/// @brief Computes saturation from surface volume
    void computeSaturation(const BlackoilPropertiesInterface& props,
                           BlackoilState& state)
    {

        const int np = props.numPhases();
        const int nc = props.numCells();
        std::vector<double> allA(nc*np*np);
        std::vector<int> allcells(nc);
        for (int c = 0; c < nc; ++c) {
            allcells[c] = c;
        }

        //std::vector<double> res_vol(np);
        const std::vector<double>& z = state.surfacevol();

        props.matrix(nc, &state.pressure()[0], &z[0], &allcells[0], &allA[0], 0);

        // Linear solver.
        MAT_SIZE_T n = np;
        MAT_SIZE_T nrhs = 1;
        MAT_SIZE_T lda = np;
        std::vector<MAT_SIZE_T> piv(np);
        MAT_SIZE_T ldb = np;
        MAT_SIZE_T info = 0;


        //double res_vol;
        double tot_sat;
        const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());

        for (int c = 0; c < nc; ++c) {
            double* A = &allA[c*np*np];
            const double* z_loc = &z[c*np];
            double* s = &state.saturation()[c*np];

            for (int p = 0; p < np; ++p){
                s[p] = z_loc[p];
                }

            dgesv_(&n, &nrhs, &A[0], &lda, &piv[0], &s[0], &ldb, &info);

            tot_sat = 0;
            for (int p = 0; p < np; ++p){
                if (s[p] < epsilon) // saturation may be less then zero due to round of errors
                    s[p] = 0;

                tot_sat += s[p];
            }

            for (int p = 0; p < np; ++p){
                s[p]  = s[p]/tot_sat;
            }





        }

    }
Example #2
0
 /// Construct solver.
 /// \param[in] grid          A 2d or 3d grid.
 /// \param[in] props         Rock and fluid properties.
 /// \param[in] linsolver     Linear solver to use.
 /// \param[in] residual_tol  Solution accepted if inf-norm of residual is smaller.
 /// \param[in] change_tol    Solution accepted if inf-norm of change in pressure is smaller.
 /// \param[in] maxiter       Maximum acceptable number of iterations.
 /// \param[in] gravity       Gravity vector. If non-null, the array should
 ///                          have D elements.
 /// \param[in] wells         The wells argument. Will be used in solution,
 ///                          is ignored if NULL.
 ///                          Note: this class observes the well object, and
 ///                                makes the assumption that the well topology
 ///                                and completions does not change during the
 ///                                run. However, controls (only) are allowed
 ///                                to change.
 CompressibleTpfa::CompressibleTpfa(const UnstructuredGrid& grid,
                                    const BlackoilPropertiesInterface& props,
                                    const RockCompressibility* rock_comp_props,
                                    const LinearSolverInterface& linsolver,
                                    const double residual_tol,
                                    const double change_tol,
                                    const int maxiter,
                                    const double* gravity,
                                    const struct Wells* wells)
     : grid_(grid),
       props_(props),
       rock_comp_props_(rock_comp_props),
       linsolver_(linsolver),
       residual_tol_(residual_tol),
       change_tol_(change_tol),
       maxiter_(maxiter),
       gravity_(gravity),
       wells_(wells),
       htrans_(grid.cell_facepos[ grid.number_of_cells ]),
       trans_ (grid.number_of_faces),
       allcells_(grid.number_of_cells),
       singular_(false)
 {
     if (wells_ && (wells_->number_of_phases != props.numPhases())) {
         OPM_THROW(std::runtime_error, "Inconsistent number of phases specified (wells vs. props): "
               << wells_->number_of_phases << " != " << props.numPhases());
     }
     const int num_dofs = grid.number_of_cells + (wells ? wells->number_of_wells : 0);
     pressure_increment_.resize(num_dofs);
     UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
     tpfa_htrans_compute(gg, props.permeability(), &htrans_[0]);
     tpfa_trans_compute(gg, &htrans_[0], &trans_[0]);
     // If we have rock compressibility, pore volumes are updated
     // in the compute*() methods, otherwise they are constant and
     // hence may be computed here.
     if (rock_comp_props_ == NULL || !rock_comp_props_->isActive()) {
         computePorevolume(grid_, props.porosity(), porevol_);
     }
     for (int c = 0; c < grid.number_of_cells; ++c) {
         allcells_[c] = c;
     }
     cfs_tpfa_res_wells w;
     w.W = const_cast<struct Wells*>(wells_);
     w.data = NULL;
     h_ = cfs_tpfa_res_construct(gg, &w, props.numPhases());
 }
Example #3
0
 /// @brief Computes injected and produced surface volumes of all phases.
 /// Note 1: assumes that only the first phase is injected.
 /// Note 2: assumes that transport has been done with an
 ///         implicit method, i.e. that the current state
 ///         gives the mobilities used for the preceding timestep.
 /// Note 3: Gives surface volume values, not reservoir volumes
 ///         (as the incompressible version of the function does).
 ///         Also, assumes that transport_src is given in surface volumes
 ///         for injector terms!
 /// @param[in]  props           fluid and rock properties.
 /// @param[in]  state           state variables (pressure, sat, surfvol)
 /// @param[in]  transport_src   if < 0: total resv outflow, if > 0: first phase surfv inflow
 /// @param[in]  dt              timestep used
 /// @param[out] injected        must point to a valid array with P elements,
 ///                             where P = s.size()/src.size().
 /// @param[out] produced        must also point to a valid array with P elements.
 void computeInjectedProduced(const BlackoilPropertiesInterface& props,
                              const BlackoilState& state,
                              const std::vector<double>& transport_src,
                              const double dt,
                              double* injected,
                              double* produced)
 {
     const int num_cells = transport_src.size();
     if (props.numCells() != num_cells) {
         OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
     }
     const int np = props.numPhases();
     if (int(state.saturation().size()) != num_cells*np) {
         OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
     }
     const std::vector<double>& press = state.pressure();
     const std::vector<double>& temp = state.temperature();
     const std::vector<double>& s = state.saturation();
     const std::vector<double>& z = state.surfacevol();
     std::fill(injected, injected + np, 0.0);
     std::fill(produced, produced + np, 0.0);
     std::vector<double> visc(np);
     std::vector<double> mob(np);
     std::vector<double> A(np*np);
     std::vector<double> prod_resv_phase(np);
     std::vector<double> prod_surfvol(np);
     for (int c = 0; c < num_cells; ++c) {
         if (transport_src[c] > 0.0) {
             // Inflowing transport source is a surface volume flux
             // for the first phase.
             injected[0] += transport_src[c]*dt;
         } else if (transport_src[c] < 0.0) {
             // Outflowing transport source is a total reservoir
             // volume flux.
             const double flux = -transport_src[c]*dt;
             const double* sat = &s[np*c];
             props.relperm(1, sat, &c, &mob[0], 0);
             props.viscosity(1, &press[c], &temp[c], &z[np*c], &c, &visc[0], 0);
             props.matrix(1, &press[c], &temp[c], &z[np*c], &c, &A[0], 0);
             double totmob = 0.0;
             for (int p = 0; p < np; ++p) {
                 mob[p] /= visc[p];
                 totmob += mob[p];
             }
             std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
             for (int p = 0; p < np; ++p) {
                 prod_resv_phase[p] = (mob[p]/totmob)*flux;
                 for (int q = 0; q < np; ++q) {
                     prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
                 }
             }
             for (int p = 0; p < np; ++p) {
                 produced[p] += prod_surfvol[p];
             }
         }
     }
 }
Example #4
0
 void WellReport::push(const BlackoilPropertiesInterface& props,
                       const Wells& wells,
                       const std::vector<double>& p,
                       const std::vector<double>& z,
                       const std::vector<double>& s,
                       const double time,
                       const std::vector<double>& well_bhp,
                       const std::vector<double>& well_perfrates)
 {
     // TODO: refactor, since this is almost identical to the other push().
     int nw = well_bhp.size();
     assert(nw == wells.number_of_wells);
     int np = props.numPhases();
     const int max_np = 3;
     if (np > max_np) {
         OPM_THROW(std::runtime_error, "WellReport for now assumes #phases <= " << max_np);
     }
     std::vector<double> data_now;
     data_now.reserve(1 + 3*nw);
     data_now.push_back(time/unit::day);
     for (int w = 0; w < nw; ++w) {
         data_now.push_back(well_bhp[w]/(unit::barsa));
         double well_rate_total = 0.0;
         double well_rate_water = 0.0;
         for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
             const double perf_rate = unit::convert::to(well_perfrates[perf],
                                                        unit::cubic(unit::meter)/unit::day);
             well_rate_total += perf_rate;
             if (perf_rate > 0.0) {
                 // Injection.
                 well_rate_water += perf_rate*wells.comp_frac[0];
             } else {
                 // Production.
                 const int cell = wells.well_cells[perf];
                 double mob[max_np];
                 props.relperm(1, &s[np*cell], &cell, mob, 0);
                 double visc[max_np];
                 props.viscosity(1, &p[cell], 0, &z[np*cell], &cell, visc, 0);
                 double tmob = 0;
                 for(int i = 0; i < np; ++i) {
                     mob[i] /= visc[i];
                     tmob += mob[i];
                 }
                 const double fracflow = mob[0]/(tmob);
                 well_rate_water += perf_rate*fracflow;
             }
         }
         data_now.push_back(well_rate_total);
         if (well_rate_total == 0.0) {
             data_now.push_back(0.0);
         } else {
             data_now.push_back(well_rate_water/well_rate_total);
         }
     }
     data_.push_back(data_now);
 }
Example #5
0
    void initStateBasic(const UnstructuredGrid& grid,
                        const BlackoilPropertiesInterface& props,
                        const parameter::ParameterGroup& param,
                        const double gravity,
                        State& state)
    {
        // TODO: Refactor to exploit similarity with IncompProp* case.
        const int num_phases = props.numPhases();
        if (num_phases != 2) {
            THROW("initStateTwophaseBasic(): currently handling only two-phase scenarios.");
        }
        state.init(grid, num_phases);
        const int num_cells = props.numCells();
        // By default: initialise water saturation to minimum everywhere.
        std::vector<int> all_cells(num_cells);
        for (int i = 0; i < num_cells; ++i) {
            all_cells[i] = i;
        }
        state.setFirstSat(all_cells, props, State::MinSat);
        const bool convection_testcase = param.getDefault("convection_testcase", false);
        if (convection_testcase) {
            // Initialise water saturation to max in the 'left' part.
            std::vector<int> left_cells;
            left_cells.reserve(num_cells/2);
            const int *glob_cell = grid.global_cell;
            const int* cd = grid.cartdims;
            for (int cell = 0; cell < num_cells; ++cell) {
                const int gc = glob_cell == 0 ? cell : glob_cell[cell];
                bool left = (gc % cd[0]) < cd[0]/2;
                if (left) {
                    left_cells.push_back(cell);
                }
            }
            state.setFirstSat(left_cells, props, State::MaxSat);
            const double init_p = param.getDefault("ref_pressure", 100.0)*unit::barsa;
            std::fill(state.pressure().begin(), state.pressure().end(), init_p);
        } else if (param.has("water_oil_contact")) {
            // Warn against error-prone usage.
            if (gravity == 0.0) {
                std::cout << "**** Warning: running gravity convection scenario, but gravity is zero." << std::endl;
            }
            if (grid.cartdims[2] <= 1) {
                std::cout << "**** Warning: running gravity convection scenario, which expects nz > 1." << std::endl;
            }
            // Initialise water saturation to max below water-oil contact.
            const double woc = param.get<double>("water_oil_contact");
            initWaterOilContact(grid, props, woc, WaterBelow, state);
            // Initialise pressure to hydrostatic state.
            const double ref_p = param.getDefault("ref_pressure", 100.0)*unit::barsa;
            initHydrostaticPressure(grid, props, woc, gravity, woc, ref_p, state);
        } else {
            // Use default: water saturation is minimum everywhere.
            // Initialise pressure to hydrostatic state.
            const double ref_p = param.getDefault("ref_pressure", 100.0)*unit::barsa;
            const double ref_z = grid.cell_centroids[0 + grid.dimensions - 1];
            const double woc = -1e100;
            initHydrostaticPressure(grid, props, woc, gravity, ref_z, ref_p, state);
        }

        // Finally, init face pressures.
        initFacePressure(grid, state);
    }
 /// @brief Computes injected and produced volumes of all phases,
 ///        and injected and produced polymer mass - in the compressible case.
 /// Note 1: assumes that only the first phase is injected.
 /// Note 2: assumes that transport has been done with an
 ///         implicit method, i.e. that the current state
 ///         gives the mobilities used for the preceding timestep.
 /// @param[in]  props     fluid and rock properties.
 /// @param[in]  polyprops polymer properties
 /// @param[in]  state     state variables (pressure, fluxes etc.)
 /// @param[in]  transport_src  if < 0: total reservoir volume outflow,
 ///                       if > 0: first phase *surface volume* inflow.
 /// @param[in]  inj_c     injected concentration by cell
 /// @param[in]  dt        timestep used
 /// @param[out] injected  must point to a valid array with P elements,
 ///                       where P = s.size()/transport_src.size().
 /// @param[out] produced  must also point to a valid array with P elements.
 /// @param[out] polyinj   injected mass of polymer
 /// @param[out] polyprod  produced mass of polymer
 void computeInjectedProduced(const BlackoilPropertiesInterface& props,
                              const Opm::PolymerProperties& polyprops,
                              const PolymerBlackoilState& state,
                              const std::vector<double>& transport_src,
                              const std::vector<double>& inj_c,
                              const double dt,
                              double* injected,
                              double* produced,
                              double& polyinj,
                              double& polyprod)
 {
     const int num_cells = transport_src.size();
     if (props.numCells() != num_cells) {
         OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
     }
     const int np = props.numPhases();
     if (int(state.saturation().size()) != num_cells*np) {
         OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
     }
     const std::vector<double>& press = state.pressure();
     const std::vector<double>& temp = state.temperature();
     const std::vector<double>& s = state.saturation();
     const std::vector<double>& z = state.surfacevol();
     const std::vector<double>& c = state.getCellData( state.CONCENTRATION );
     const std::vector<double>& cmax = state.getCellData( state.CMAX );
     std::fill(injected, injected + np, 0.0);
     std::fill(produced, produced + np, 0.0);
     polyinj = 0.0;
     polyprod = 0.0;
     std::vector<double> visc(np);
     std::vector<double> kr_cell(np);
     std::vector<double> mob(np);
     std::vector<double> A(np*np);
     std::vector<double> prod_resv_phase(np);
     std::vector<double> prod_surfvol(np);
     double mc;
     for (int cell = 0; cell < num_cells; ++cell) {
         if (transport_src[cell] > 0.0) {
             // Inflowing transport source is a surface volume flux
             // for the first phase.
             injected[0] += transport_src[cell]*dt;
             polyinj += transport_src[cell]*dt*inj_c[cell];
         } else if (transport_src[cell] < 0.0) {
             // Outflowing transport source is a total reservoir
             // volume flux.
             const double flux = -transport_src[cell]*dt;
             const double* sat = &s[np*cell];
             props.relperm(1, sat, &cell, &kr_cell[0], 0);
             props.viscosity(1, &press[cell], &temp[cell], &z[np*cell], &cell, &visc[0], 0);
             props.matrix(1, &press[cell], &temp[cell], &z[np*cell], &cell, &A[0], 0);
             polyprops.effectiveMobilities(c[cell], cmax[cell], &visc[0],
                                           &kr_cell[0], &mob[0]);
             double totmob = 0.0;
             for (int p = 0; p < np; ++p) {
                 totmob += mob[p];
             }
             std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
             for (int p = 0; p < np; ++p) {
                 prod_resv_phase[p] = (mob[p]/totmob)*flux;
                 for (int q = 0; q < np; ++q) {
                     prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
                 }
             }
             for (int p = 0; p < np; ++p) {
                 produced[p] += prod_surfvol[p];
             }
             polyprops.computeMc(c[cell], mc);
             polyprod += produced[0]*mc;
         }
     }
 }