Matrix BaseController::pseudoInverse(const Matrix M) { Matrix result; //int rows = this->rows(); //int cols = this->columns(); // calculate SVD decomposition Matrix U,V; DiagonalMatrix D; NEWMAT::SVD(M,D,U,V, true, true); Matrix Dinv = D.i(); result = V * Dinv * U.t(); return result; }
void getGeneralizedInverse(Matrix& G, Matrix& Gi) { #ifdef DEBUG cout << "\n\ngetGeneralizedInverse - Singular Value\n"; #endif // Singular value decomposition method // do SVD Matrix U, V; DiagonalMatrix D; SVD(G,D,U,V); // X = U * D * V.t() #ifdef DEBUG cout << "D:\n"; cout << setw(9) << setprecision(6) << (D); cout << "\n\n"; #endif DiagonalMatrix Di; Di << D.i(); #ifdef DEBUG cout << "Di:\n"; cout << setw(9) << setprecision(6) << (Di); cout << "\n\n"; #endif int i=Di.Nrows(); for (; i>=1; i--) { if (Di(i) > 1000.0) { Di(i) = 0.0; } } #ifdef DEBUG cout << "Di with biggies zeroed out:\n"; cout << setw(9) << setprecision(6) << (Di); cout << "\n\n"; #endif //Matrix Gi; Gi << (U * (Di * V.t())); return; }
void test5(Real* y, Real* x1, Real* x2, int nobs, int npred) { cout << "\n\nTest 5 - singular value\n"; // Singular value decomposition method // load data - 1s into col 1 of matrix int npred1 = npred+1; Matrix X(nobs,npred1); ColumnVector Y(nobs); X.Column(1) = 1.0; X.Column(2) << x1; X.Column(3) << x2; Y << y; // do SVD Matrix U, V; DiagonalMatrix D; SVD(X,D,U,V); // X = U * D * V.t() ColumnVector Fitted = U.t() * Y; ColumnVector A = V * ( D.i() * Fitted ); Fitted = U * Fitted; ColumnVector Residual = Y - Fitted; Real ResVar = Residual.SumSquare() / (nobs-npred1); // get variances of estimates D << V * (D * D).i() * V.t(); // Get diagonals of Hat matrix DiagonalMatrix Hat; Hat << U * U.t(); // print out answers cout << "\nEstimates and their standard errors\n\n"; ColumnVector SE(npred1); for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar); cout << setw(11) << setprecision(5) << (A | SE) << endl; cout << "\nObservations, fitted value, residual value, hat value\n"; cout << setw(9) << setprecision(3) << (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn()); cout << "\n\n"; }
/* * Fits a weighted cubic regression on predictor(s) * * @param contrast - want to predict this value per snp * @param strength - covariate of choice * @param weights - weight of data points for this genotype * @param Predictor - output, prediction function coefficients * @param Predicted - output, predicted contrast per snp */ void FitWeightedCubic(const std::vector<double> &contrast, const std::vector<double> &strength, const std::vector<double> &weights, std::vector<double> &Predictor, std::vector<double> &Predicted) { // Singular value decomposition method unsigned int i; unsigned int nobs; unsigned int npred; npred = 3+1; nobs= contrast.size(); // convert double into doubles to match newmat vector<Real> tmp_vec(nobs); Real* tmp_ptr = &tmp_vec[0]; vector<Real> obs_vec(nobs); Real *obs_ptr = &obs_vec[0]; vector<Real> weight_vec(nobs); Matrix covarMat(nobs,npred); ColumnVector observedVec(nobs); // fill in the data // modified by weights for (i=0; i<nobs; i++) weight_vec[i] = sqrt(weights[i]); // load data - 1s into col 1 of matrix for (i=0; i<nobs; i++) tmp_vec[i] = weight_vec[i]; covarMat.Column(1) << tmp_ptr; for (i=0; i<nobs; i++) tmp_vec[i] *= strength[i]; covarMat.Column(2) << tmp_ptr; for (i=0; i<nobs; i++) tmp_vec[i] *= strength[i]; covarMat.Column(3) << tmp_ptr; for (i=0; i<nobs; i++) tmp_vec[i] *= strength[i]; covarMat.Column(4) << tmp_ptr; for (i=0; i<nobs; i++) obs_vec[i] = contrast[i]*weight_vec[i]; observedVec << obs_ptr; // do SVD Matrix U, V; DiagonalMatrix D; ColumnVector Fitted(nobs); ColumnVector A(npred); SVD(covarMat,D,U,V); Fitted = U.t() * observedVec; A = V * ( D.i() * Fitted ); // this predicts "0" for low weights // because of weighted regression Fitted = U * Fitted; // this is the predictor Predictor.resize(npred); for (i=0; i<npred; i++) Predictor[i] = A.element(i); // export data back to doubles // and therefore this predicts "0" for low-weighted points // which is >not< the desired outcome!!!! // instead we need to predict all points at once // >unweighted< as output vector<double> Goofy; Predicted.resize(nobs); for (i = 0; i < nobs; ++i) { Goofy.resize(npred); Goofy[0] = 1; Goofy[1] = strength[i]; Goofy[2] = strength[i]*Goofy[1]; Goofy[3] = strength[i]*Goofy[2]; Predicted[i] = vprod(Goofy,Predictor); } }
void trymat8() { // cout << "\nEighth test of Matrix package\n"; Tracer et("Eighth test of Matrix package"); Tracer::PrintTrace(); int i; DiagonalMatrix D(6); for (i=1;i<=6;i++) D(i,i)=i*i+i-10; DiagonalMatrix D2=D; Matrix MD=D; DiagonalMatrix D1(6); for (i=1;i<=6;i++) D1(i,i)=-100+i*i*i; Matrix MD1=D1; Print(Matrix(D*D1-MD*MD1)); Print(Matrix((-D)*D1+MD*MD1)); Print(Matrix(D*(-D1)+MD*MD1)); DiagonalMatrix DX=D; { Tracer et1("Stage 1"); DX=(DX+D1)*DX; Print(Matrix(DX-(MD+MD1)*MD)); DX=D; DX=-DX*DX+(DX-(-D1))*((-D1)+DX); // Matrix MX = Matrix(MD1); // MD1=DX+(MX.t())*(MX.t()); Print(MD1); MD1=DX+(Matrix(MD1).t())*(Matrix(MD1).t()); Print(MD1); DX=D; DX=DX; DX=D2-DX; Print(DiagonalMatrix(DX)); DX=D; } { Tracer et1("Stage 2"); D.Release(2); D1=D; D2=D; Print(DiagonalMatrix(D1-DX)); Print(DiagonalMatrix(D2-DX)); MD1=1.0; Print(Matrix(MD1-1.0)); } { Tracer et1("Stage 3"); //GenericMatrix LowerTriangularMatrix LT(4); LT << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9 << 10; UpperTriangularMatrix UT = LT.t() * 2.0; GenericMatrix GM1 = LT; LowerTriangularMatrix LT1 = GM1-LT; Print(LT1); GenericMatrix GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1); GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1); GM2 = GM1*2; LT1 = GM2; LT1 = LT1-LT*2; Print(LT1); GM1.Release(); GM1=GM1; LT1=GM1-LT; Print(LT1); LT1=GM1-LT; Print(LT1); GM1.Release(); GM1=GM1*4; LT1=GM1-LT*4; Print(LT1); LT1=GM1-LT*4; Print(LT1); GM1.CleanUp(); GM1=LT; GM2=UT; GM1=GM1*GM2; Matrix M=GM1; M=M-LT*UT; Print(M); Transposer(LT,GM2); LT1 = LT - GM2.t(); Print(LT1); GM1=LT; Transposer(GM1,GM2); LT1 = LT - GM2.t(); Print(LT1); GM1 = LT; GM1 = GM1 + GM1; LT1 = LT*2-GM1; Print(LT1); DiagonalMatrix D; D << LT; GM1 = D; LT1 = GM1; LT1 -= D; Print(LT1); UpperTriangularMatrix UT1 = GM1; UT1 -= D; Print(UT1); } { Tracer et1("Stage 4"); // Another test of SVD Matrix M(12,12); M = 0; M(1,1) = M(2,2) = M(4,4) = M(6,6) = M(7,7) = M(8,8) = M(10,10) = M(12,12) = -1; M(1,6) = M(1,12) = -5.601594; M(3,6) = M(3,12) = -0.000165; M(7,6) = M(7,12) = -0.008294; DiagonalMatrix D; SVD(M,D); SortDescending(D); // answer given by matlab DiagonalMatrix DX(12); DX(1) = 8.0461; DX(2) = DX(3) = DX(4) = DX(5) = DX(6) = DX(7) = 1; DX(8) = 0.1243; DX(9) = DX(10) = DX(11) = DX(12) = 0; D -= DX; Clean(D,0.0001); Print(D); } #ifndef DONT_DO_NRIC { Tracer et1("Stage 5"); // test numerical recipes in C interface DiagonalMatrix D(10); D << 1 << 4 << 6 << 2 << 1 << 6 << 4 << 7 << 3 << 1; ColumnVector C(10); C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3; RowVector R(6); R << 2 << 3 << 5 << 7 << 11 << 13; nricMatrix M(10, 6); DCR( D.nric(), C.nric(), 10, R.nric(), 6, M.nric() ); M -= D * C * R; Print(M); D.ReSize(5); D << 1.25 << 4.75 << 9.5 << 1.25 << 3.75; C.ReSize(5); C << 1.5 << 7.5 << 4.25 << 0.0 << 7.25; R.ReSize(9); R << 2.5 << 3.25 << 5.5 << 7 << 11.25 << 13.5 << 0.0 << 1.5 << 3.5; Matrix MX = D * C * R; M.ReSize(MX); DCR( D.nric(), C.nric(), 5, R.nric(), 9, M.nric() ); M -= MX; Print(M); // test swap nricMatrix A(3,4); nricMatrix B(4,5); A.Row(1) << 2 << 7 << 3 << 6; A.Row(2) << 6 << 2 << 5 << 9; A.Row(3) << 1 << 0 << 1 << 6; B.Row(1) << 2 << 8 << 4 << 5 << 3; B.Row(2) << 1 << 7 << 5 << 3 << 9; B.Row(3) << 7 << 8 << 2 << 1 << 6; B.Row(4) << 5 << 2 << 9 << 0 << 9; nricMatrix A1(1,2); nricMatrix B1; nricMatrix X(3,5); Matrix X1 = A * B; swap(A, A1); swap(B1, B); for (int i = 1; i <= 3; ++i) for (int j = 1; j <= 5; ++j) { X.nric()[i][j] = 0.0; for (int k = 1; k <= 4; ++k) X.nric()[i][j] += A1.nric()[i][k] * B1.nric()[k][j]; } X1 -= X; Print(X1); } #endif { Tracer et1("Stage 6"); // test dotproduct DiagonalMatrix test(5); test = 1; ColumnVector C(10); C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3; RowVector R(10); R << 2 << 3 << 5 << 7 << 11 << 13 << -3 << -4 << 2 << 4; test(1) = (R * C).AsScalar() - DotProduct(C, R); test(2) = C.SumSquare() - DotProduct(C, C); test(3) = 6.0 * (C.t() * R.t()).AsScalar() - DotProduct(2.0 * C, 3.0 * R); Matrix MC = C.AsMatrix(2,5), MR = R.AsMatrix(5,2); test(4) = DotProduct(MC, MR) - (R * C).AsScalar(); UpperTriangularMatrix UT(5); UT << 3 << 5 << 2 << 1 << 7 << 1 << 1 << 8 << 2 << 7 << 0 << 1 << 3 << 5 << 6; LowerTriangularMatrix LT(5); LT << 5 << 2 << 3 << 1 << 0 << 7 << 9 << 8 << 1 << 2 << 0 << 2 << 1 << 9 << 2; test(5) = DotProduct(UT, LT) - Sum(SP(UT, LT)); Print(test); // check row-wise load; LowerTriangularMatrix LT1(5); LT1.Row(1) << 5; LT1.Row(2) << 2 << 3; LT1.Row(3) << 1 << 0 << 7; LT1.Row(4) << 9 << 8 << 1 << 2; LT1.Row(5) << 0 << 2 << 1 << 9 << 2; Matrix M = LT1 - LT; Print(M); // check solution with identity matrix IdentityMatrix IM(5); IM *= 2; LinearEquationSolver LES1(IM); LowerTriangularMatrix LTX = LES1.i() * LT; M = LTX * 2 - LT; Print(M); DiagonalMatrix D = IM; LinearEquationSolver LES2(IM); LTX = LES2.i() * LT; M = LTX * 2 - LT; Print(M); UpperTriangularMatrix UTX = LES1.i() * UT; M = UTX * 2 - UT; Print(M); UTX = LES2.i() * UT; M = UTX * 2 - UT; Print(M); } { Tracer et1("Stage 7"); // Some more GenericMatrix stuff with *= |= &= // but don't any additional checks BandMatrix BM1(6,2,3); BM1.Row(1) << 3 << 8 << 4 << 1; BM1.Row(2) << 5 << 1 << 9 << 7 << 2; BM1.Row(3) << 1 << 0 << 6 << 3 << 1 << 3; BM1.Row(4) << 4 << 2 << 5 << 2 << 4; BM1.Row(5) << 3 << 3 << 9 << 1; BM1.Row(6) << 4 << 2 << 9; BandMatrix BM2(6,1,1); BM2.Row(1) << 2.5 << 7.5; BM2.Row(2) << 1.5 << 3.0 << 8.5; BM2.Row(3) << 6.0 << 6.5 << 7.0; BM2.Row(4) << 2.5 << 2.0 << 8.0; BM2.Row(5) << 0.5 << 4.5 << 3.5; BM2.Row(6) << 9.5 << 7.5; Matrix RM1 = BM1, RM2 = BM2; Matrix X; GenericMatrix GRM1 = RM1, GBM1 = BM1, GRM2 = RM2, GBM2 = BM2; Matrix Z(6,0); Z = 5; Print(Z); GRM1 |= Z; GBM1 |= Z; GRM2 &= Z.t(); GBM2 &= Z.t(); X = GRM1 - BM1; Print(X); X = GBM1 - BM1; Print(X); X = GRM2 - BM2; Print(X); X = GBM2 - BM2; Print(X); GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2; GRM1 *= GRM2; GBM1 *= GBM2; X = GRM1 - BM1 * BM2; Print(X); X = RM1 * RM2 - GBM1; Print(X); GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2; GRM1 *= GBM2; GBM1 *= GRM2; // Bs and Rs swapped on LHS X = GRM1 - BM1 * BM2; Print(X); X = RM1 * RM2 - GBM1; Print(X); X = BM1.t(); BandMatrix BM1X = BM1.t(); GRM1 = RM1; X -= GRM1.t(); Print(X); X = BM1X - BM1.t(); Print(X); // check that linear equation solver works with Identity Matrix IdentityMatrix IM(6); IM *= 2; GBM1 = BM1; GBM1 *= 4; GRM1 = RM1; GRM1 *= 4; DiagonalMatrix D = IM; LinearEquationSolver LES1(D); BandMatrix BX; BX = LES1.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X); LinearEquationSolver LES2(IM); BX = LES2.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X); BX = D.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X); BX = IM.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X); BX = IM.i(); BX *= GBM1; BX -= BM1 * 2; X = BX; Print(X); // try symmetric band matrices SymmetricBandMatrix SBM; SBM << SP(BM1, BM1.t()); SBM << IM.i() * SBM; X = 2 * SBM - SP(RM1, RM1.t()); Print(X); // Do this again with more general D D << 2.5 << 7.5 << 2 << 5 << 4.5 << 7.5; BX = D.i() * BM1; X = BX - D.i() * RM1; Clean(X,0.00000001); Print(X); BX = D.i(); BX *= BM1; X = BX - D.i() * RM1; Clean(X,0.00000001); Print(X); SBM << SP(BM1, BM1.t()); BX = D.i() * SBM; X = BX - D.i() * SP(RM1, RM1.t()); Clean(X,0.00000001); Print(X); // test return BX = TestReturn(BM1); X = BX - BM1; if (BX.BandWidth() != BM1.BandWidth()) X = 5; Print(X); } // cout << "\nEnd of eighth test\n"; }