mitk::SemanticRelationsDataStorageAccess::DataNodeVector mitk::SemanticRelationsDataStorageAccess::GetAllSpecificImages(const SemanticTypes::CaseID& caseID, const SemanticTypes::ControlPoint& controlPoint, const SemanticTypes::InformationType& informationType) const { if (SemanticRelationsInference::InstanceExists(caseID, controlPoint)) { if (SemanticRelationsInference::InstanceExists(caseID, informationType)) { // control point exists, information type exists, retrieve all images from the storage DataNodeVector allImagesOfCase = GetAllImagesOfCase(caseID); // filter all images to remove the ones with a different control point and information type using a lambda function auto lambda = [&controlPoint, &informationType, this](DataNode::Pointer imageNode) { return (informationType != SemanticRelationsInference::GetInformationTypeOfImage(imageNode)) || (controlPoint.date != SemanticRelationsInference::GetControlPointOfImage(imageNode).date); }; allImagesOfCase.erase(std::remove_if(allImagesOfCase.begin(), allImagesOfCase.end(), lambda), allImagesOfCase.end()); return allImagesOfCase; } else { mitkThrowException(SemanticRelationException) << "Could not find an existing information type for the given caseID " << caseID << " and information type " << informationType; } } else { mitkThrowException(SemanticRelationException) << "Could not find an existing control point for the given caseID " << caseID << " and control point " << controlPoint.UID; } }
mitk::SemanticRelationsDataStorageAccess::DataNodeVector mitk::SemanticRelationsDataStorageAccess::GetAllSegmentationsOfLesion(const SemanticTypes::CaseID& caseID, const SemanticTypes::Lesion& lesion) const { if (SemanticRelationsInference::InstanceExists(caseID, lesion)) { // lesion exists, retrieve all case segmentations from the storage DataNodeVector allSegmentationsOfLesion = GetAllSegmentationsOfCase(caseID); // filter all segmentations: check for semantic relation with the given lesion using a lambda function auto lambda = [&lesion, this](DataNode::Pointer segmentation) { try { SemanticTypes::Lesion representedLesion = SemanticRelationsInference::GetLesionOfSegmentation(segmentation); return lesion.UID != representedLesion.UID; } catch (const SemanticRelationException&) { return true; } }; allSegmentationsOfLesion.erase(std::remove_if(allSegmentationsOfLesion.begin(), allSegmentationsOfLesion.end(), lambda), allSegmentationsOfLesion.end()); return allSegmentationsOfLesion; } else { mitkThrowException(SemanticRelationException) << "Could not find an existing lesion instance for the given caseID " << caseID << " and lesion " << lesion.UID << "."; } }
mitk::SemanticRelationsDataStorageAccess::DataNodeVector mitk::SemanticRelationsDataStorageAccess::GetAllImagesOfLesion(const SemanticTypes::CaseID& caseID, const SemanticTypes::Lesion& lesion) const { if (m_DataStorage.IsExpired()) { mitkThrowException(SemanticRelationException) << "Not a valid data storage."; } DataNodeVector allImagesOfLesion; // 1. get all segmentations that define the lesion // 2. retrieve the parent node (source) of the found segmentation node DataNodeVector allSegmentationsOfLesion = GetAllSegmentationsOfLesion(caseID, lesion); for (const auto& segmentationNode : allSegmentationsOfLesion) { // get parent node of the current segmentation node with the node predicate DataStorage::SetOfObjects::ConstPointer parentNodes = m_DataStorage.Lock()->GetSources(segmentationNode, NodePredicates::GetImagePredicate(), false); for (auto it = parentNodes->Begin(); it != parentNodes->End(); ++it) { DataNode::Pointer dataNode = it->Value(); allImagesOfLesion.push_back(it->Value()); } } std::sort(allImagesOfLesion.begin(), allImagesOfLesion.end()); allImagesOfLesion.erase(std::unique(allImagesOfLesion.begin(), allImagesOfLesion.end()), allImagesOfLesion.end()); return allImagesOfLesion; }