Example #1
0
 /// @brief Computes injected and produced surface volumes of all phases.
 /// Note 1: assumes that only the first phase is injected.
 /// Note 2: assumes that transport has been done with an
 ///         implicit method, i.e. that the current state
 ///         gives the mobilities used for the preceding timestep.
 /// Note 3: Gives surface volume values, not reservoir volumes
 ///         (as the incompressible version of the function does).
 ///         Also, assumes that transport_src is given in surface volumes
 ///         for injector terms!
 /// @param[in]  props           fluid and rock properties.
 /// @param[in]  state           state variables (pressure, sat, surfvol)
 /// @param[in]  transport_src   if < 0: total resv outflow, if > 0: first phase surfv inflow
 /// @param[in]  dt              timestep used
 /// @param[out] injected        must point to a valid array with P elements,
 ///                             where P = s.size()/src.size().
 /// @param[out] produced        must also point to a valid array with P elements.
 void computeInjectedProduced(const BlackoilPropertiesInterface& props,
                              const BlackoilState& state,
                              const std::vector<double>& transport_src,
                              const double dt,
                              double* injected,
                              double* produced)
 {
     const int num_cells = transport_src.size();
     if (props.numCells() != num_cells) {
         OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
     }
     const int np = props.numPhases();
     if (int(state.saturation().size()) != num_cells*np) {
         OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
     }
     const std::vector<double>& press = state.pressure();
     const std::vector<double>& temp = state.temperature();
     const std::vector<double>& s = state.saturation();
     const std::vector<double>& z = state.surfacevol();
     std::fill(injected, injected + np, 0.0);
     std::fill(produced, produced + np, 0.0);
     std::vector<double> visc(np);
     std::vector<double> mob(np);
     std::vector<double> A(np*np);
     std::vector<double> prod_resv_phase(np);
     std::vector<double> prod_surfvol(np);
     for (int c = 0; c < num_cells; ++c) {
         if (transport_src[c] > 0.0) {
             // Inflowing transport source is a surface volume flux
             // for the first phase.
             injected[0] += transport_src[c]*dt;
         } else if (transport_src[c] < 0.0) {
             // Outflowing transport source is a total reservoir
             // volume flux.
             const double flux = -transport_src[c]*dt;
             const double* sat = &s[np*c];
             props.relperm(1, sat, &c, &mob[0], 0);
             props.viscosity(1, &press[c], &temp[c], &z[np*c], &c, &visc[0], 0);
             props.matrix(1, &press[c], &temp[c], &z[np*c], &c, &A[0], 0);
             double totmob = 0.0;
             for (int p = 0; p < np; ++p) {
                 mob[p] /= visc[p];
                 totmob += mob[p];
             }
             std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
             for (int p = 0; p < np; ++p) {
                 prod_resv_phase[p] = (mob[p]/totmob)*flux;
                 for (int q = 0; q < np; ++q) {
                     prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
                 }
             }
             for (int p = 0; p < np; ++p) {
                 produced[p] += prod_surfvol[p];
             }
         }
     }
 }
Example #2
0
 void WellReport::push(const BlackoilPropertiesInterface& props,
                       const Wells& wells,
                       const std::vector<double>& p,
                       const std::vector<double>& z,
                       const std::vector<double>& s,
                       const double time,
                       const std::vector<double>& well_bhp,
                       const std::vector<double>& well_perfrates)
 {
     // TODO: refactor, since this is almost identical to the other push().
     int nw = well_bhp.size();
     assert(nw == wells.number_of_wells);
     int np = props.numPhases();
     const int max_np = 3;
     if (np > max_np) {
         OPM_THROW(std::runtime_error, "WellReport for now assumes #phases <= " << max_np);
     }
     std::vector<double> data_now;
     data_now.reserve(1 + 3*nw);
     data_now.push_back(time/unit::day);
     for (int w = 0; w < nw; ++w) {
         data_now.push_back(well_bhp[w]/(unit::barsa));
         double well_rate_total = 0.0;
         double well_rate_water = 0.0;
         for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
             const double perf_rate = unit::convert::to(well_perfrates[perf],
                                                        unit::cubic(unit::meter)/unit::day);
             well_rate_total += perf_rate;
             if (perf_rate > 0.0) {
                 // Injection.
                 well_rate_water += perf_rate*wells.comp_frac[0];
             } else {
                 // Production.
                 const int cell = wells.well_cells[perf];
                 double mob[max_np];
                 props.relperm(1, &s[np*cell], &cell, mob, 0);
                 double visc[max_np];
                 props.viscosity(1, &p[cell], 0, &z[np*cell], &cell, visc, 0);
                 double tmob = 0;
                 for(int i = 0; i < np; ++i) {
                     mob[i] /= visc[i];
                     tmob += mob[i];
                 }
                 const double fracflow = mob[0]/(tmob);
                 well_rate_water += perf_rate*fracflow;
             }
         }
         data_now.push_back(well_rate_total);
         if (well_rate_total == 0.0) {
             data_now.push_back(0.0);
         } else {
             data_now.push_back(well_rate_water/well_rate_total);
         }
     }
     data_.push_back(data_now);
 }
 /// @brief Computes injected and produced volumes of all phases,
 ///        and injected and produced polymer mass - in the compressible case.
 /// Note 1: assumes that only the first phase is injected.
 /// Note 2: assumes that transport has been done with an
 ///         implicit method, i.e. that the current state
 ///         gives the mobilities used for the preceding timestep.
 /// @param[in]  props     fluid and rock properties.
 /// @param[in]  polyprops polymer properties
 /// @param[in]  state     state variables (pressure, fluxes etc.)
 /// @param[in]  transport_src  if < 0: total reservoir volume outflow,
 ///                       if > 0: first phase *surface volume* inflow.
 /// @param[in]  inj_c     injected concentration by cell
 /// @param[in]  dt        timestep used
 /// @param[out] injected  must point to a valid array with P elements,
 ///                       where P = s.size()/transport_src.size().
 /// @param[out] produced  must also point to a valid array with P elements.
 /// @param[out] polyinj   injected mass of polymer
 /// @param[out] polyprod  produced mass of polymer
 void computeInjectedProduced(const BlackoilPropertiesInterface& props,
                              const Opm::PolymerProperties& polyprops,
                              const PolymerBlackoilState& state,
                              const std::vector<double>& transport_src,
                              const std::vector<double>& inj_c,
                              const double dt,
                              double* injected,
                              double* produced,
                              double& polyinj,
                              double& polyprod)
 {
     const int num_cells = transport_src.size();
     if (props.numCells() != num_cells) {
         OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
     }
     const int np = props.numPhases();
     if (int(state.saturation().size()) != num_cells*np) {
         OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
     }
     const std::vector<double>& press = state.pressure();
     const std::vector<double>& temp = state.temperature();
     const std::vector<double>& s = state.saturation();
     const std::vector<double>& z = state.surfacevol();
     const std::vector<double>& c = state.getCellData( state.CONCENTRATION );
     const std::vector<double>& cmax = state.getCellData( state.CMAX );
     std::fill(injected, injected + np, 0.0);
     std::fill(produced, produced + np, 0.0);
     polyinj = 0.0;
     polyprod = 0.0;
     std::vector<double> visc(np);
     std::vector<double> kr_cell(np);
     std::vector<double> mob(np);
     std::vector<double> A(np*np);
     std::vector<double> prod_resv_phase(np);
     std::vector<double> prod_surfvol(np);
     double mc;
     for (int cell = 0; cell < num_cells; ++cell) {
         if (transport_src[cell] > 0.0) {
             // Inflowing transport source is a surface volume flux
             // for the first phase.
             injected[0] += transport_src[cell]*dt;
             polyinj += transport_src[cell]*dt*inj_c[cell];
         } else if (transport_src[cell] < 0.0) {
             // Outflowing transport source is a total reservoir
             // volume flux.
             const double flux = -transport_src[cell]*dt;
             const double* sat = &s[np*cell];
             props.relperm(1, sat, &cell, &kr_cell[0], 0);
             props.viscosity(1, &press[cell], &temp[cell], &z[np*cell], &cell, &visc[0], 0);
             props.matrix(1, &press[cell], &temp[cell], &z[np*cell], &cell, &A[0], 0);
             polyprops.effectiveMobilities(c[cell], cmax[cell], &visc[0],
                                           &kr_cell[0], &mob[0]);
             double totmob = 0.0;
             for (int p = 0; p < np; ++p) {
                 totmob += mob[p];
             }
             std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
             for (int p = 0; p < np; ++p) {
                 prod_resv_phase[p] = (mob[p]/totmob)*flux;
                 for (int q = 0; q < np; ++q) {
                     prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
                 }
             }
             for (int p = 0; p < np; ++p) {
                 produced[p] += prod_surfvol[p];
             }
             polyprops.computeMc(c[cell], mc);
             polyprod += produced[0]*mc;
         }
     }
 }