/// Compute two-phase transport source terms from well terms. /// Note: Unlike the incompressible version of this function, /// this version computes surface volume injection rates, /// production rates are still total reservoir volumes. /// \param[in] props Fluid and rock properties. /// \param[in] wells Wells data structure. /// \param[in] well_state Well pressures and fluxes. /// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign: /// (+) positive inflow of first (water) phase (surface volume), /// (-) negative total outflow of both phases (reservoir volume). void computeTransportSource(const BlackoilPropertiesInterface& props, const Wells* wells, const WellState& well_state, std::vector<double>& transport_src) { int nc = props.numCells(); transport_src.clear(); transport_src.resize(nc, 0.0); // Well contributions. if (wells) { const int nw = wells->number_of_wells; const int np = wells->number_of_phases; if (np != 2) { OPM_THROW(std::runtime_error, "computeTransportSource() requires a 2 phase case."); } std::vector<double> A(np*np); for (int w = 0; w < nw; ++w) { const double* comp_frac = wells->comp_frac + np*w; for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) { const int perf_cell = wells->well_cells[perf]; double perf_rate = well_state.perfRates()[perf]; if (perf_rate > 0.0) { // perf_rate is a total inflow reservoir rate, we want a surface water rate. if (wells->type[w] != INJECTOR) { std::cout << "**** Warning: crossflow in well " << w << " perf " << perf - wells->well_connpos[w] << " ignored. Reservoir rate was " << perf_rate/Opm::unit::day << " m^3/day." << std::endl; perf_rate = 0.0; } else { assert(std::fabs(comp_frac[0] + comp_frac[1] - 1.0) < 1e-6); perf_rate *= comp_frac[0]; // Water reservoir volume rate. props.matrix(1, &well_state.perfPress()[perf], comp_frac, &perf_cell, &A[0], 0); perf_rate *= A[0]; // Water surface volume rate. } } transport_src[perf_cell] += perf_rate; } } } }
/// @brief Computes total absorbed polymer mass over all grid cells. /// With compressibility /// @param[in] grid grid /// @param[in] props fluid and rock properties. /// @param[in] polyprops polymer properties /// @param[in] state fluid state variable /// @param[in] rock_comp rock compressibility (depends on pressure) /// @return total absorbed polymer mass. double computePolymerAdsorbed(const UnstructuredGrid& grid, const BlackoilPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const PolymerBlackoilState& state, const RockCompressibility* rock_comp ) { const int num_cells = props.numCells(); const double rhor = polyprops.rockDensity(); std::vector<double> porosity; if (rock_comp && rock_comp->isActive()) { computePorosity(grid, props.porosity(), *rock_comp, state.pressure(), porosity); } else { porosity.assign(props.porosity(), props.porosity() + num_cells); } double abs_mass = 0.0; const std::vector<double>& cmax = state.getCellData( state.CMAX ); for (int cell = 0; cell < num_cells; ++cell) { double c_ads; polyprops.simpleAdsorption(cmax[cell], c_ads); abs_mass += c_ads*grid.cell_volumes[cell]*(1.0 - porosity[cell])*rhor; } return abs_mass; }
void initStateBasic(const UnstructuredGrid& grid, const BlackoilPropertiesInterface& props, const parameter::ParameterGroup& param, const double gravity, State& state) { // TODO: Refactor to exploit similarity with IncompProp* case. const int num_phases = props.numPhases(); if (num_phases != 2) { THROW("initStateTwophaseBasic(): currently handling only two-phase scenarios."); } state.init(grid, num_phases); const int num_cells = props.numCells(); // By default: initialise water saturation to minimum everywhere. std::vector<int> all_cells(num_cells); for (int i = 0; i < num_cells; ++i) { all_cells[i] = i; } state.setFirstSat(all_cells, props, State::MinSat); const bool convection_testcase = param.getDefault("convection_testcase", false); if (convection_testcase) { // Initialise water saturation to max in the 'left' part. std::vector<int> left_cells; left_cells.reserve(num_cells/2); const int *glob_cell = grid.global_cell; const int* cd = grid.cartdims; for (int cell = 0; cell < num_cells; ++cell) { const int gc = glob_cell == 0 ? cell : glob_cell[cell]; bool left = (gc % cd[0]) < cd[0]/2; if (left) { left_cells.push_back(cell); } } state.setFirstSat(left_cells, props, State::MaxSat); const double init_p = param.getDefault("ref_pressure", 100.0)*unit::barsa; std::fill(state.pressure().begin(), state.pressure().end(), init_p); } else if (param.has("water_oil_contact")) { // Warn against error-prone usage. if (gravity == 0.0) { std::cout << "**** Warning: running gravity convection scenario, but gravity is zero." << std::endl; } if (grid.cartdims[2] <= 1) { std::cout << "**** Warning: running gravity convection scenario, which expects nz > 1." << std::endl; } // Initialise water saturation to max below water-oil contact. const double woc = param.get<double>("water_oil_contact"); initWaterOilContact(grid, props, woc, WaterBelow, state); // Initialise pressure to hydrostatic state. const double ref_p = param.getDefault("ref_pressure", 100.0)*unit::barsa; initHydrostaticPressure(grid, props, woc, gravity, woc, ref_p, state); } else { // Use default: water saturation is minimum everywhere. // Initialise pressure to hydrostatic state. const double ref_p = param.getDefault("ref_pressure", 100.0)*unit::barsa; const double ref_z = grid.cell_centroids[0 + grid.dimensions - 1]; const double woc = -1e100; initHydrostaticPressure(grid, props, woc, gravity, ref_z, ref_p, state); } // Finally, init face pressures. initFacePressure(grid, state); }
/// Constructor wrapping an opm-core black oil interface. BlackoilPropsAd::BlackoilPropsAd(const BlackoilPropertiesInterface& props) : props_(props), pu_(props.phaseUsage()) { }
/// @brief Computes injected and produced volumes of all phases, /// and injected and produced polymer mass - in the compressible case. /// Note 1: assumes that only the first phase is injected. /// Note 2: assumes that transport has been done with an /// implicit method, i.e. that the current state /// gives the mobilities used for the preceding timestep. /// @param[in] props fluid and rock properties. /// @param[in] polyprops polymer properties /// @param[in] state state variables (pressure, fluxes etc.) /// @param[in] transport_src if < 0: total reservoir volume outflow, /// if > 0: first phase *surface volume* inflow. /// @param[in] inj_c injected concentration by cell /// @param[in] dt timestep used /// @param[out] injected must point to a valid array with P elements, /// where P = s.size()/transport_src.size(). /// @param[out] produced must also point to a valid array with P elements. /// @param[out] polyinj injected mass of polymer /// @param[out] polyprod produced mass of polymer void computeInjectedProduced(const BlackoilPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const PolymerBlackoilState& state, const std::vector<double>& transport_src, const std::vector<double>& inj_c, const double dt, double* injected, double* produced, double& polyinj, double& polyprod) { const int num_cells = transport_src.size(); if (props.numCells() != num_cells) { OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props."); } const int np = props.numPhases(); if (int(state.saturation().size()) != num_cells*np) { OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells."); } const std::vector<double>& press = state.pressure(); const std::vector<double>& temp = state.temperature(); const std::vector<double>& s = state.saturation(); const std::vector<double>& z = state.surfacevol(); const std::vector<double>& c = state.getCellData( state.CONCENTRATION ); const std::vector<double>& cmax = state.getCellData( state.CMAX ); std::fill(injected, injected + np, 0.0); std::fill(produced, produced + np, 0.0); polyinj = 0.0; polyprod = 0.0; std::vector<double> visc(np); std::vector<double> kr_cell(np); std::vector<double> mob(np); std::vector<double> A(np*np); std::vector<double> prod_resv_phase(np); std::vector<double> prod_surfvol(np); double mc; for (int cell = 0; cell < num_cells; ++cell) { if (transport_src[cell] > 0.0) { // Inflowing transport source is a surface volume flux // for the first phase. injected[0] += transport_src[cell]*dt; polyinj += transport_src[cell]*dt*inj_c[cell]; } else if (transport_src[cell] < 0.0) { // Outflowing transport source is a total reservoir // volume flux. const double flux = -transport_src[cell]*dt; const double* sat = &s[np*cell]; props.relperm(1, sat, &cell, &kr_cell[0], 0); props.viscosity(1, &press[cell], &temp[cell], &z[np*cell], &cell, &visc[0], 0); props.matrix(1, &press[cell], &temp[cell], &z[np*cell], &cell, &A[0], 0); polyprops.effectiveMobilities(c[cell], cmax[cell], &visc[0], &kr_cell[0], &mob[0]); double totmob = 0.0; for (int p = 0; p < np; ++p) { totmob += mob[p]; } std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0); for (int p = 0; p < np; ++p) { prod_resv_phase[p] = (mob[p]/totmob)*flux; for (int q = 0; q < np; ++q) { prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p]; } } for (int p = 0; p < np; ++p) { produced[p] += prod_surfvol[p]; } polyprops.computeMc(c[cell], mc); polyprod += produced[0]*mc; } } }