/// Compute two-phase transport source terms from well terms.
 /// Note: Unlike the incompressible version of this function,
 ///       this version computes surface volume injection rates,
 ///       production rates are still total reservoir volumes.
 /// \param[in]  props         Fluid and rock properties.
 /// \param[in]  wells         Wells data structure.
 /// \param[in]  well_state    Well pressures and fluxes.
 /// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
 ///                           (+) positive  inflow of first (water) phase (surface volume),
 ///                           (-) negative  total outflow of both phases (reservoir volume).
 void computeTransportSource(const BlackoilPropertiesInterface& props,
                             const Wells* wells,
                             const WellState& well_state,
                             std::vector<double>& transport_src)
 {
     int nc = props.numCells();
     transport_src.clear();
     transport_src.resize(nc, 0.0);
     // Well contributions.
     if (wells) {
         const int nw = wells->number_of_wells;
         const int np = wells->number_of_phases;
         if (np != 2) {
             OPM_THROW(std::runtime_error, "computeTransportSource() requires a 2 phase case.");
         }
         std::vector<double> A(np*np);
         for (int w = 0; w < nw; ++w) {
             const double* comp_frac = wells->comp_frac + np*w;
             for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
                 const int perf_cell = wells->well_cells[perf];
                 double perf_rate = well_state.perfRates()[perf];
                 if (perf_rate > 0.0) {
                     // perf_rate is a total inflow reservoir rate, we want a surface water rate.
                     if (wells->type[w] != INJECTOR) {
                         std::cout << "**** Warning: crossflow in well "
                                   << w << " perf " << perf - wells->well_connpos[w]
                                   << " ignored. Reservoir rate was "
                                   << perf_rate/Opm::unit::day << " m^3/day." << std::endl;
                         perf_rate = 0.0;
                     } else {
                         assert(std::fabs(comp_frac[0] + comp_frac[1] - 1.0) < 1e-6);
                         perf_rate *= comp_frac[0]; // Water reservoir volume rate.
                         props.matrix(1, &well_state.perfPress()[perf], comp_frac, &perf_cell, &A[0], 0);
                         perf_rate *= A[0];         // Water surface volume rate.
                     }
                 }
                 transport_src[perf_cell] += perf_rate;
             }
         }
     }
 }
    /// @brief Computes total absorbed polymer mass over all grid cells.
    /// With compressibility
    /// @param[in]  grid      grid
    /// @param[in]  props     fluid and rock properties.
    /// @param[in]  polyprops polymer properties
    /// @param[in]  state     fluid state variable
    /// @param[in]  rock_comp rock compressibility (depends on pressure)
    /// @return               total absorbed polymer mass.
    double computePolymerAdsorbed(const UnstructuredGrid& grid,
                                  const BlackoilPropertiesInterface& props,
                                  const Opm::PolymerProperties& polyprops,
                                  const PolymerBlackoilState& state,
                                  const RockCompressibility* rock_comp
                                  )
    {
	const int num_cells = props.numCells();
        const double rhor = polyprops.rockDensity();
        std::vector<double> porosity;
        if (rock_comp && rock_comp->isActive()) {
            computePorosity(grid, props.porosity(), *rock_comp, state.pressure(), porosity);
        } else {
            porosity.assign(props.porosity(), props.porosity() + num_cells);
        }
        double abs_mass = 0.0;
        const std::vector<double>& cmax = state.getCellData( state.CMAX );
	for (int cell = 0; cell < num_cells; ++cell) {
            double c_ads;
            polyprops.simpleAdsorption(cmax[cell], c_ads);
            abs_mass += c_ads*grid.cell_volumes[cell]*(1.0 - porosity[cell])*rhor;
	}
        return abs_mass;
    }
Example #3
0
    void initStateBasic(const UnstructuredGrid& grid,
                        const BlackoilPropertiesInterface& props,
                        const parameter::ParameterGroup& param,
                        const double gravity,
                        State& state)
    {
        // TODO: Refactor to exploit similarity with IncompProp* case.
        const int num_phases = props.numPhases();
        if (num_phases != 2) {
            THROW("initStateTwophaseBasic(): currently handling only two-phase scenarios.");
        }
        state.init(grid, num_phases);
        const int num_cells = props.numCells();
        // By default: initialise water saturation to minimum everywhere.
        std::vector<int> all_cells(num_cells);
        for (int i = 0; i < num_cells; ++i) {
            all_cells[i] = i;
        }
        state.setFirstSat(all_cells, props, State::MinSat);
        const bool convection_testcase = param.getDefault("convection_testcase", false);
        if (convection_testcase) {
            // Initialise water saturation to max in the 'left' part.
            std::vector<int> left_cells;
            left_cells.reserve(num_cells/2);
            const int *glob_cell = grid.global_cell;
            const int* cd = grid.cartdims;
            for (int cell = 0; cell < num_cells; ++cell) {
                const int gc = glob_cell == 0 ? cell : glob_cell[cell];
                bool left = (gc % cd[0]) < cd[0]/2;
                if (left) {
                    left_cells.push_back(cell);
                }
            }
            state.setFirstSat(left_cells, props, State::MaxSat);
            const double init_p = param.getDefault("ref_pressure", 100.0)*unit::barsa;
            std::fill(state.pressure().begin(), state.pressure().end(), init_p);
        } else if (param.has("water_oil_contact")) {
            // Warn against error-prone usage.
            if (gravity == 0.0) {
                std::cout << "**** Warning: running gravity convection scenario, but gravity is zero." << std::endl;
            }
            if (grid.cartdims[2] <= 1) {
                std::cout << "**** Warning: running gravity convection scenario, which expects nz > 1." << std::endl;
            }
            // Initialise water saturation to max below water-oil contact.
            const double woc = param.get<double>("water_oil_contact");
            initWaterOilContact(grid, props, woc, WaterBelow, state);
            // Initialise pressure to hydrostatic state.
            const double ref_p = param.getDefault("ref_pressure", 100.0)*unit::barsa;
            initHydrostaticPressure(grid, props, woc, gravity, woc, ref_p, state);
        } else {
            // Use default: water saturation is minimum everywhere.
            // Initialise pressure to hydrostatic state.
            const double ref_p = param.getDefault("ref_pressure", 100.0)*unit::barsa;
            const double ref_z = grid.cell_centroids[0 + grid.dimensions - 1];
            const double woc = -1e100;
            initHydrostaticPressure(grid, props, woc, gravity, ref_z, ref_p, state);
        }

        // Finally, init face pressures.
        initFacePressure(grid, state);
    }
Example #4
0
 /// Constructor wrapping an opm-core black oil interface.
 BlackoilPropsAd::BlackoilPropsAd(const BlackoilPropertiesInterface& props)
     : props_(props),
       pu_(props.phaseUsage())
 {
 }
 /// @brief Computes injected and produced volumes of all phases,
 ///        and injected and produced polymer mass - in the compressible case.
 /// Note 1: assumes that only the first phase is injected.
 /// Note 2: assumes that transport has been done with an
 ///         implicit method, i.e. that the current state
 ///         gives the mobilities used for the preceding timestep.
 /// @param[in]  props     fluid and rock properties.
 /// @param[in]  polyprops polymer properties
 /// @param[in]  state     state variables (pressure, fluxes etc.)
 /// @param[in]  transport_src  if < 0: total reservoir volume outflow,
 ///                       if > 0: first phase *surface volume* inflow.
 /// @param[in]  inj_c     injected concentration by cell
 /// @param[in]  dt        timestep used
 /// @param[out] injected  must point to a valid array with P elements,
 ///                       where P = s.size()/transport_src.size().
 /// @param[out] produced  must also point to a valid array with P elements.
 /// @param[out] polyinj   injected mass of polymer
 /// @param[out] polyprod  produced mass of polymer
 void computeInjectedProduced(const BlackoilPropertiesInterface& props,
                              const Opm::PolymerProperties& polyprops,
                              const PolymerBlackoilState& state,
                              const std::vector<double>& transport_src,
                              const std::vector<double>& inj_c,
                              const double dt,
                              double* injected,
                              double* produced,
                              double& polyinj,
                              double& polyprod)
 {
     const int num_cells = transport_src.size();
     if (props.numCells() != num_cells) {
         OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
     }
     const int np = props.numPhases();
     if (int(state.saturation().size()) != num_cells*np) {
         OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
     }
     const std::vector<double>& press = state.pressure();
     const std::vector<double>& temp = state.temperature();
     const std::vector<double>& s = state.saturation();
     const std::vector<double>& z = state.surfacevol();
     const std::vector<double>& c = state.getCellData( state.CONCENTRATION );
     const std::vector<double>& cmax = state.getCellData( state.CMAX );
     std::fill(injected, injected + np, 0.0);
     std::fill(produced, produced + np, 0.0);
     polyinj = 0.0;
     polyprod = 0.0;
     std::vector<double> visc(np);
     std::vector<double> kr_cell(np);
     std::vector<double> mob(np);
     std::vector<double> A(np*np);
     std::vector<double> prod_resv_phase(np);
     std::vector<double> prod_surfvol(np);
     double mc;
     for (int cell = 0; cell < num_cells; ++cell) {
         if (transport_src[cell] > 0.0) {
             // Inflowing transport source is a surface volume flux
             // for the first phase.
             injected[0] += transport_src[cell]*dt;
             polyinj += transport_src[cell]*dt*inj_c[cell];
         } else if (transport_src[cell] < 0.0) {
             // Outflowing transport source is a total reservoir
             // volume flux.
             const double flux = -transport_src[cell]*dt;
             const double* sat = &s[np*cell];
             props.relperm(1, sat, &cell, &kr_cell[0], 0);
             props.viscosity(1, &press[cell], &temp[cell], &z[np*cell], &cell, &visc[0], 0);
             props.matrix(1, &press[cell], &temp[cell], &z[np*cell], &cell, &A[0], 0);
             polyprops.effectiveMobilities(c[cell], cmax[cell], &visc[0],
                                           &kr_cell[0], &mob[0]);
             double totmob = 0.0;
             for (int p = 0; p < np; ++p) {
                 totmob += mob[p];
             }
             std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
             for (int p = 0; p < np; ++p) {
                 prod_resv_phase[p] = (mob[p]/totmob)*flux;
                 for (int q = 0; q < np; ++q) {
                     prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
                 }
             }
             for (int p = 0; p < np; ++p) {
                 produced[p] += prod_surfvol[p];
             }
             polyprops.computeMc(c[cell], mc);
             polyprod += produced[0]*mc;
         }
     }
 }