示例#1
0
/**
 * Constructor that makes a ConverterASTNode from an ASTNode.
 */
ConverterASTNode::ConverterASTNode(const ASTNode &templ): ASTNode(templ.getType())
{
  if (this->getType() == AST_RATIONAL)
    {
      this->mDenominator = templ.getDenominator();
      this->mInteger = templ.getNumerator();
    }
  else if (this->getType() == AST_REAL || this->getType() == AST_REAL_E)
    {
      this->mExponent = templ.getExponent();
      this->mReal = templ.getMantissa();
    }
  if (this->getType() == AST_PLUS || this->getType() == AST_MINUS || this->getType() == AST_TIMES || this->getType() == AST_DIVIDE || this->getType() == AST_POWER)
    {
      this->mChar = templ.getCharacter();
    }
  else if (this->getType() == AST_INTEGER)
    {
      this->mInteger = templ.getInteger();
    }
  if ((!this->isOperator()) && (!this->isNumber()))
    {
      this->setName(templ.getName());
    }
  unsigned int counter;
  for (counter = 0; counter < templ.getNumChildren(); counter++)
    {
      this->addChild(new ConverterASTNode(*templ.getChild(counter)));
    }
};
/**
  * Checks that the units of the power function are consistent
  *
  * If inconsistent units are found, an error message is logged.
  * 
  * The two arguments to power, which are of the form power(a, b) 
  * with the meaning a^b, should be as follows: 
  * (1) if the second argument is an integer, 
  *     then the first argument can have any units; 
  * (2) if the second argument b is a rational number n/m, 
  * it must be possible to derive the m-th root of (a{unit})n,
  * where {unit} signifies the units associated with a; 
  * otherwise, (3) the units of the first argument must be “dimensionless”. 
  * The second argument (b) should always have units of “dimensionless”.
  *
  */
void 
PowerUnitsCheck::checkUnitsFromPower (const Model& m, 
                                        const ASTNode& node, 
                                        const SBase & sb, bool inKL, int reactNo)
{

  /* check that node has 2 children */
  if (node.getNumChildren() != 2)
  {
    return;
  }

  double value;
  UnitDefinition dim(m.getSBMLNamespaces());
  Unit unit(m.getSBMLNamespaces());
  unit.setKind(UNIT_KIND_DIMENSIONLESS);
  unit.initDefaults();
  dim.addUnit(&unit);

  UnitFormulaFormatter *unitFormat = new UnitFormulaFormatter(&m);

  UnitDefinition *tempUD = NULL;
  UnitDefinition *unitsArg1, *unitsArgPower;
  unitsArg1 = unitFormat->getUnitDefinition(node.getLeftChild(), inKL, reactNo);
  unsigned int undeclaredUnits = 
    unitFormat->getContainsUndeclaredUnits();

  ASTNode *child = node.getRightChild();
  unitFormat->resetFlags();
  unitsArgPower = unitFormat->getUnitDefinition(child, inKL, reactNo);

  unsigned int undeclaredUnitsPower = 
    unitFormat->getContainsUndeclaredUnits();

  // The second argument (b) should always have units of “dimensionless”.
  // or it has undeclared units that we assume are correct

  if (undeclaredUnitsPower == 0 && !UnitDefinition::areEquivalent(&dim, unitsArgPower))
  {
    logNonDimensionlessPowerConflict(node, sb);
  }

  // The first argument is dimensionless then it doesnt matter 
  // what the power is

  if (undeclaredUnits == 0 && !UnitDefinition::areEquivalent(&dim, unitsArg1))
  {
    // if not argument needs to be an integer or a rational 
    unsigned int isInteger = 0;
    unsigned int isRational = 0;
    unsigned int isExpression = 0;
    /* power must be an integer
     * but need to check that it is not a real
     * number that is integral
     * i.e. mathml <cn> 2 </cn> will record a "real"
     */
    if (child->isRational())
    {
      isRational = 1;
    }
    else if (child->isInteger())
    {
      isInteger = 1;
    }
    else if (child->isReal())
    {
      if (ceil(child->getReal()) == child->getReal())
      {
        isInteger = 1;
      }
    }
    else if (child->getNumChildren() > 0)

    {
      // power might itself be an expression
      tempUD = unitFormat->getUnitDefinition(child, inKL, reactNo);
      UnitDefinition::simplify(tempUD);

      if (tempUD->isVariantOfDimensionless())
      {
        SBMLTransforms::mapComponentValues(&m);
        double value = SBMLTransforms::evaluateASTNode(child);
        SBMLTransforms::clearComponentValues();

#if defined(__linux) 
        if (!std::isnan(value))
#else
        if (!isnan(value))	
#endif   
        {
          if (floor(value) != value)
            isExpression = 1;
          else
            isInteger = 1;
        }
        else
        {
          isExpression = 1;
        }
      }
      else
      {
        /* here the child is an expression with units
        * flag the expression as not checked
        */
        isExpression = 1;
      }
    }
    else 
    {
      // power could be a parameter or a speciesReference in l3
      const Parameter *param = NULL;
      const SpeciesReference *sr = NULL;

      if (child->isName())
      {
        /* Parameters may be declared in two places (the model and the
        * kinetic law's local parameter list), so we have to check both.
        */

        if (sb.getTypeCode() == SBML_KINETIC_LAW)
        {
	        const KineticLaw* kl = dynamic_cast<const KineticLaw*>(&sb);

	        /* First try local parameters and if null is returned, try
	        * the global parameters */
	        if (kl != NULL)
	        {
	          param = kl->getParameter(child->getName());
	        }
        }

	      if (param == NULL)
	      {
	        param = m.getParameter(child->getName());
	      }

        if (param == NULL && m.getLevel() > 2)
        {
          // could be a species reference
          sr = m.getSpeciesReference(child->getName());
        }
        
      }

      if (param != NULL)
      {
        /* We found a parameter with this identifier. */

        if (UnitDefinition::areEquivalent(&dim, unitsArgPower) || undeclaredUnitsPower)
        {
          value = param->getValue();
          if (value != 0)
          {
            if (ceil(value) == value)
            {
              isInteger = 1;
            }
          }

        }
        else
        {
	  /* No parameter definition found for child->getName() */
          logUnitConflict(node, sb);
        }
      }
      else if (sr != NULL)
      {
        // technically here there is an issue
        // stoichiometry is dimensionless
        SBMLTransforms::mapComponentValues(&m);
        double value = SBMLTransforms::evaluateASTNode(child, &m);
        SBMLTransforms::clearComponentValues();
        // but it may not be an integer
	
#if defined(__linux) 
        if (!std::isnan(value))
#else
        if (!isnan(value))	
#endif   
          // we cant check
        {
          isExpression = 1;
        }
        else
        {
          if (ceil(value) == value)
          {
            isInteger = 1;
          }
        }
      }
    }

    if (isRational == 1)
    {
      //FIX-ME will need sorting for double exponents

      //* (2) if the second argument b is a rational number n/m, 
      //* it must be possible to derive the m-th root of (a{unit})n,
      //* where {unit} signifies the units associated with a; 
      unsigned int impossible = 0;
      for (unsigned int n = 0; impossible == 0 && n < unitsArg1->getNumUnits(); n++)
      {
        if ((int)(unitsArg1->getUnit(n)->getExponent()) * child->getInteger() %
          child->getDenominator() != 0)
          impossible = 1;
      }

      if (impossible)
        logRationalPowerConflict(node, sb);

    }
    else if (isExpression == 1)
    {
      logExpressionPowerConflict(node, sb);
    }
    else if (isInteger == 0)
    {
      logNonIntegerPowerConflict(node, sb);
    }

  }




 // if (!areEquivalent(dim, unitsPower)) 
 // {
 //   /* 'v' does not have units of dimensionless. */

 //   /* If the power 'n' is a parameter, check if its units are either
 //    * undeclared or declared as dimensionless.  If either is the case,
 //    * the value of 'n' must be an integer.
 //    */

 //   const Parameter *param = NULL;

 //   if (child->isName())
 //   {
 //     /* Parameters may be declared in two places (the model and the
 //      * kinetic law's local parameter list), so we have to check both.
 //      */

 //     if (sb.getTypeCode() == SBML_KINETIC_LAW)
 //     {
	//      const KineticLaw* kl = dynamic_cast<const KineticLaw*>(&sb);

	//      /* First try local parameters and if null is returned, try
	//      * the global parameters */
	//      if (kl != NULL)
	//      {
	//        param = kl->getParameter(child->getName());
	//      }
 //     }

	//    if (param == NULL)
	//    {
	//      param = m.getParameter(child->getName());
	//    }
 //     
 //   }

 //   if (param != NULL)
 //   {
 //     /* We found a parameter with this identifier. */

 //     if (areEquivalent(dim, unitsArgPower) || unitFormat->hasUndeclaredUnits(child))
 //     {
 //       value = param->getValue();
 //       if (value != 0)
 //       {
 //         if (ceil(value) != value)
 //         {
 //           logUnitConflict(node, sb);
 //         }
 //       }

 //     }
 //     else
 //     {
	///* No parameter definition found for child->getName() */
 //       logUnitConflict(node, sb);
 //     }
 //   }
 //   else if (child->isFunction() || child->isOperator())
 //   {
 //     /* cannot test whether the value will be appropriate */
 //     if (!areEquivalent(dim, unitsArgPower))
 //     {
 //       logUnitConflict(node, sb);
 //     }
 //   }
 //   /* power must be an integer
 //    * but need to check that it is not a real
 //    * number that is integral
 //    * i.e. mathml <cn> 2 </cn> will record a "real"
 //    */
 //   else if (!child->isInteger())
 //   {
 //     if (!child->isReal()) 
 //     {
 //       logUnitConflict(node, sb);
 //     }
 //     else if (ceil(child->getReal()) != child->getReal())
 //     {
 //       logUnitConflict(node, sb);
 //     }
 //   }
 // }
 // else if (!areEquivalent(dim, unitsArgPower)) 
 // {
 //   /* power (3, k) */
 //   logUnitConflict(node, sb);
 // }

  checkUnits(m, *node.getLeftChild(), sb, inKL, reactNo);

  delete unitFormat;
  delete unitsArg1;
  delete unitsArgPower;
}