(BN_S_MP_MUL_HIGH_DIGS_FAST_C)
      if ((res = s_mp_mul_high_digs_fast(&q, mu, &q, um)) != MP_OKAY) {
         goto CLEANUP;
      }
#else
      {
         res = MP_VAL;
         goto CLEANUP;
      }
#endif
   }

   /* q3 = q2 / b**(k+1) */
   mp_rshd(&q, um + 1);

   /* x = x mod b**(k+1), quick (no division) */
   if ((res = mp_mod_2d(x, MP_DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* q = q * m mod b**(k+1), quick (no division) */
   if ((res = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* x = x - q */
   if ((res = mp_sub(x, &q, x)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* If x < 0, add b**(k+1) to it */
   if (mp_cmp_d(x, 0uL) == MP_LT) {
      mp_set(&q, 1uL);
      if ((res = mp_lshd(&q, um + 1)) != MP_OKAY)
         goto CLEANUP;
      if ((res = mp_add(x, &q, x)) != MP_OKAY)
         goto CLEANUP;
   }

   /* Back off if it's too big */
   while (mp_cmp(x, m) != MP_LT) {
      if ((res = s_mp_sub(x, m, x)) != MP_OKAY) {
         goto CLEANUP;
      }
   }

CLEANUP:
   mp_clear(&q);

   return res;
}
示例#21
0
static int next_prime(mp_int *N, mp_digit step)
{
    long x, s, j, total_dist;
    int res;
    mp_int n1, a, y, r;
    mp_digit dist, residues[UPPER_LIMIT];

    _ARGCHK(N != NULL);

    /* first find the residues */
    for (x = 0; x < (long)UPPER_LIMIT; x++) {
        if (mp_mod_d(N, __prime_tab[x], &residues[x]) != MP_OKAY) {
           return CRYPT_MEM;
        }
    }

    /* init variables */
    if (mp_init_multi(&r, &n1, &a, &y, NULL) != MP_OKAY) {
       return CRYPT_MEM;
    }
    
    total_dist = 0;
loop:
    /* while one of the residues is zero keep looping */
    dist = step;
    for (x = 0; (dist < (MP_DIGIT_MAX-step-1)) && (x < (long)UPPER_LIMIT); x++) {
        j = (long)residues[x] + (long)dist + total_dist;
        if (j % (long)__prime_tab[x] == 0) {
           dist += step; x = -1;
        }
    }
    
    /* recalc the total distance from where we started */
    total_dist += dist;
    
    /* add to N */
    if (mp_add_d(N, dist, N) != MP_OKAY) { goto error; }
    
    /* n1 = N - 1 */
    if (mp_sub_d(N, 1, &n1) != MP_OKAY)  { goto error; }

    /* r = N - 1 */
    if (mp_copy(&n1, &r) != MP_OKAY)     { goto error; }

    /* find s such that N-1 = (2^s)r */
    s = 0;
    while (mp_iseven(&r)) {
        ++s;
        if (mp_div_2(&r, &r) != MP_OKAY) {
           goto error;
        }
    }
    for (x = 0; x < 8; x++) {
        /* choose a */
        mp_set(&a, __prime_tab[x]);

        /* compute y = a^r mod n */
        if (mp_exptmod(&a, &r, N, &y) != MP_OKAY)             { goto error; }

        /* (y != 1) AND (y != N-1) */
        if ((mp_cmp_d(&y, 1) != 0) && (mp_cmp(&y, &n1) != 0)) {
            /* while j <= s-1 and y != n-1 */
            for (j = 1; (j <= (s-1)) && (mp_cmp(&y, &n1) != 0); j++) {
                /* y = y^2 mod N */
                if (mp_sqrmod(&y, N, &y) != MP_OKAY)          { goto error; }

                /* if y == 1 return false */
                if (mp_cmp_d(&y, 1) == 0)                     { goto loop; }
            }

            /* if y != n-1 return false */
            if (mp_cmp(&y, &n1) != 0)                         { goto loop; }
        }
    }

    res = CRYPT_OK;
    goto done;
error:
    res = CRYPT_MEM;
done:
    mp_clear_multi(&a, &y, &n1, &r, NULL);

#ifdef CLEAN_STACK
    zeromem(residues, sizeof(residues));
#endif    
    return res;
}
示例#22
0
/**
 * bignum_cmd_d - Compare bignum to standard integer
 * @a: Bignum from bignum_init()
 * @b: Small integer
 * Returns: 0 on success, -1 on failure
 */
int bignum_cmp_d(const struct bignum *a, unsigned long b)
{
	return mp_cmp_d((mp_int *) a, b);
}
示例#23
0
int main(int argc, char *argv[])
{
  mp_int   a, m, p, k;

  if(argc < 3) {
    fprintf(stderr, "Usage: %s <a> <m>\n", argv[0]);
    return 1;
  }

  mp_init(&a);
  mp_init(&m);
  mp_init(&p);
  mp_add_d(&p, 1, &p);

  mp_read_radix(&a, argv[1], 10);
  mp_read_radix(&m, argv[2], 10);

  mp_init_copy(&k, &a);

  signal(SIGINT, sig_catch);
#ifndef __OS2__
  signal(SIGHUP, sig_catch);
#endif
  signal(SIGTERM, sig_catch);

  while(mp_cmp(&p, &m) < 0) {
    if(g_quit) {
	int  len;
	char *buf;

	len = mp_radix_size(&p, 10);
	buf = malloc(len);
	mp_toradix(&p, buf, 10);
	
	fprintf(stderr, "Terminated at: %s\n", buf);
	free(buf);
	return 1;
    }
    if(mp_cmp_d(&k, 1) == 0) {
      int    len;
      char  *buf;

      len = mp_radix_size(&p, 10);
      buf = malloc(len);
      mp_toradix(&p, buf, 10);

      printf("%s\n", buf);

      free(buf);
      break;
    }

    mp_mulmod(&k, &a, &m, &k);
    mp_add_d(&p, 1, &p);
  }

  if(mp_cmp(&p, &m) >= 0) 
    printf("No annihilating power.\n");

  mp_clear(&p);
  mp_clear(&m);
  mp_clear(&a);
  return 0;
}
示例#24
0
/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
    return MP_VAL;
  }

  /* init temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, 
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x = a, y = b */
  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
  }
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 2. [modified] if x,y are both even then return an error! */
  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&A, 1);
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if A or B is odd then */
    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
      /* A = (A+y)/2, B = (B-x)/2 */
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* A = A/2, B = B/2 */
    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if C or D is odd then */
    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
      /* C = (C+y)/2, D = (D-x)/2 */
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* C = C/2, D = D/2 */
    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, A = A - C, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  } else {
    /* v - v - u, C = C - A, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* if its too low */
  while (mp_cmp_d(&C, 0) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* too big */
  while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* C is now the inverse */
  mp_exch (&C, c);
  res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
  return res;
}
示例#25
0
int main(void)
{
   ulong64 tt, gg, CLK_PER_SEC;
   FILE *log, *logb, *logc, *logd;
   mp_int a, b, c, d, e, f;
   int n, cnt, ix, old_kara_m, old_kara_s;
   unsigned rr;

   mp_init(&a);
   mp_init(&b);
   mp_init(&c);
   mp_init(&d);
   mp_init(&e);
   mp_init(&f);

   srand(time(NULL));


   /* temp. turn off TOOM */
   TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;

   CLK_PER_SEC = TIMFUNC();
   sleep(1);
   CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;

   printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
   goto exptmod;
   log = fopen("logs/add.log", "w");
   for (cnt = 8; cnt <= 128; cnt += 8) {
      SLEEP;
      mp_rand(&a, cnt);
      mp_rand(&b, cnt);
      rr = 0;
      tt = -1;
      do {
	 gg = TIMFUNC();
	 DO(mp_add(&a, &b, &c));
	 gg = (TIMFUNC() - gg) >> 1;
	 if (tt > gg)
	    tt = gg;
      } while (++rr < 100000);
      printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
	     mp_count_bits(&a), CLK_PER_SEC / tt, tt);
      fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
      fflush(log);
   }
   fclose(log);

   log = fopen("logs/sub.log", "w");
   for (cnt = 8; cnt <= 128; cnt += 8) {
      SLEEP;
      mp_rand(&a, cnt);
      mp_rand(&b, cnt);
      rr = 0;
      tt = -1;
      do {
	 gg = TIMFUNC();
	 DO(mp_sub(&a, &b, &c));
	 gg = (TIMFUNC() - gg) >> 1;
	 if (tt > gg)
	    tt = gg;
      } while (++rr < 100000);

      printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
	     mp_count_bits(&a), CLK_PER_SEC / tt, tt);
      fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
      fflush(log);
   }
   fclose(log);

   /* do mult/square twice, first without karatsuba and second with */
 multtest:
   old_kara_m = KARATSUBA_MUL_CUTOFF;
   old_kara_s = KARATSUBA_SQR_CUTOFF;
   for (ix = 0; ix < 2; ix++) {
      printf("With%s Karatsuba\n", (ix == 0) ? "out" : "");

      KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m;
      KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s;

      log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w");
      for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
	 SLEEP;
	 mp_rand(&a, cnt);
	 mp_rand(&b, cnt);
	 rr = 0;
	 tt = -1;
	 do {
	    gg = TIMFUNC();
	    DO(mp_mul(&a, &b, &c));
	    gg = (TIMFUNC() - gg) >> 1;
	    if (tt > gg)
	       tt = gg;
	 } while (++rr < 100);
	 printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n",
		mp_count_bits(&a), CLK_PER_SEC / tt, tt);
	 fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
	 fflush(log);
      }
      fclose(log);

      log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w");
      for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
	 SLEEP;
	 mp_rand(&a, cnt);
	 rr = 0;
	 tt = -1;
	 do {
	    gg = TIMFUNC();
	    DO(mp_sqr(&a, &b));
	    gg = (TIMFUNC() - gg) >> 1;
	    if (tt > gg)
	       tt = gg;
	 } while (++rr < 100);
	 printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n",
		mp_count_bits(&a), CLK_PER_SEC / tt, tt);
	 fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
	 fflush(log);
      }
      fclose(log);

   }
 exptmod:

   {
      char *primes[] = {
	 /* 2K large moduli */
	 "179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
	 "32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
	 "1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
	 /* 2K moduli mersenne primes */
	 "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
	 "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
	 "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
	 "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
	 "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
	 "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",

	 /* DR moduli */
	 "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
	 "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
	 "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
	 "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
	 "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
	 "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
	 "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",

	 /* generic unrestricted moduli */
	 "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
	 "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
	 "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
	 "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
	 "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
	 "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
	 "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
	 NULL
      };
      log = fopen("logs/expt.log", "w");
      logb = fopen("logs/expt_dr.log", "w");
      logc = fopen("logs/expt_2k.log", "w");
      logd = fopen("logs/expt_2kl.log", "w");
      for (n = 0; primes[n]; n++) {
	 SLEEP;
	 mp_read_radix(&a, primes[n], 10);
	 mp_zero(&b);
	 for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
	    mp_mul_2(&b, &b);
	    b.dp[0] |= lbit();
	    b.used += 1;
	 }
	 mp_sub_d(&a, 1, &c);
	 mp_mod(&b, &c, &b);
	 mp_set(&c, 3);
	 rr = 0;
	 tt = -1;
	 do {
	    gg = TIMFUNC();
	    DO(mp_exptmod(&c, &b, &a, &d));
	    gg = (TIMFUNC() - gg) >> 1;
	    if (tt > gg)
	       tt = gg;
	 } while (++rr < 10);
	 mp_sub_d(&a, 1, &e);
	 mp_sub(&e, &b, &b);
	 mp_exptmod(&c, &b, &a, &e);	/* c^(p-1-b) mod a */
	 mp_mulmod(&e, &d, &a, &d);	/* c^b * c^(p-1-b) == c^p-1 == 1 */
	 if (mp_cmp_d(&d, 1)) {
	    printf("Different (%d)!!!\n", mp_count_bits(&a));
	    draw(&d);
	    exit(0);
	 }
	 printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n",
		mp_count_bits(&a), CLK_PER_SEC / tt, tt);
	 fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
		 "%d %9llu\n", mp_count_bits(&a), tt);
      }
   }
   fclose(log);
   fclose(logb);
   fclose(logc);
   fclose(logd);

   log = fopen("logs/invmod.log", "w");
   for (cnt = 4; cnt <= 128; cnt += 4) {
      SLEEP;
      mp_rand(&a, cnt);
      mp_rand(&b, cnt);

      do {
	 mp_add_d(&b, 1, &b);
	 mp_gcd(&a, &b, &c);
      } while (mp_cmp_d(&c, 1) != MP_EQ);

      rr = 0;
      tt = -1;
      do {
	 gg = TIMFUNC();
	 DO(mp_invmod(&b, &a, &c));
	 gg = (TIMFUNC() - gg) >> 1;
	 if (tt > gg)
	    tt = gg;
      } while (++rr < 1000);
      mp_mulmod(&b, &c, &a, &d);
      if (mp_cmp_d(&d, 1) != MP_EQ) {
	 printf("Failed to invert\n");
	 return 0;
      }
      printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n",
	     mp_count_bits(&a), CLK_PER_SEC / tt, tt);
      fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
   }
   fclose(log);

   return 0;
}
/**
  Sign a hash with DSA
  @param in       The hash to sign
  @param inlen    The length of the hash to sign
  @param r        The "r" integer of the signature (caller must initialize with mp_init() first)
  @param s        The "s" integer of the signature (caller must initialize with mp_init() first)
  @param prng     An active PRNG state
  @param wprng    The index of the PRNG desired
  @param key      A private DSA key
  @return CRYPT_OK if successful
*/
int dsa_sign_hash_raw(const unsigned char *in,  unsigned long inlen,
                                   void   *r,   void *s,
                               prng_state *prng, int wprng, dsa_key *key)
{
   void         *k, *kinv, *tmp;
   unsigned char *buf;
   int            err;

   LTC_ARGCHK(in  != NULL);
   LTC_ARGCHK(r   != NULL);
   LTC_ARGCHK(s   != NULL);
   LTC_ARGCHK(key != NULL);

   if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
      return err;
   }
   if (key->type != PK_PRIVATE) {
      return CRYPT_PK_NOT_PRIVATE;
   }

   /* check group order size  */
   if (key->qord >= MDSA_MAX_GROUP) {
      return CRYPT_INVALID_ARG;
   }

   buf = XMALLOC(MDSA_MAX_GROUP);
   if (buf == NULL) {
      return CRYPT_MEM;
   }

   /* Init our temps */
   if ((err = mp_init_multi(&k, &kinv, &tmp, NULL)) != CRYPT_OK)                       { goto ERRBUF; }

retry:

   do {
      /* gen random k */
      if (prng_descriptor[wprng].read(buf, key->qord, prng) != (unsigned long)key->qord) {
         err = CRYPT_ERROR_READPRNG;
         goto error;
      }

      /* read k */
      if ((err = mp_read_unsigned_bin(k, buf, key->qord)) != CRYPT_OK)                 { goto error; }

      /* k > 1 ? */
      if (mp_cmp_d(k, 1) != LTC_MP_GT)                                                 { goto retry; }

      /* test gcd */
      if ((err = mp_gcd(k, key->q, tmp)) != CRYPT_OK)                                  { goto error; }
   } while (mp_cmp_d(tmp, 1) != LTC_MP_EQ);

   /* now find 1/k mod q */
   if ((err = mp_invmod(k, key->q, kinv)) != CRYPT_OK)                                 { goto error; }

   /* now find r = g^k mod p mod q */
   if ((err = mp_exptmod(key->g, k, key->p, r)) != CRYPT_OK)                           { goto error; }
   if ((err = mp_mod(r, key->q, r)) != CRYPT_OK)                                       { goto error; }

   if (mp_iszero(r) == LTC_MP_YES)                                                     { goto retry; }

   /* now find s = (in + xr)/k mod q */
   if ((err = mp_read_unsigned_bin(tmp, (unsigned char *)in, inlen)) != CRYPT_OK)      { goto error; }
   if ((err = mp_mul(key->x, r, s)) != CRYPT_OK)                                       { goto error; }
   if ((err = mp_add(s, tmp, s)) != CRYPT_OK)                                          { goto error; }
   if ((err = mp_mulmod(s, kinv, key->q, s)) != CRYPT_OK)                              { goto error; }

   if (mp_iszero(s) == LTC_MP_YES)                                                     { goto retry; }

   err = CRYPT_OK;
error: 
   mp_clear_multi(k, kinv, tmp, NULL);
ERRBUF:
#ifdef LTC_CLEAN_STACK
   zeromem(buf, MDSA_MAX_GROUP);
#endif
   XFREE(buf);
   return err;
}
示例#27
0
文件: dsa.c 项目: agnov8/wolfssl
/* modulus_size in bits */
int wc_MakeDsaParameters(WC_RNG *rng, int modulus_size, DsaKey *dsa)
{
    mp_int  tmp, tmp2;
    int     err, msize, qsize,
            loop_check_prime = 0,
            check_prime = MP_NO;
    unsigned char   *buf;

    if (rng == NULL || dsa == NULL)
        return BAD_FUNC_ARG;

    /* set group size in bytes from modulus size
     * FIPS 186-4 defines valid values (1024, 160) (2048, 256) (3072, 256)
     */
    switch (modulus_size) {
        case 1024:
            qsize = 20;
            break;
        case 2048:
        case 3072:
            qsize = 32;
            break;
        default:
            return BAD_FUNC_ARG;
            break;
    }

    /* modulus size in bytes */
    msize = modulus_size / 8;

    /* allocate ram */
    buf = (unsigned char *)XMALLOC(msize - qsize,
                                   NULL, DYNAMIC_TYPE_TMP_BUFFER);
    if (buf == NULL) {
        return MEMORY_E;
    }

    /* make a random string that will be multplied against q */
    err = wc_RNG_GenerateBlock(rng, buf, msize - qsize);
    if (err != MP_OKAY) {
        XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
        return err;
    }

    /* force magnitude */
    buf[0] |= 0xC0;

    /* force even */
    buf[msize - qsize - 1] &= ~1;

    if (mp_init_multi(&tmp2, &dsa->p, &dsa->q, 0, 0, 0) != MP_OKAY) {
        mp_clear(&dsa->q);
        XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
        return MP_INIT_E;
    }

    err = mp_read_unsigned_bin(&tmp2, buf, msize - qsize);
    if (err != MP_OKAY) {
        mp_clear(&dsa->q);
        mp_clear(&dsa->p);
        mp_clear(&tmp2);
        XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
        return err;
    }
    XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);

    /* make our prime q */
    err = mp_rand_prime(&dsa->q, qsize, rng, NULL);
    if (err != MP_OKAY) {
        mp_clear(&dsa->q);
        mp_clear(&dsa->p);
        mp_clear(&tmp2);
        return err;
    }

    /* p = random * q */
    err = mp_mul(&dsa->q, &tmp2, &dsa->p);
    if (err != MP_OKAY) {
        mp_clear(&dsa->q);
        mp_clear(&dsa->p);
        mp_clear(&tmp2);
        return err;
    }

    /* p = random * q + 1, so q is a prime divisor of p-1 */
    err = mp_add_d(&dsa->p, 1, &dsa->p);
    if (err != MP_OKAY) {
        mp_clear(&dsa->q);
        mp_clear(&dsa->p);
        mp_clear(&tmp2);
        return err;
    }

    if (mp_init(&tmp) != MP_OKAY) {
        mp_clear(&dsa->q);
        mp_clear(&dsa->p);
        mp_clear(&tmp2);
        return MP_INIT_E;
    }

    /* tmp = 2q  */
    err = mp_add(&dsa->q, &dsa->q, &tmp);
    if (err != MP_OKAY) {
        mp_clear(&dsa->q);
        mp_clear(&dsa->p);
        mp_clear(&tmp);
        mp_clear(&tmp2);
        return err;
    }

    /* loop until p is prime */
    while (check_prime == MP_NO) {
        err = mp_prime_is_prime(&dsa->p, 8, &check_prime);
        if (err != MP_OKAY) {
            mp_clear(&dsa->q);
            mp_clear(&dsa->p);
            mp_clear(&tmp);
            mp_clear(&tmp2);
            return err;
        }

        if (check_prime != MP_YES) {
            /* p += 2q */
            err = mp_add(&tmp, &dsa->p, &dsa->p);
            if (err != MP_OKAY) {
                mp_clear(&dsa->q);
                mp_clear(&dsa->p);
                mp_clear(&tmp);
                mp_clear(&tmp2);
                return err;
            }

            loop_check_prime++;
        }
    }

    /* tmp2 += (2*loop_check_prime)
     * to have p = (q * tmp2) + 1 prime
     */
    if (loop_check_prime) {
        err = mp_add_d(&tmp2, 2*loop_check_prime, &tmp2);
        if (err != MP_OKAY) {
            mp_clear(&dsa->q);
            mp_clear(&dsa->p);
            mp_clear(&tmp);
            mp_clear(&tmp2);
            return err;
        }
    }

    if (mp_init(&dsa->g) != MP_OKAY) {
        mp_clear(&dsa->q);
        mp_clear(&dsa->p);
        mp_clear(&tmp);
        mp_clear(&tmp2);
        return MP_INIT_E;
    }

    /* find a value g for which g^tmp2 != 1 */
    mp_set(&dsa->g, 1);

    do {
        err = mp_add_d(&dsa->g, 1, &dsa->g);
        if (err != MP_OKAY) {
            mp_clear(&dsa->q);
            mp_clear(&dsa->p);
            mp_clear(&dsa->g);
            mp_clear(&tmp);
            mp_clear(&tmp2);
            return err;
        }

        err = mp_exptmod(&dsa->g, &tmp2, &dsa->p, &tmp);
        if (err != MP_OKAY) {
            mp_clear(&dsa->q);
            mp_clear(&dsa->p);
            mp_clear(&dsa->g);
            mp_clear(&tmp);
            mp_clear(&tmp2);
            return err;
        }

    } while (mp_cmp_d(&tmp, 1) == MP_EQ);

    /* at this point tmp generates a group of order q mod p */
    mp_exch(&tmp, &dsa->g);

    mp_clear(&tmp);
    mp_clear(&tmp2);

    return MP_OKAY;
}
/**
   Double an ECC point
   @param P   The point to double
   @param R   [out] The destination of the double
   @param modulus  The modulus of the field the ECC curve is in
   @param mp       The "b" value from montgomery_setup()
   @return CRYPT_OK on success
*/
int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp)
{
   void *t1, *t2;
   int   err;

   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(R       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(mp      != NULL);

   if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) {
      return err;
   }

   if (P != R) {
      if ((err = mp_copy(P->x, R->x)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_copy(P->y, R->y)) != CRYPT_OK)                                { goto done; }
      if ((err = mp_copy(P->z, R->z)) != CRYPT_OK)                                { goto done; }
   }

   /* t1 = Z * Z */
   if ((err = mp_sqr(R->z, t1)) != CRYPT_OK)                                      { goto done; }
   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)                 { goto done; }
   /* Z = Y * Z */
   if ((err = mp_mul(R->z, R->y, R->z)) != CRYPT_OK)                              { goto done; }
   if ((err = mp_montgomery_reduce(R->z, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* Z = 2Z */
   if ((err = mp_add(R->z, R->z, R->z)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp(R->z, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(R->z, modulus, R->z)) != CRYPT_OK)                        { goto done; }
   }
   
   /* T2 = X - T1 */
   if ((err = mp_sub(R->x, t1, t2)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                            { goto done; }
   }
   /* T1 = X + T1 */
   if ((err = mp_add(t1, R->x, t1)) != CRYPT_OK)                                  { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
   }
   /* T2 = T1 * T2 */
   if ((err = mp_mul(t1, t2, t2)) != CRYPT_OK)                                    { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)                 { goto done; }
   /* T1 = 2T2 */
   if ((err = mp_add(t2, t2, t1)) != CRYPT_OK)                                    { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
   }
   /* T1 = T1 + T2 */
   if ((err = mp_add(t1, t2, t1)) != CRYPT_OK)                                    { goto done; }
   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
   }

   /* Y = 2Y */
   if ((err = mp_add(R->y, R->y, R->y)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp(R->y, modulus) != LTC_MP_LT) {
      if ((err = mp_sub(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
   }
   /* Y = Y * Y */
   if ((err = mp_sqr(R->y, R->y)) != CRYPT_OK)                                    { goto done; }
   if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* T2 = Y * Y */
   if ((err = mp_sqr(R->y, t2)) != CRYPT_OK)                                      { goto done; }
   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)                 { goto done; }
   /* T2 = T2/2 */
   if (mp_isodd(t2)) {
      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                            { goto done; }
   }
   if ((err = mp_div_2(t2, t2)) != CRYPT_OK)                                      { goto done; }
   /* Y = Y * X */
   if ((err = mp_mul(R->y, R->x, R->y)) != CRYPT_OK)                              { goto done; }
   if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }

   /* X  = T1 * T1 */
   if ((err = mp_sqr(t1, R->x)) != CRYPT_OK)                                      { goto done; }
   if ((err = mp_montgomery_reduce(R->x, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* X = X - Y */
   if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
      if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK)                        { goto done; }
   }
   /* X = X - Y */
   if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
      if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK)                        { goto done; }
   }

   /* Y = Y - X */     
   if ((err = mp_sub(R->y, R->x, R->y)) != CRYPT_OK)                              { goto done; }
   if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
      if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
   }
   /* Y = Y * T1 */
   if ((err = mp_mul(R->y, t1, R->y)) != CRYPT_OK)                                { goto done; }
   if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
   /* Y = Y - T2 */
   if ((err = mp_sub(R->y, t2, R->y)) != CRYPT_OK)                                { goto done; }
   if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
      if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
   }
 
   err = CRYPT_OK;
done:
   mp_clear_multi(t1, t2, NULL);
   return err;
}
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
   int      err, res, x, y;
   mp_digit res_tab[PRIME_SIZE], step, kstep;
   mp_int   b;

   /* ensure t is valid */
   if (t <= 0 || t > PRIME_SIZE) {
      return MP_VAL;
   }

   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
   if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
      /* find which prime it is bigger than */
      for (x = PRIME_SIZE - 2; x >= 0; x--) {
          if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
             if (bbs_style == 1) {
                /* ok we found a prime smaller or
                 * equal [so the next is larger]
                 *
                 * however, the prime must be
                 * congruent to 3 mod 4
                 */
                if ((ltm_prime_tab[x + 1] & 3) != 3) {
                   /* scan upwards for a prime congruent to 3 mod 4 */
                   for (y = x + 1; y < PRIME_SIZE; y++) {
                       if ((ltm_prime_tab[y] & 3) == 3) {
                          mp_set(a, ltm_prime_tab[y]);
                          return MP_OKAY;
                       }
                   }
                }
             } else {
                mp_set(a, ltm_prime_tab[x + 1]);
                return MP_OKAY;
             }
          }
      }
      /* at this point a maybe 1 */
      if (mp_cmp_d(a, 1) == MP_EQ) {
         mp_set(a, 2);
         return MP_OKAY;
      }
      /* fall through to the sieve */
   }

   /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
   if (bbs_style == 1) {
      kstep   = 4;
   } else {
      kstep   = 2;
   }

   /* at this point we will use a combination of a sieve and Miller-Rabin */

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3) != 3) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
      }
   } else {
      if (mp_iseven(a) == 1) {
         /* force odd */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
            return err;
         }
      }
   }

   /* generate the restable */
   for (x = 1; x < PRIME_SIZE; x++) {
      if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
         return err;
      }
   }

   /* init temp used for Miller-Rabin Testing */
   if ((err = mp_init(&b)) != MP_OKAY) {
      return err;
   }

   for (;;) {
      /* skip to the next non-trivially divisible candidate */
      step = 0;
      do {
         /* y == 1 if any residue was zero [e.g. cannot be prime] */
         y     =  0;

         /* increase step to next candidate */
         step += kstep;

         /* compute the new residue without using division */
         for (x = 1; x < PRIME_SIZE; x++) {
             /* add the step to each residue */
             res_tab[x] += kstep;

             /* subtract the modulus [instead of using division] */
             if (res_tab[x] >= ltm_prime_tab[x]) {
                res_tab[x]  -= ltm_prime_tab[x];
             }

             /* set flag if zero */
             if (res_tab[x] == 0) {
                y = 1;
             }
         }
      } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* if didn't pass sieve and step == MAX then skip test */
      if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
         continue;
      }

      /* is this prime? */
      for (x = 0; x < t; x++) {
          mp_set(&b, ltm_prime_tab[t]);
          if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
             goto LBL_ERR;
          }
          if (res == MP_NO) {
             break;
          }
      }

      if (res == MP_YES) {
         break;
      }
   }

   err = MP_OKAY;
LBL_ERR:
   mp_clear(&b);
   return err;
}
示例#30
0
/* Make an RSA key for size bits, with e specified, 65537 is a good e */
int MakeRsaKey(RsaKey* key, int size, long e, RNG* rng)
{
    mp_int p, q, tmp1, tmp2, tmp3;
    int    err;

    if (key == NULL || rng == NULL)
        return BAD_FUNC_ARG;

    if (size < RSA_MIN_SIZE || size > RSA_MAX_SIZE)
        return BAD_FUNC_ARG;

    if (e < 3 || (e & 1) == 0)
        return BAD_FUNC_ARG;

    if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != MP_OKAY)
        return err;

    err = mp_set_int(&tmp3, e);

    /* make p */
    if (err == MP_OKAY) {
        do {
            err = rand_prime(&p, size/16, rng, key->heap); /* size in bytes/2 */

            if (err == MP_OKAY)
                err = mp_sub_d(&p, 1, &tmp1);  /* tmp1 = p-1 */

            if (err == MP_OKAY)
                err = mp_gcd(&tmp1, &tmp3, &tmp2);  /* tmp2 = gcd(p-1, e) */
        } while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0);  /* e divdes p-1 */
    }

    /* make q */
    if (err == MP_OKAY) {
        do {
            err = rand_prime(&q, size/16, rng, key->heap); /* size in bytes/2 */

            if (err == MP_OKAY)
                err = mp_sub_d(&q, 1, &tmp1);  /* tmp1 = q-1 */

            if (err == MP_OKAY)
                err = mp_gcd(&tmp1, &tmp3, &tmp2);  /* tmp2 = gcd(q-1, e) */
        } while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0);  /* e divdes q-1 */
    }

    if (err == MP_OKAY)
        err = mp_init_multi(&key->n, &key->e, &key->d, &key->p, &key->q, NULL);

    if (err == MP_OKAY)
        err = mp_init_multi(&key->dP, &key->dQ, &key->u, NULL, NULL, NULL);

    if (err == MP_OKAY)
        err = mp_sub_d(&p, 1, &tmp2);  /* tmp2 = p-1 */

    if (err == MP_OKAY)
        err = mp_lcm(&tmp1, &tmp2, &tmp1);  /* tmp1 = lcm(p-1, q-1),last loop */

    /* make key */
    if (err == MP_OKAY)
        err = mp_set_int(&key->e, e);  /* key->e = e */

    if (err == MP_OKAY)                /* key->d = 1/e mod lcm(p-1, q-1) */
        err = mp_invmod(&key->e, &tmp1, &key->d);

    if (err == MP_OKAY)
        err = mp_mul(&p, &q, &key->n);  /* key->n = pq */

    if (err == MP_OKAY)
        err = mp_sub_d(&p, 1, &tmp1);

    if (err == MP_OKAY)
        err = mp_sub_d(&q, 1, &tmp2);

    if (err == MP_OKAY)
        err = mp_mod(&key->d, &tmp1, &key->dP);

    if (err == MP_OKAY)
        err = mp_mod(&key->d, &tmp2, &key->dQ);

    if (err == MP_OKAY)
        err = mp_invmod(&q, &p, &key->u);

    if (err == MP_OKAY)
        err = mp_copy(&p, &key->p);

    if (err == MP_OKAY)
        err = mp_copy(&q, &key->q);

    if (err == MP_OKAY)
        key->type = RSA_PRIVATE; 

    mp_clear(&tmp3); 
    mp_clear(&tmp2); 
    mp_clear(&tmp1); 
    mp_clear(&q); 
    mp_clear(&p);

    if (err != MP_OKAY) {
        FreeRsaKey(key);        
        return err;
    }

    return 0;
}