示例#1
0
文件: summary.cpp 项目: wh5a/xgill
// get any assumptions from a call/loop to callee through edge.
static void GetCallAssumedBits(BlockMemory *mcfg, PEdge *edge,
                               BlockId *callee, bool indirect,
                               Vector<AssumeInfo> *assume_list)
{
  // add inferred assumptions from the callee.

  BlockSummary *sum = GetBlockSummary(callee);

  const Vector<Bit*> *assumes = sum->GetAssumes();
  size_t assume_count = VectorSize<Bit*>(assumes);

  for (size_t ind = 0; ind < assume_count; ind++) {
    Bit *bit = assumes->At(ind);
    Bit *caller_bit = GetCallerAssume(mcfg, edge, callee, indirect, bit);

    if (!caller_bit) continue;
    caller_bit->MoveRef(NULL, assume_list);

    AssumeInfo info;
    info.point = edge->GetSource();
    info.bit = caller_bit;
    assume_list->PushBack(info);
  }

  sum->DecRef();

  // add annotated postconditions from the callee.

  // only do this for call edges.
  if (!edge->IsCall())
    return;

  Vector<BlockCFG*> *annot_list = BodyAnnotCache.Lookup(callee->Function());

  for (size_t ind = 0; annot_list && ind < annot_list->Size(); ind++) {
    BlockCFG *annot_cfg = annot_list->At(ind);

    if (annot_cfg->GetAnnotationKind() != AK_Postcondition &&
        annot_cfg->GetAnnotationKind() != AK_PostconditionAssume)
      continue;

    Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg);
    if (!bit) continue;

    Bit *caller_bit = GetCallerAssume(mcfg, edge, callee, indirect, bit);
    if (!caller_bit) continue;

    caller_bit->MoveRef(NULL, assume_list);
    annot_cfg->IncRef(assume_list);

    AssumeInfo info;
    info.annot = annot_cfg;
    info.point = edge->GetSource();
    info.bit = caller_bit;
    assume_list->PushBack(info);
  }

  BodyAnnotCache.Release(callee->Function());
}
示例#2
0
文件: summary.cpp 项目: wh5a/xgill
BlockSummary* BlockSummary::Read(Buffer *buf)
{
  BlockSummary *res = NULL;

  Try(ReadOpenTag(buf, TAG_BlockSummary));
  while (!ReadCloseTag(buf, TAG_BlockSummary)) {
    switch (PeekOpenTag(buf)) {

    case TAG_BlockId: {
      Try(!res);
      BlockId *id = BlockId::Read(buf);
      res = Make(id);

      // we don't need to unpersist or drop the data we will be reading in.
      // if there is already a summary structure created, the adds we make
      // will just be ignored.
      break;
    }

    case TAG_SummaryAssert: {
      Try(res);
      uint32_t kind, cls;
      PPoint point;

      Try(ReadOpenTag(buf, TAG_SummaryAssert));
      Try(ReadTagUInt32(buf, TAG_Kind, &kind));
      Try(ReadTagUInt32(buf, TAG_OpCode, &cls));
      Try(ReadTagUInt32(buf, TAG_Index, &point));
      Bit *bit = Bit::Read(buf);
      Try(ReadCloseTag(buf, TAG_SummaryAssert));

      res->AddAssert((AssertKind)kind, (AssertClass)cls, point, bit);
      break;
    }

    case TAG_SummaryAssume: {
      Try(res);

      Try(ReadOpenTag(buf, TAG_SummaryAssume));
      Bit *bit = Bit::Read(buf);
      Try(ReadCloseTag(buf, TAG_SummaryAssume));

      res->AddAssume(bit);
      break;
    }

    default:
      Try(false);
    }
  }

  Try(res);
  return res;
}
示例#3
0
文件: checker.cpp 项目: wh5a/xgill
// returns whether the error condition is satisfiable within frame.
bool TestErrorSatisfiable(CheckerState *state, CheckerFrame *frame, Bit *bit)
{
  BlockMemory *mcfg = frame->Memory();
  Solver *solver = state->GetSolver();

  if (!solver->IsSatisfiable()) {
    if (checker_verbose.IsSpecified())
      logout << "CHECK: " << frame << ": Guard unsatisfiable: " << bit
             << " [" << bit->Hash() << "]" << endl;
    return false;
  }

  state->PushContext();
  state->AssertBaseBits();

  if (!solver->IsSatisfiable()) {
    if (checker_verbose.IsSpecified())
      logout << "CHECK: " << frame << ": Error unsatisfiable: " << bit
             << " [" << bit->Hash() << "]" << endl;
    state->PopContext();
    return false;
  }

  if (!frame->m_checked_assertions) {
    frame->m_checked_assertions = true;

    // check to see if the error is contradicted by previous assertions
    // in this frame. assert the previous assertions, but don't keep
    // them around past this function to avoid polluting the solver
    // with worthless extra checks.

    BlockSummary *sum = GetBlockSummary(mcfg->GetId());

    const Vector<AssertInfo> *asserts = sum->GetAsserts();
    size_t assert_count = VectorSize<AssertInfo>(asserts);

    for (size_t ind = 0; ind < assert_count; ind++) {
      const AssertInfo &info = asserts->At(ind);

      // only use the same kind of assertion to check for redundancy.
      if (info.kind != state->GetAssertKind())
        continue;

      if (info.cls != ASC_Check)
        continue;

      if (info.point < frame->EndPoint()) {
        // get the asserted condition relative to block entry.

        Bit *assert_value;
        mcfg->TranslateBit(TRK_Point, info.point, info.bit, &assert_value);
        assert_value->MoveRef(&assert_value, NULL);

        Bit *point_guard = mcfg->GetGuard(info.point);
        point_guard->IncRef();

        Bit *imply_assert =
          Bit::MakeImply(point_guard, assert_value);

        solver->AddConstraint(frame->Id(), imply_assert);
      }
    }

    sum->DecRef();

    if (!solver->IsSatisfiable()) {
      if (checker_verbose.IsSpecified())
        logout << "CHECK: " << frame
               << ": Unsatisfiable from assertions" << endl;

      state->PopContext();
      return false;
    }
  }

  state->PopContext();
  return true;
}
示例#4
0
文件: summary.cpp 项目: wh5a/xgill
void BlockSummary::GetAssumedBits(BlockMemory *mcfg, PPoint end_point,
                                  Vector<AssumeInfo> *assume_list)
{
  BlockId *id = mcfg->GetId();
  BlockCFG *cfg = mcfg->GetCFG();

  BlockSummary *sum = GetBlockSummary(id);

  const Vector<Bit*> *assumes = sum->GetAssumes();
  size_t assume_count = VectorSize<Bit*>(assumes);

  // pull in assumptions from the summary for mcfg. in some cases these
  // assumptions won't be useful, e.g. describing the state at exit
  // for functions. for now we're just adding all of them though. TODO: fix.
  for (size_t ind = 0; ind < assume_count; ind++) {
    Bit *bit = assumes->At(ind);
    bit->IncRef(assume_list);

    AssumeInfo info;
    info.bit = bit;
    assume_list->PushBack(info);
  }

  sum->DecRef();

  Vector<BlockCFG*> *annot_list = BodyAnnotCache.Lookup(id->Function());

  // add assumes at function entry for any preconditions.

  if (id->Kind() == B_Function) {
    for (size_t ind = 0; annot_list && ind < annot_list->Size(); ind++) {
      BlockCFG *annot_cfg = annot_list->At(ind);

      if (annot_cfg->GetAnnotationKind() != AK_Precondition &&
          annot_cfg->GetAnnotationKind() != AK_PreconditionAssume)
        continue;

      Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg);
      if (!bit) continue;

      annot_cfg->IncRef(assume_list);
      bit->IncRef(assume_list);

      AssumeInfo info;
      info.annot = annot_cfg;
      info.bit = bit;
      assume_list->PushBack(info);
    }
  }

  // add assumptions from points within the block.

  for (size_t pind = 0; pind < cfg->GetPointAnnotationCount(); pind++) {
    PointAnnotation pann = cfg->GetPointAnnotation(pind);
    if (end_point && pann.point >= end_point)
      continue;

    BlockCFG *annot_cfg = GetAnnotationCFG(pann.annot);
    if (!annot_cfg) continue;

    Assert(annot_cfg->GetAnnotationKind() != AK_AssertRuntime);

    if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
      // get the annotation bit in terms of block entry.
      Bit *point_bit = NULL;
      mcfg->TranslateBit(TRK_Point, pann.point, bit, &point_bit);
      point_bit->MoveRef(&point_bit, assume_list);

      annot_cfg->IncRef(assume_list);

      AssumeInfo info;
      info.annot = annot_cfg;
      info.point = pann.point;
      info.bit = point_bit;
      assume_list->PushBack(info);
    }

    annot_cfg->DecRef();
  }

  // add assumptions from annotation edges within the block, invariants
  // on values accessed by the block, and from the summaries of any callees.

  for (size_t eind = 0; eind < cfg->GetEdgeCount(); eind++) {
    PEdge *edge = cfg->GetEdge(eind);
    PPoint point = edge->GetSource();

    if (end_point && point >= end_point)
      continue;

    InvariantAssumeVisitor visitor(mcfg, point, assume_list);
    edge->DoVisit(&visitor);

    if (PEdgeAnnotation *nedge = edge->IfAnnotation()) {
      // add an assumption for this annotation.
      BlockCFG *annot_cfg = GetAnnotationCFG(nedge->GetAnnotationId());
      if (!annot_cfg) continue;

      Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg);

      // don't incorporate AssertRuntimes, these are not assumed.
      if (bit && annot_cfg->GetAnnotationKind() != AK_AssertRuntime) {
        // get the annotation bit in terms of block entry.
        Bit *point_bit = NULL;
        mcfg->TranslateBit(TRK_Point, point, bit, &point_bit);
        point_bit->MoveRef(&point_bit, assume_list);

        annot_cfg->IncRef(assume_list);

        AssumeInfo info;
        info.annot = annot_cfg;
        info.point = point;
        info.bit = point_bit;
        assume_list->PushBack(info);
      }

      annot_cfg->DecRef();
    }

    if (BlockId *callee = edge->GetDirectCallee()) {
      GetCallAssumedBits(mcfg, edge, callee, false, assume_list);
      callee->DecRef();
    }
    else if (edge->IsCall()) {
      // add conditional assumes for the indirect targets of the call.
      // this is most useful for baked information and annotations, where
      // we sometimes need to attach information at indirect calls.

      CallEdgeSet *callees = CalleeCache.Lookup(id->BaseVar());
      size_t old_count = assume_list->Size();

      if (callees) {
        for (size_t cind = 0; cind < callees->GetEdgeCount(); cind++) {
          const CallEdge &cedge = callees->GetEdge(cind);
          if (cedge.where.id == id && cedge.where.point == point) {
            cedge.callee->IncRef();
            BlockId *callee = BlockId::Make(B_Function, cedge.callee);

            GetCallAssumedBits(mcfg, edge, callee, true, assume_list);
            callee->DecRef();
          }
        }
      }

      if (assume_list->Size() != old_count) {
        // we managed to do something at this indirect call site.
        // add another assumption restricting the possible callees to
        // only those identified by our callgraph.

        GuardExpVector receiver_list;
        mcfg->TranslateReceiver(point, &receiver_list);

        for (size_t rind = 0; rind < receiver_list.Size(); rind++) {
          const GuardExp &gs = receiver_list[rind];
          gs.guard->IncRef();

          // make a bit: !when || rcv == callee0 || rcv == callee1 || ...
          Bit *extra_bit = Bit::MakeNot(gs.guard);

          for (size_t cind = 0; cind < callees->GetEdgeCount(); cind++) {
            const CallEdge &cedge = callees->GetEdge(cind);
            if (cedge.where.id == id && cedge.where.point == point) {
              Variable *callee_var = cedge.callee;
              callee_var->IncRef();
              Exp *callee_exp = Exp::MakeVar(callee_var);

              gs.exp->IncRef();
              Bit *equal = Exp::MakeCompareBit(B_Equal, callee_exp, gs.exp);

              extra_bit = Bit::MakeOr(extra_bit, equal);
            }
          }

          extra_bit->MoveRef(NULL, assume_list);

          AssumeInfo info;
          info.bit = extra_bit;
          assume_list->PushBack(info);
        }
      }

      CalleeCache.Release(id->BaseVar());
    }
  }

  BodyAnnotCache.Release(id->Function());

  // add assumptions from heap invariants describing values mentioned
  // in added assumptions. we could keep doing this transitively but don't,
  // to ensure termination.
  size_t count = assume_list->Size();
  for (size_t ind = 0; ind < count; ind++) {
    InvariantAssumeVisitor visitor(NULL, 0, assume_list);
    assume_list->At(ind).bit->DoVisit(&visitor);
  }

  CombineAssumeList(assume_list);
}
示例#5
0
void InferSummaries(const Vector<BlockSummary*> &summary_list)
{
  static BaseTimer infer_timer("infer_summaries");
  Timer _timer(&infer_timer);

  if (summary_list.Empty())
    return;

  Variable *function = summary_list[0]->GetId()->BaseVar();
  Vector<BlockCFG*> *annot_list = BodyAnnotCache.Lookup(function->GetName());

  // all traces which might refer to the result of pointer arithmetic.
  Vector<Exp*> arithmetic_list;
  ArithmeticEscape escape(function, arithmetic_list);

  // initial pass over the CFGs to get traces used in pointer arithmetic.
  for (size_t ind = 0; ind < summary_list.Size(); ind++) {
    BlockSummary *sum = summary_list[ind];

    BlockCFG *cfg = sum->GetMemory()->GetCFG();
    for (size_t eind = 0; eind < cfg->GetEdgeCount(); eind++) {
      PEdge *edge = cfg->GetEdge(eind);

      if (PEdgeAssign *assign_edge = edge->IfAssign()) {
        Exp *left = assign_edge->GetLeftSide();
        Exp *right = assign_edge->GetRightSide();
        ProcessArithmeticAssign(&escape, cfg->GetId(), left, right);
      }
    }
  }

  for (size_t ind = 0; ind < summary_list.Size(); ind++) {
    BlockSummary *sum = summary_list[ind];
    BlockMemory *mcfg = sum->GetMemory();
    BlockCFG *cfg = mcfg->GetCFG();

    // accumulate all the assertions at points in the CFG.
    Vector<AssertInfo> asserts;

    // add assertions at function exit for any postconditions.
    if (cfg->GetId()->Kind() == B_Function) {
      for (size_t aind = 0; annot_list && aind < annot_list->Size(); aind++) {
        BlockCFG *annot_cfg = annot_list->At(aind);

        if (annot_cfg->GetAnnotationKind() != AK_Postcondition)
          continue;
        if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
          AssertInfo info;
          info.kind = ASK_Annotation;
          info.cls = ASC_Check;
          info.point = cfg->GetExitPoint();
          info.bit = bit;
          asserts.PushBack(info);
        }
      }
    }

    // add assertions for any point annotations within the CFG.
    for (size_t pind = 0; pind < cfg->GetPointAnnotationCount(); pind++) {
      PointAnnotation pann = cfg->GetPointAnnotation(pind);
      BlockCFG *annot_cfg = GetAnnotationCFG(pann.annot);
      if (!annot_cfg) continue;

      if (annot_cfg->GetAnnotationKind() != AK_Assert)
        continue;

      if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
        AssertInfo info;
        info.kind = ASK_Annotation;
        info.cls = ASC_Check;
        info.point = pann.point;
        info.bit = bit;
        asserts.PushBack(info);
      }
    }

    for (size_t eind = 0; eind < cfg->GetEdgeCount(); eind++) {
      PEdge *edge = cfg->GetEdge(eind);
      PPoint point = edge->GetSource();

      if (PEdgeAnnotation *nedge = edge->IfAnnotation()) {
        // add an assertion for this annotation if it not an assume.
        BlockCFG *annot_cfg = GetAnnotationCFG(nedge->GetAnnotationId());
        if (!annot_cfg) continue;

        if (annot_cfg->GetAnnotationKind() != AK_Assert &&
            annot_cfg->GetAnnotationKind() != AK_AssertRuntime) {
          continue;
        }

        if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
          AssertInfo info;
          info.kind = (annot_cfg->GetAnnotationKind() == AK_Assert)
            ? ASK_Annotation : ASK_AnnotationRuntime;
          info.cls = ASC_Check;
          info.point = point;
          info.bit = bit;
          asserts.PushBack(info);
        }
      }

      // add assertions for any invariants affected by a write.

      Exp *left = NULL;
      if (PEdgeAssign *nedge = edge->IfAssign())
        left = nedge->GetLeftSide();
      if (PEdgeCall *nedge = edge->IfCall())
        left = nedge->GetReturnValue();

      // for now our detection of affected invariants is pretty crude;
      // writes to fields can affect type invariants on the field's type
      // which use that field, and writes to global variables can affect
      // invariants on that global. TODO: pin this down once we draw a
      // precise line between which invariants can and can't be checked.

      if (left && left->IsFld()) {
        ExpFld *nleft = left->AsFld();
        String *csu_name = nleft->GetField()->GetCSUType()->GetCSUName();
        Vector<BlockCFG*> *comp_annot_list = CompAnnotCache.Lookup(csu_name);

        for (size_t aind = 0; comp_annot_list &&
                              aind < comp_annot_list->Size(); aind++) {
          BlockCFG *annot_cfg = comp_annot_list->At(aind);

          if (annot_cfg->GetAnnotationKind() != AK_Invariant)
            continue;
          Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg);
          if (!bit) continue;

          Vector<Exp*> lval_list;
          LvalListVisitor visitor(&lval_list);
          bit->DoVisit(&visitor);

          bool uses_field = false;
          for (size_t ind = 0; ind < lval_list.Size(); ind++) {
            if (ExpFld *lval = lval_list[ind]->IfFld()) {
              if (lval->GetField() == nleft->GetField())
                uses_field = true;
            }
          }

          if (uses_field) {
            // this is a type invariant which uses the field being written
            // as an lvalue. we need to assert this write preserves
            // the invariant.
            BlockId *id = annot_cfg->GetId();
            Variable *this_var = Variable::Make(id, VK_This, NULL, 0, NULL);
            Exp *this_exp = Exp::MakeVar(this_var);
            Exp *this_drf = Exp::MakeDrf(this_exp);

            Bit *new_bit = BitReplaceExp(bit, this_drf, nleft->GetTarget());

            AssertInfo info;
            info.kind = ASK_Invariant;
            info.cls = ASC_Check;
            info.point = point;
            info.bit = new_bit;
            asserts.PushBack(info);
          }
        }

        CompAnnotCache.Release(csu_name);
      }

      if (left && left->IsVar()) {
        Variable *var = left->AsVar()->GetVariable();
        if (var->Kind() == VK_Glob) {
          Vector<BlockCFG*> *glob_annot_list =
            InitAnnotCache.Lookup(var->GetName());

          for (size_t aind = 0; glob_annot_list &&
                                aind < glob_annot_list->Size(); aind++) {
            BlockCFG *annot_cfg = glob_annot_list->At(aind);

            Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg);
            if (!bit) continue;

            AssertInfo info;
            info.kind = ASK_Invariant;
            info.cls = ASC_Check;
            info.point = point;
            info.bit = bit;
            asserts.PushBack(info);
          }

          InitAnnotCache.Release(var->GetName());
        }
      }

      if (PEdgeCall *nedge = edge->IfCall()) {
        // add assertions for any callee preconditions.

        // pull preconditions from both direct and indirect calls.
        Vector<Variable*> callee_names;

        if (Variable *callee = nedge->GetDirectFunction()) {
          callee_names.PushBack(callee);
        }
        else {
          CallEdgeSet *callees = CalleeCache.Lookup(function);

          if (callees) {
            for (size_t cind = 0; cind < callees->GetEdgeCount(); cind++) {
              const CallEdge &edge = callees->GetEdge(cind);
              if (edge.where.id == cfg->GetId() && edge.where.point == point)
                callee_names.PushBack(edge.callee);
            }
          }

          // CalleeCache release is below.
        }

        for (size_t cind = 0; cind < callee_names.Size(); cind++) {
          String *callee = callee_names[cind]->GetName();
          Vector<BlockCFG*> *call_annot_list = BodyAnnotCache.Lookup(callee);

          for (size_t aind = 0;
               call_annot_list && aind < call_annot_list->Size(); aind++) {
            BlockCFG *annot_cfg = call_annot_list->At(aind);

            if (annot_cfg->GetAnnotationKind() != AK_Precondition)
              continue;
            if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
              ConvertCallsiteMapper mapper(cfg, point, false);
              Bit *caller_bit = bit->DoMap(&mapper);
              if (!caller_bit)
                continue;

              AssertInfo info;
              info.kind = ASK_Annotation;
              info.cls = ASC_Check;
              info.point = point;
              info.bit = caller_bit;
              asserts.PushBack(info);
            }
          }

          BodyAnnotCache.Release(callee);
        }

        if (!nedge->GetDirectFunction())
          CalleeCache.Release(function);
      }

      BufferScanVisitor write_visitor(asserts, arithmetic_list, point, true);
      BufferScanVisitor read_visitor(asserts, arithmetic_list, point, false);
      IntegerScanVisitor integer_visitor(asserts, point);
      GCScanVisitor gcsafe_visitor(asserts, point);

      // only look at the written lvalues for the write visitor.
      if (PEdgeAssign *assign = edge->IfAssign())
        write_visitor.Visit(assign->GetLeftSide());
      if (PEdgeCall *call = edge->IfCall()) {
        if (Exp *returned = call->GetReturnValue())
          write_visitor.Visit(returned);
      }

      edge->DoVisit(&read_visitor);

      // disable integer overflow visitor for now.
      // edge->DoVisit(&integer_visitor);

      edge->DoVisit(&gcsafe_visitor);
    }

    if (cfg->GetId()->Kind() == B_Function) {
      BlockModset *modset = GetBlockModset(cfg->GetId());
      if (modset->CanGC()) {
        AssertInfo info;
        info.kind = ASK_CanGC;
        info.cls = ASC_Check;
        info.point = cfg->GetExitPoint();

        String *name = cfg->GetId()->BaseVar()->GetName();
        Variable *var = Variable::Make(NULL, VK_Glob, name, 0, name);
        Exp *varexp = Exp::MakeVar(var);
        Exp *gcsafe = Exp::MakeGCSafe(varexp, false);
        info.bit = Bit::MakeVar(gcsafe);
        asserts.PushBack(info);
      }
    }

    MarkRedundantAssertions(mcfg, asserts);

    // move the finished assertion list into the summary.
    for (size_t ind = 0; ind < asserts.Size(); ind++) {
      const AssertInfo &info = asserts[ind];
      sum->AddAssert(info.kind, info.cls, info.point, info.bit);
    }
  }

  // infer delta and termination invariants for all summaries.
  for (size_t ind = 0; ind < summary_list.Size(); ind++)
    InferInvariants(summary_list[ind], arithmetic_list);

  BodyAnnotCache.Release(function->GetName());
}