示例#1
0
void SpinAdapted::diagonalise(Matrix& sym, DiagonalMatrix& d, Matrix& vec)
{
  int nrows = sym.Nrows();
  int ncols = sym.Ncols();
  assert(nrows == ncols);
  d.ReSize(nrows);
  vec.ReSize(nrows, nrows);

  Matrix workmat;
  workmat = sym;
  vector<double> workquery(1);
  int info = 0;
  double* dptr = d.Store();

  int query = -1;
  DSYEV('V', 'L', nrows, workmat.Store(), nrows, dptr, &(workquery[0]), query, info); // do query to find best size
  
  int optlength = static_cast<int>(workquery[0]);
  vector<double> workspace(optlength);

  DSYEV('V', 'U', nrows, workmat.Store(), nrows, dptr, &(workspace[0]), optlength, info); // do query to find best size


  
  if (info > 0) 
    {
      pout << "failed to converge " << endl;
      abort(); 
    }
  
  for (int i = 0; i < nrows; ++i)
    for (int j = 0; j < ncols; ++j)
      vec(j+1,i+1) = workmat(i+1,j+1);
}
示例#2
0
void SpinAdapted::svd(Matrix& M, DiagonalMatrix& d, Matrix& U, Matrix& V)
{
  int nrows = M.Nrows();
  int ncols = M.Ncols();

  assert(nrows >= ncols);

  int minmn = min(nrows, ncols);
  int maxmn = max(nrows, ncols);
  int eigenrows = min(minmn, minmn);
  d.ReSize(minmn);
  Matrix Ut;
  Ut.ReSize(nrows, nrows);
  V.ReSize(ncols, ncols);

  int lwork = maxmn * maxmn + 100;
  double* workspace = new double[lwork];

  // first transpose matrix
  Matrix Mt;
  Mt = M.t();
  int info = 0;
  DGESVD('A', 'A', nrows, ncols, Mt.Store(), nrows, d.Store(), 
	 Ut.Store(), nrows, V.Store(), ncols, workspace, lwork, info);

  U.ReSize(nrows, ncols);
  SpinAdapted::Clear(U);
  for (int i = 0; i < nrows; ++i)
    for (int j = 0; j < ncols; ++j)
      U(i+1,j+1) = Ut(j+1,i+1);
  delete[] workspace;
}
示例#3
0
static void tred3(const SymmetricMatrix& X, DiagonalMatrix& D,
   DiagonalMatrix& E, SymmetricMatrix& A)
{
   Tracer et("Evalue(tred3)");
   Real tol =
      FloatingPointPrecision::Minimum()/FloatingPointPrecision::Epsilon();
   int n = X.Nrows(); A = X; D.ReSize(n); E.ReSize(n);
   Real* ei = E.Store() + n;
   for (int i = n-1; i >= 0; i--)
   {
      Real h = 0.0; Real f;
      Real* d = D.Store(); Real* a = A.Store() + (i*(i+1))/2; int k = i;
      while (k--) { f = *a++; *d++ = f; h += square(f); }
      if (h <= tol) { *(--ei) = 0.0; h = 0.0; }
      else
      {
	 Real g = sign(-sqrt(h), f); *(--ei) = g; h -= f*g;
         f -= g; *(d-1) = f; *(a-1) = f; f = 0.0;
         Real* dj = D.Store(); Real* ej = E.Store(); int j;
         for (j = 0; j < i; j++)
         {
            Real* dk = D.Store(); Real* ak = A.Store()+(j*(j+1))/2;
            Real g = 0.0; k = j;
            while (k--)  g += *ak++ * *dk++;
            k = i-j; int l = j; 
            while (k--) { g += *ak * *dk++; ak += ++l; }
	    g /= h; *ej++ = g; f += g * *dj++;
         }  
	 Real hh = f / (2 * h); Real* ak = A.Store();
         dj = D.Store(); ej = E.Store();
         for (j = 0; j < i; j++)
         {
	    f = *dj++; g = *ej - hh * f; *ej++ = g;
            Real* dk = D.Store(); Real* ek = E.Store(); k = j+1;
	    while (k--) { *ak++ -= (f * *ek++ + g * *dk++); }
	 }
      }
      *d = *a; *a = h;
   }
}
示例#4
0
void NonLinearLeastSquares::GetHatDiagonal(DiagonalMatrix& Hat) const
{
   Hat.ReSize(n_obs);
   for (int i = 1; i<=n_obs; i++) Hat(i) = X.Row(i).SumSquare();
}
示例#5
0
static void tred2(const SymmetricMatrix& A, DiagonalMatrix& D,
   DiagonalMatrix& E, Matrix& Z)
{
   Tracer et("Evalue(tred2)");
   Real tol =
      FloatingPointPrecision::Minimum()/FloatingPointPrecision::Epsilon();
   int n = A.Nrows(); Z.ReSize(n,n); Z.Inject(A);
   D.ReSize(n); E.ReSize(n);
   Real* z = Z.Store(); int i;

   for (i=n-1; i > 0; i--)                   // i=0 is excluded
   {
      Real f = Z.element(i,i-1); Real g = 0.0;
      int k = i-1; Real* zik = z + i*n;
      while (k--) g += square(*zik++);
      Real h = g + square(f);
      if (g <= tol) { E.element(i) = f; h = 0.0; }
      else
      {
	 g = sign(-sqrt(h), f); E.element(i) = g; h -= f*g;
	 Z.element(i,i-1) = f-g; f = 0.0;
         Real* zji = z + i; Real* zij = z + i*n; Real* ej = E.Store();
         int j;
	 for (j=0; j<i; j++)
	 {
	    *zji = (*zij++)/h; g = 0.0;
            Real* zjk = z + j*n; zik = z + i*n;
            k = j; while (k--) g += *zjk++ * (*zik++);
            k = i-j; while (k--) { g += *zjk * (*zik++); zjk += n; }
	    *ej++ = g/h; f += g * (*zji); zji += n;
	 }
	 Real hh = f / (h + h); zij = z + i*n; ej = E.Store();
	 for (j=0; j<i; j++)
	 {
	    f = *zij++; g = *ej - hh * f; *ej++ = g;
            Real* zjk = z + j*n; Real* zik = z + i*n;
            Real* ek = E.Store(); k = j+1;
            while (k--)  *zjk++ -= ( f*(*ek++) + g*(*zik++) ); 
	 }
      }
      D.element(i) = h;
   }

   D.element(0) = 0.0; E.element(0) = 0.0;
   for (i=0; i<n; i++)
   {
      if (D.element(i) != 0.0)
      {
	 for (int j=0; j<i; j++)
	 {
	    Real g = 0.0;
            Real* zik = z + i*n; Real* zkj = z + j;
            int k = i; while (k--) { g += *zik++ * (*zkj); zkj += n; }
            Real* zki = z + i; zkj = z + j;
            k = i; while (k--) { *zkj -= g * (*zki); zkj += n; zki += n; }
	 }
      }
      Real* zij = z + i*n; Real* zji = z + i;
      int j = i; while (j--)  { *zij++ = 0.0; *zji = 0.0; zji += n; }
      D.element(i) = *zij; *zij = 1.0;
   }
}